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PREFACE 
 
These proceedings contain the contributions of the 2nd Actuarial and Financial Mathematics 
day, held in Brussels on February 6, 2004. In a few words the items that have been treated 
range from pricing derivatives and portfolio selection over interest rate modelling to risk 
theory and non-life insurance. It just shows that “Actuarial and Financial Mathematics” 
covers a large domain of interest. 
 
For the second edition of this day we are very grateful to the Royal Flemish Academy of 
Sciences and Art for their sponsoring and hospitality. They created the opportunity to meet in 
a superb accommodation, breathing an atmosphere of wisdom.  
 
The intention of this meeting is to gather junior researchers and postdocs, active in either 
financial or more actuarial sciences and to give them a forum to show their progress in a 
domain which covers a broad spectrum and nevertheless is still a beautiful, attractive and 
stimulating area. Besides the two invited talks, eight contributed talks were given. 
This meeting is an occasion to maintain the bridge – to build just means there is none – 
between practice and theory. So we were very glad to welcome a lot of participants from 
banks and insurance companies. Also one of the speakers was a practitioner from insurance. 
 
The success of this contactforum is a great stimulation for the organisers to continue with this 
yearly initiative.  
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THE VALUATION OF ASIAN OPTIONS FOR
MARKET MODELS OF EXPONENTIAL L ÉVY TYPE

Hansjörg Albrecher

Graz University of Technology, Austria and K.U.Leuven, Belgium
Email:albrecher@TUGraz.at

Abstract
We give a brief survey on some recent developments in pricing and hedging of European-style
arithmetic average options given that the underlying asset price process is of exponential Lévy
type.

1. INTRODUCTION

During the last decade it has been realized that the strong assumptions of the classical Black-
Scholes model for the stochastic behavior over time of stock prices and indices are usually not
fulfilled in practical applications. Among the major deficiencies of the Black-Scholes model are the
normality assumption of log returns across all time scales and the assumption of a non-stochastic
volatility (see e.g. [36]). In this survey, we will consider finance market models of exponential
Lévy type which are able to capture the empirically observed distributional behavior of log returns
and thus overcome some imperfections of the Black-Scholes model. In particular, we will discuss
the pricing and hedging of Asian options under these market models. It turns out that by exploiting
the independent and stationary increments property of Lévy processes, one can derive quick and
rather accurate approximations of Asian option prices for arbitrary risk-neutral pricing measures
(Section 4). In Section 5 a simple static super-hedging strategy for the payoff of Asian options
in terms of a portfolio of European options is discussed. Its performance can be optimized by
utilizing comonotonicity theory. This hedging strategy can even be applied to market models
including stochastic volatility.

2. THE EMPIRICAL BEHAVIOR OF LOG RETURNS

One of the crucial assumptions of the Black-Scholes model is that log returns across all time scales
follow a normal distribution. However, this is clearly unrealistic in practice, in particular for short
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Figure 1: Kernel density estimator (dotted line) and maximum-likelihood fit of a normal distribu-
tion (solid line) for daily ATX log returns (Jan 97 - June 00) and corresponding QQ-plot.

time horizons. As an illustrative example, Figure 1 shows a kernel density estimator of daily log-
returns of the Austrian stock index (ATX) based on data over a time span of more than three years
in comparison to a maximum-likelihood fit of a normal distribution as proposed by the Black-
Scholes model. Clearly the normal distribution does not reflect the empirical distribution, lacking
mass in the center and in the tails. Various alternatives have been proposed for fitting log returns,
among them the generalized hyperbolic (GH) distribution (cf. [21]), the Meixner distribution (cf.
[35]) and the CGMY distribution [13, 14].

0

10

20

30

40

–0.06 –0.04 –0.02 0.02 0.04 0.06
x

-0.04 -0.02 0 0.02 0.04
-0.04

-0.02

0

0.02

0.04
QQ-Plot

Figure 2: Kernel density estimator (dotted line) and maximum-likelihood fit of a GH distribution
(solid line) for daily ATX log returns (Jan 97 - June 00) and corresponding QQ-plot.

Figure 2 shows a maximum-likelihood fit of the GH distribution to the same data set and it
can be observed that the GH distribution is able to capture both the behavior at the center and in
the (semi-heavy) tails quite well. The GH distribution (originally introduced by Barndorff-Nielsen
[5]) has five parameters and contains the normal, the normal inverse Gaussian and the variance
gamma distribution as a special case (for a detailed discussion see [8]). For further investigations
on the suitability of these distributions for fitting financial data we refer to [6, 24, 29, 31, 34]. GH,
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Meixner and CGMY distributions all are infinitely divisible and thus generate a Lévy process as
described in the next section.

3. THE EXPONENTIAL L ÉVY MODEL

Any infinitely divisible distributionX generates a Ĺevy process(Zt)t≥0, i.e. a stochastic process
with stationary and independent increments,Z0 = 0 a.s. andZ1 ∼d X. It is always possible
to choose a c̀adl̀ag version of the Ĺevy process. According to the construction, increments of
length 1 have distributionX, but in general none of the increments of length different from 1 has
a distribution of the same class. Exceptions are the cases whereX is a normal inverse Gaussian, a
variance gamma, a Meixner or a CGMY distribution; due to their respective convolution properties,
each incrementZt − Zs (t > s ≥ 0) is then of the same class with new parameters depending on
t − s, which makes these distributions natural and particularly attractive candidates for fitting the
marginal distributions.
An exponential Ĺevy model for the price process(St)t≥0 of an asset (a stock or an index) is now
defined by

St = S0 exp(Zt). (1)

Thus the Brownian motion with drift of the Black-Scholes model is replaced by a Lévy process.
Indeed, the distribution of log returns over timet is now given by the distribution ofZt. Implica-
tions of the model choice (1) on the dynamics of the asset price process are e.g. discussed in [20].
There is some empirical evidence that the Lévy measure of realistic Ĺevy models does not contain
a Brownian ”diffusion” component, so that the price process(St)t≥0 is purely discontinuous (with
finitely or infinitely many jumps in every finite interval, see e.g. [13])). The model (1) assumes
a constant volatility, but the volatility smile effect of the Black-Scholes model is considerably re-
duced (cf. [24]). Time-consistency of Lévy models was investigated in [22]. For an up-to-date
survey on exponential Ĺevy models we refer to [20, 36].

The market model (1) is in general incomplete (cf. Cherny [19]), and there exist infinitely many
equivalent martingale measuresQ so that in order to price derivative securities one has to choose
one particular candidate. One mathematically tractable choice is the so-called Esscher equivalent
measure, essentially obtained by exponential tilting of the original measure. It was first introduced
to mathematical finance by Madan and Milne [29]; see also Gerber and Shiu [25]. Letft denote
the density of the marginal distributionZt, then the Esscher transform offt is defined by

ft(x; θ) =
eθx ft(x)∫∞

−∞ eθy ft(y) dy

with θ ∈ R. One can now define another Lévy process(Zθ
t )t≥0 such that its one-dimensional

marginal distributions are the Esscher transforms of the corresponding marginals of(Zt)t≥0 (for
details see Raible [32]) and the parameterθ is chosen in such a way, that the discounted stock price
process(e−r t Sθ

t )t≥0 is aQ-martingale (wherer denotes the risk-free interest rate). It turns out
that for normal inverse Gaussian and variance gamma Lévy processes the switch to the Esscher
measure just amounts to a shift in the parameters (cf. [2, 3]), which makes the analysis particularly
tractable. There have been attempts to justify this particular choice forQ both within utility and
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equilibrium theory; however, the topic is still controversial (cf. [11, 18, 26]).
Another natural approach is to shift the drift of the Lévy process in such a way that a risk-neutral
framework is obtained. However, in this case the resulting risk-neutral measure is in general not
equivalent to the physical measure. One way to circumvent this problem is to start out immediately
with a risk-neutral model forSt defined by

St = S0
exp(r t)

E[exp(Zt)]
exp(Zt)

and then calibrating the parameters from current option prices observed in the market rather than
from historical log-returns. This approach is quite common in practice, see e.g. [36].
Note that the techniques presented in Sections 4 and 5 are applicable for any risk-neutral pricing
measureQ and thus the choice ofQ is not discussed any further.

4. PRICING OF ASIAN OPTIONS

Let us now consider the price of a European-style arithmetic average call option at timet under
exponential Ĺevy models given by

AA t =
e−r(T−t)

n
EQ




(
n−1∑

k=0

ST−k − nK

)+ ∣∣∣∣∣ Ft


 , (2)

wheren is the number of averaging days,K the strike price,T the time to expiration,Ft the
information available at timet andQ any risk-neutral pricing measure. For convenience we will
restrict ourselves to the caset = 0 andn = T , so that the averaging starts at time1 (the other cases
can be handled in a completely analogous way).

The main difficulty in evaluating (2) is to determine the distribution of the dependent sum∑
Sk, for which in general no explicit analytical expression is available. There are several ap-

proaches to the problem: one can use Monte Carlo simulation techniques to obtain numerical esti-
mates of the price, which can be achieved by adapting procedures developed for the Black-Scholes
case (see e.g. [9, 10, 33, 37]). Recently Vec̆ĕr and Xu [40] developed a partial integro-differential
equation approach that is applicable for exponential Lévy models, which transforms the problem
into finding numerical solution of these equations. Both approaches are rather time consuming.
For an approach based on Fast Fourier Transforms, see [7, 17]. Another alternative is to use ap-
proximations of the distribution of the average, which sometimes leads to closed-form expressions
for the price approximation. In the sequel we will discuss an adaption of such approximation tech-
niques developed for the Black-Scholes case ([28, 39, 41]) to our exponential Lévy setting.
The basic idea is to determine moments of the dependent sum in (2) and then replace it by a more
tractable distribution with identical first moments. Due to the independence and stationarity of
increments of Ĺevy processes, one can derive a simple algorithm to derive themth moment of the
dependent sumAn :=

∑n
k=1 Sk:

Let us define

Ri =
Si

Si−1

, i = 1, . . . , n
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and

Ln = 1

Li−1 = 1 + RiLi, i = 2, . . . , n.

Then we have
n∑

k=1

Sk = S0(R1 + R1R2 + · · ·+ R1R2 . . . Rn) = S0R1L1.

Thus it remains to determineEQ[(R1L1)
m] = EQ[Rm

1 ]EQ[Lm
1 ] (the last equality follows from the

independence of the increments). But

EQ[Rk
i ] = EQ[exp(k Z1)] = EQ[exp(k X)], (3)

so that one just has to evaluate the risk-neutral moment generating function ofX at k, given it
exists (recall thatX is the generating distribution of the Lévy process). Furthermore we have

EQ[Lm
i−1] = EQ[(1 + LiRi)

m] =
m∑

k=0

(
m

k

)
EQ[Lk

i ]EQ[Rk
i ]. (4)

Starting withEQ[Lk
n] = 1 ∀ k ∈ {0, . . . ,m}, one can then apply recursion (4) together with (3) to

obtainEQ[Lm
1 ] and subsequentlyEQ[(An)m] = EQ[Rm

1 ]EQ[Lm
1 ].

These moments can now be used to approximateAn =
∑n

k=1 Sk by another more tractable dis-
tribution with identical first moments. IfAn is approximated by a lognormal distribution, then one
obtains an explicit formula for the approximated price resembling the Black-Scholes price of a Eu-
ropean option. Higher moments ofAn can then be used to improve the approximation in terms of
an Edgeworth series expansion (this approach is known as the Turnbull-Wakeman approximation).
Another natural and usual effective choice is to approximateAn by a distribution of the same class
asX. All these approximations have been worked out in detail for the normal inverse Gaussian
Lévy model in [2] and for the variance gamma Lévy model in [3]. They turn out to be a quick and
accurate alternative to other numerical pricing techniques, the approximation error typically being
less than0.5% (for an extensive numerical study we refer to Albrecher and Predota [2, 3]).
Note that whereas the effectiveness of most of the other numerical techniques depends quite
strongly on the structure of the marginal distributions of the Lévy process, the above approach
is applicable for arbitrary risk-neutral measures and arbitrary exponential Lévy models as long as
the risk-neutral moment-generating function of the log returns exists in the interval[0, k].

The sensitivity of the price of an Asian option on the underlying market model has been inves-
tigated in [2, 3]). As an illustrative example, Figure 3 (taken from [2]) depicts the difference of
Asian call option prices for a Black-Scholes model (in whichQ is unique) and the Esscher price
in a normal inverse Gaussian Lévy model across different strikes and maturities, where the two
models were fitted to historical data of OMV daily log returns (S0 = 100, daily averaging and the
prices were determined by Monte Carlo simulation).

The behavior of the price difference in Figure 3 is quite typical. At the money, where most of
the volume is traded, the Black-Scholes price is too high. In and out of the money, it is too low.
This is intuitively clear since the Black-Scholes model underestimates the risk of larger asset price
moves. If the option is very deep in or out of the money, the option price is more or less model
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Figure 3: (NIG)AA0 − (BS)AA0 (Asian arithmetic option)

independent. The difference in option prices becomes less pronounced for increasing maturity. A
comparison with the corresponding sensitivity of European option prices on the underlying model
shows that the effects are quite similar, see e.g. [3, 21].

5. HEDGING OF ASIAN OPTIONS

In many circumstances the availability of a hedging strategy for a financial product is far more
important than the determination of its price (note that in view of the incompleteness of the mar-
ket, there exists a whole interval of no-arbitrage prices for the product depending on the particular
choice of the risk-neutral measureQ, which limits the explanatory power of a ”price”). More-
over, hedging strategies are utilized as devices for representing risk in standard reports. Even in
the Black-Scholes world, hedging an Asian option is far from trivial. One approach is to derive
upper and lower analytic bounds for the option price based on conditioning of random variables
(for instance conditioning on the geometric average) and then to apply delta-hedging in terms of
these bounds (see e.g. [30, 38]). Since these conditioning techniques are based on the simple struc-
ture of the log-normal distribution of the Black-Scholes model, it does not seem feasible to extend
this approach to arbitrary exponential Lévy models. Another possibility is to apply a log-normal
approximation to the dependent sum in (2) using the moment-matching technique discussed in
Section 4 and then use the resulting closed-form expression of the price for delta-hedging. How-
ever, it is difficult to keep track of the implied hedging error in this case and the latter can be quite
substantial since the log-normal fit ofAn may be quite poor. Moreover, delta-hedging itself is to
be considered with care, since, while producing stable payoffs under idealized conditions (no limit
on frequency of rehedging, no transaction costs), it produces highly variable payoffs under realis-
tic conditions (limitations on the hedging liquidity, transaction costs). Therefore it is desirable to
develop static hedging strategies where the initial hedge is kept in place for the whole lifetime of
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the product (or quasi-static strategies with only a small number of hedge adjustments).
In the sequel we will discuss a simple static superhedging strategy for fixed-strike Asian call

options which was developed in Albrecher et al. [1]. It is based on a buy-and-hold strategy
consisting of European call options maturing with and before the Asian option. For that purpose
let us consider the following upper bound for the price given in (2):∀ K1, . . . , Kn ≥ 0 with
K =

∑n
k=1 Kk, we have

(
n∑

k=1

Stk − nK

)+

=
(
(St1 − nK1) + · · ·+ (Stn − nKn)

)+

≤
n∑

k=1

(Stk − nKk)
+

implying

AA0 ≤ exp(−rT )

n

n∑

k=1

EQ
[
(Stk − nKk)

+
∣∣∣F0

]
=

1

n

n∑

k=1

exp(r(T − tk))EC0(κk, tk), (5)

whereEC0(nKk, tk) is the price of a European call option at time 0 with strikenKk and maturity
tk. One observes that buyingexp(−r(T − tk))/n European call options at timet = 0 (with strike
κk, maturity tk) (k = 1, . . . , n), holding them until their expiry and putting their payoff on the
bank account represents a static superhedging strategy for this Asian option.

One still has the freedom to choose valuesKk such that
∑n

k=1 Kk = K. A trivial choice is
Kk = K/n (k = 1, . . . , n). Since∀K ≥ 0 one hasEC0(K, t) ≤ EC0(K, T ) (0 ≤ t ≤ T )
(note that this inequality even holds if we allow for a dividend rateq as long asq ≤ r), leading to
AA0 ≤ EC0, so that an Asian call option with strikeK and maturityT is always dominated by a
European call option with same strike and maturity. This result holds for arbitrary arbitrage-free
market models; for the Black-Scholes setting it was already derived by Kemna and Vorst [27], see
also [30].
Since the aim is to optimize the performance of the superhedge, one needs to determine the combi-
nation ofKk that minimizes (5). In the Black-Scholes model, this has been achieved by Nielsen and
Sandmann [30] using Lagrange functions. In the general case, it turns out that comonotonicity the-
ory leads to the optimal choice of the strike prices. LetF (xk; tk) = PQ (Stk ≤ xk | F0) (xk, tk >
0) denote the marginal distribution function ofStk . Then the optimal choice of strike prices is
given by

nKk = F−1 (FSc(n K); tk) , k = 1, . . . , n,

where FSc is the distribution function of the comonotone sum ofSt1 , . . . , Stn determined by
F−1

Sc (x) =
∑n

k=1 F−1(x; tk). These values can be determined within less than a minute on a
normal PC for the entire hedge portfolio. Note that in (2) we havetk = k (k = 1, . . . , n). Whereas
the upper boundAA0 ≤ EC0 (leading itself to a trivial super-hedge) is model-independent, the
performance of the superhedge (5) can thus be optimized by specifying a market model and a
risk-neutral measureQ. For a proof of the optimality we refer to [1], where one can also find
a numerical study of the performance of this superhedging strategy for normal inverse Gaussian,
variance gamma and Meixner Lévy models (with the mean-correcting measure used forQ). The
numerical results indicate that this strategy is quite effective, in particular for low values of the
strike priceK. For an option with moneyness of 80%, the difference between the hedging cost and
the estimated option price is typically around 1.5%, whereas the classical hedge with the European
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call leads to a difference of almost 10%. For options out of the money, the difference increases,
but in view of the easy and cheap way in which this hedge can be implemented in practice, the
comonotonic approach seems to be competitive also in these cases. Furthermore, the European
call options needed for the hedge are typically available on the market and quite liquidly traded.
In addition, static hedging is not exposed to the risk inherent in dynamic hedging, namely that at
times of large market moves liquidity may dry up making rebalancing impossible. But especially
in these situations effective hedging is needed (for further discussions on the topic, we refer to
[4, 12, 15, 16]). Finally, the proposed hedging strategy works whenever an approximation of the
risk-neutral density is available and can thus also be applied to stochastic volatility models using
Fast Fourier transforms.

Remark: The results presented in this survey were formulated for fixed-strike arithmetic average
call options. However, many of them translate immediately to put options and floating-strike
options (using put-call parity and symmetries of floating and fixed strike Asian options recently
established for exponential Lévy models in [23]). The inclusion of dividend payments in the model
is also merely a matter of notation. Furthermore, the approximation technique of Section 4 can be
adapted to geometric average rate options (cf. [2, 3]).
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(Eds.), Birkḧauser, 319-337.

[22] Eberlein E. and̈Ozkan F. (2003): Time consistency of Lévy models.Quantitative Finance,
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Abstract

This paper considers the bivariate Loss-ALAE modelling problem in actuarial science, taking
into account the particular form of the censorship affecting the data. Specifically, a selection
procedure for the generator of the underlying archimedean copula is described. A data set
provided by the US Insurance Services Office is used for the numerical illustrations, and a
comparison with previous results appeared in the actuarial literature is performed.

1. INTRODUCTION AND MOTIVATION

1.1. Losses and their associated ALAE’s

Various processes in casualty insurance involve correlated pairs of variables. A prominent exam-
ple is the loss and allocated loss adjustment expenses (ALAE, in short) on a single claim. Here
ALAE are type of insurance company expenses that are specifically attributable to the settlement
of individual claims such as lawyers’ fees and claims investigation expenses.

Expensive claims generally need some time to be settled and induce considerable costs for the
insurance company. Actuaries therefore expect some positive dependence between losses and their
associated ALAE, i.e. large values for losses tend to be associated with large values for ALAE.

As it will be precisely explained below, the possible dependence between losses and ALAE
has to be accounted for when reinsurance treaties are priced. The reinsurer covers the largest
losses (i.e. those exceeding some high threshold called the retention of the direct insurer, and pays
that part exceeding this threshold). It also contributes to pay the associated settlement costs on a
pro rata basis. In many cases, neglecting the dependence exhibited by the data leads to serious
underestimation of the expected reinsurer’s payment. It is therefore crucial for the reinsurer to
have at its disposal an appropriate model for the random couple Loss-ALAE.
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1.2. Copula modelling for Loss-ALAE

The copula construction turns out to be very useful for the analysis of dependence between con-
tinuous outcomes. The idea behind the copula construction can be summarized as follows: for
multivariate distributions, the univariate marginals and the dependence structure can be separated
and the latter may be represented by a copula.

The joint modelling in parametric settings of losses and associated ALAE has been examined
by FREESandVALDEZ (1998) (Pareto marginals and Gumbel copula) andKLUGMAN andPARSA

(1999) (inverse paralogistic for Loss, inverse Burr for ALAE and Frank copula). Besides choosing
appropriate models for the marginals, the selection of the underlying copula requires careful exam-
ination (since the dependence structure drastically affects the amount of reinsurance premiums).

1.3. Presentation of the ISO data set

The data used in the present paper were collected by the US Insurance Services Office, and
comprise general liability claims randomly chosen from late settlement lags. The data consist
in n = 1, 500 observations, each accompanied by a policy limit` (that is, the maximal claim
amount) specific to each contract. Therefore the loss variable will be censored when the amount
of claim exceeds the policy limit. More precisely, one observes a couple(Ti, ALAEi), where
Ti = min(lossi, `i) for i = 1, . . . , n and an indicator

δi = I[Ti = `i] =

{
1, if lossi > `i ( censored claim)
0, if lossi ≤ `i ( uncensored claim).

Some summary statistics are gathered in Table 1. It appears clearly that, even if the vast majority
of losses are uncensored (1,466 among the 1,500 observations), the 34 censored data points have a
much higher mean than the 1,466 complete data (217,941 US$ versus 37,110 US$). A scatterplot
of (loss, ALAE) on the log scale is depicted in Figure 1. Its shape suggests some positive relation-
ship between loss and ALAE: large losses tend to be associated with large ALAE’s, as expected.
Moreover, the censored losses cluster to the right.

1.4. The need for a joint modelling of Loss-ALAE to compute reinsurance premiums

Let us now discuss practical implications of the modelling of dependence in the Loss-ALAE data.
We look at the impact on premium valuation in reinsurance treaties. Let us consider a typical
reinsurance treaty with limitL and insurer’s retentionR. Assuming a pro rata sharing of expenses,
the reinsurer’s payment for a given realization of (loss,ALAE) is described by the function:

g(loss,ALAE) =





0, if loss < R,

loss−R +
loss−R

loss
ALAE , if R ≤ loss < L,

L−R +
L−R

L
ALAE , if loss ≥ L.
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Figure 1: Scatterplot for Loss and ALAE (log-scale)).
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Loss ALAE Loss Loss

(uncensored) (censored)

Total N 1,500 1,500 1,466 34

Min 10 US$ 15 US$ 10 US$ 5,000 US$

1st Qu. 4,000 US$ 2,333 US$ 3,750 US$ 50,000 US$

Mean 41,208 US$ 12,588 US$ 37,110 US$ 217,941 US$

Median 12,000 US$ 5,471 US$ 11,049 US$ 100,000 US$

3rd Qu. 35,000 US$ 12,577 US$ 32,000 US$ 300,000 US$

Max 2,173,595 US$ 501,863 US$2,173,595 US$ 1,000,000

Std Dev. 102,748 28,146 92,513 258,205

Table 1: Summary statistics for variables Loss and ALAE.

To be more specific, we have Figure 2. The latter explains how a given amount of loss is
divided between the policyholderi, the insurer and the reinsurer whenR ≤ L ≤ `i. The insurance
company pays from ground up to the amountR. Then, the reinsurer covers the claim fromR to
L. The direct insurer then has to indemnify the policyholder fromR to `i. Finally, the excess over
the policy limit `i has to be supported by the policyholder. It is worth mentioning that the limitL
is the same for the whole portfolio whereas the`i’s are specific to each policy.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   R  ( insurer’s retention )  

   L  ( reinsurer’s intervention limit )  

lossi 

    insurer

reinsurer

insurer

   li  ( insurer’s indemnity limit )  
policyholder

Figure 2: Splitting of the loss between reinsurer, direct insurer and policyholder.
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1.5. Modelling Loss-ALAE data with archimedean copulas

A lot of recent research has focused on a subclass of copulas called the archimedean copula class,
which indexes the copula by a univariate function (called the generator) and therefore yields more
tractable analytical properties. Many well-known systems of bivariate distributions belong to the
archimedean class. Frailty models also fall under that general prescription.

Because copulas characterize the dependence structure of a random vector once the effect of
the marginals has been factored out, identifying and fitting a copula to data is not an easy task. In
practice, it is often preferable to restrict the search of an appropriate copula to some rich family,
like the archimedean one. Then, it is extremely useful to have simple graphical procedures to select
the best fitting model among some competing alternatives for the data at hand. Starting from the
assumption that the archimedean dependence structure is appropriate (an assumption that we will
retain throughout this work),GENEST& R IVEST (1993) proposed such a procedure for selecting a
parametric generator. Their method relies on the estimation of the univariate distribution function
associated with the probability integral transformation and requires complete data. Specifically, the
best fitting archimedean model is the one whose probability integral transformation distribution is
closest to its empirical estimates.WANG & W ELLS (2001) extendedGENEST & R IVEST (1993)
to right-censored bivariate failure-time data. This kind of censorship is not the one encountered in
actuarial problems but, as pointed out byWANG & W ELLS (2001), because the censoring issue is
handled in the stage of estimating the bivariate distribution function, the approach they propose is
flexible enough to deal with other censoring mechanisms. This is precisely the route we follow in
this paper to deal with the modelling of Loss-ALAE.

1.6. Aim and scope of the paper

In FREES& VALDEZ (1998), techniques developed byGENEST & R IVEST (1993) for complete
data have been applied to Loss-ALAE data in order to select the appropriate generator. As pointed
out by these authors in their Section 4.2.1, censoring in the loss variable is ignored in the iden-
tification process. Because of censorship in the loss variable, we will develop an appropriate
nonparametric estimator of the joint distribution of Loss-ALAE taking into account the particular
censorship present in the data. Specifically, we follow the general approach described inWANG

& W ELLS (2001). Since only loss is subject to censoring, we follow the method proposed in
AKRITAS (1994).

1.7. Agenda

Section 2 proposes a short tutorial about copulas. In Section 3, we propose a new nonparametric
estimator for the generating function, that takes into account the fact that losses may be censored
whereas ALAE’s are complete. This nonparametric estimation then serves as a benchmark to select
an appropriate parametric archimedean copula. The paper ends with numerical illustrations, given
in Section 4.
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2. ARCHIMEDEAN COPULAS

2.1. Sklar’s theorem

Broadly speaking, a copula is (the restriction to the unit square[0, 1]2 of) a joint cdf for a bivariate
random vector with unit uniform marginals. More formally, a copulaC is a function mapping
the unit square[0, 1]2 to the unit interval[0, 1] which is non-decreasing and right-continuous, and
satisfies

(i) C(0, u2) = C(u1, 0) = 0;

(ii) C(u1, 1) = u1 andC(1, u2) = u2;

(iii) C(v1, v2)− C(u1, v2)− C(v1, u2) + C(u1, u2) ≥ 0 for anyu1 ≤ v1, u2 ≤ v2.

Sklar’s theorem elucidates the role that copulas play in the relationship between multivariate
cdf’s and their univariate margins. Specifically, given a bivariate cdfFX with univariate marginal
cdf’sF1 andF2, there exists a copulaC such that for allx ∈ R2 the joint cdfFX can be represented
as:

FX(x1, x2) = C (F1(x1), F2(x2)) , (x1, x2) ∈ R2. (1)

When the marginalsF1 andF2 are continuous, then the copulaC in (1) is unique. OtherwiseC is
uniquely determined on Range(F1)×Range(F2). Conversely, ifC is a copula andF1 andF2 are
cdf’s then the functionFX defined by (1) is a bivariate cdf with marginsF1 andF2. The explicit
expression for the copulaC when the marginals are continuous is

C(u) = FX
(
F−1

1 (u1), F
−1
2 (u2)

)
, (u1, u2) ∈ [0, 1]2. (2)

Formal proofs can be found e.g. inNELSEN (1999).

2.2. Archimedean family

Consider a twice-differentiable strictly decreasing and convex functionφ : [0, 1] → [0, +∞] sat-
isfying φ(1) = 0. These requirements are enough to guarantee thatφ has an inverseφ−1 having
also two derivatives. Every such functionφ generates a bivariate distribution functionCφ whose
marginals are uniform on the unit interval (i.e. a copula) given by

Cφ(u1, u2) =

{
φ−1 {φ(u1) + φ(u2)} if φ(u1) + φ(u2) ≤ φ(0),
0 otherwise,

(3)

for 0 ≤ u1, u2 ≤ 1. CopulasCφ of the form (3) are referred to as Archimedean copulas. The
functionφ is called the generator of the copula. Onlyφ functions satisfyinglimt→0+ φ(t) = +∞
are used in this work. This ensures thatCφ is absolutely continuous.

Now, a bivariate distribution functionFX with marginalsF1 andF2 is said to be generated by
an Archimedean copula if, and only if (1) holds with an Archimedean copulaCφ.
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2.3. Some members of the archimedean family

2.3.1. CLAYTON COPULA

Forα > 0, Clayton copula is given by

Cα(u1, u2) =
(
u−α

1 + u−α
2 − 1

)−1/α
.

It is the archimedean copula associated to the generator

φα(t) = t−α − 1, α > 0.

The parameterα can be interpreted as a measure of the strength of the dependence. It can be
shown that the association between the components increases withα in the concordance order.

2.3.2. FRANK COPULA

Frank’s copula is given by

Cα(u1, u2) = − 1

α
ln

(
1 +

(exp(−αu1)− 1)(exp(−αu2)− 1)

exp(−α)− 1

)
, α 6= 0.

It is the archimedean copula associated to

φα(t) = − ln
exp(−αt)− 1

exp(−α)− 1
, α ∈ R.

The largerα in absolute value, the stronger the association (as measured by the concordance order).
A positive (resp. negative) value ofα indicates positive (resp. negative) dependence.

2.3.3. GUMBEL COPULA

Gumbel copula has the form

Cα(u1, u2) = exp
(
−{(− ln u1)

α + (− ln u2)
α}1/α

)
, α ≥ 1,

It is the archimedean copula associated with

φα(t) =
(
− ln(t)

)α

, α ≥ 1.

The parameterα controls the amount of dependence between the two components (in the concor-
dance order).

This copula is consistent with bivariate extreme value theory and can be used to model the
limiting dependence structure of componentwise maxima of bivariate random couples.
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2.4. Bivariate probability integral transformation theorem

It is well-known that given any random variableX with continuous distribution functionF , F (X)
is uniformly distributed on the interval[0, 1]. This fundamental result is known as the Probabil-
ity Integral Tranformation (PIT) theorem and underlies many statistical procedures. In particular,
whenF1 andF2 are continuous, the copulaC for (X1, X2) is just the joint cdf for

(
F1(X1), F2(X2)

)
.

Now, if we define the bivariate PIT of(X1, X2) asZ = FX(X1, X2), it is not generally true
that the cdfK of Z is uniform on[0, 1], even whenFX is continuous. Moreover,K does not
characterizeFX sinceK does not contain any information about the marginalsF1 andF2 because

Z = FX(X1, X2) = C(U1, U2)

where(U1, U2) admitsC as joint cdf.
Let us now examine the bivariate PIT for archimedean copulas. The following result is due to

GENEST& R IVEST (1993).

Proposition 2.1 Let U be a random couple with unit uniform marginals and joint cdfCφ. Let us
defineZ = Cφ(U1, U2). The cdfK of Z is given byK(z) = z − λ(z) where

λ(ξ) =
φ(ξ)

φ(1)(ξ)
, 0 < ξ ≤ 1.

3. SELECTING THE GENERATOR WITH CENSORED DATA

3.1. Nonparametric estimation of the generator

The nonparametric estimation procedure of the generator is based on the fact that it is possible
to estimateK nonparametrically from a random sample of(X1, X2) pairs. This provides for
archimedean copulas an indirect way of estimating the generatorφ (and hence the copulaCφ) by
virtue of Proposition 2.1. Indeed, givenK, it is possible to recoverφ by solving the differential
equation

φ(z)

φ(1)(z)
= z −K(z)

which yields

φ(z) = exp

{∫ z

ξ=z0

1

ξ −K(ξ)
dξ

}
(4)

where0 < z0 < 1 is an arbitrary chosen constant (coming back to (3), it is easily seen thatφ is
defined up to a positive factor). The functionφ defined in (4) generates an archimedean copula
wheneverz−K(z) is negative and remains bounded away from 0 on the unit interval. Specifically,
GENEST& R IVEST (1993) derived the following result.

Proposition 3.1 The functionφ given in(4) is decreasing and convex and satisfiesφ(1) = 0 if,
and only if,

K(z−) = lim
t→z−

K(z) > z for all 0 < z < 1.
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The condition involved in Proposition 3.1 has to be fulfilled by the estimator ofK in order to
recover a bona fide generator from (4). More specifically, under the assumption that the depen-
dence function associated withK is archimedean, a natural estimatorλ̂n of λ can be derived from
an estimator̂Kn of K through the relation

λ̂n(z) = z − K̂n(z), 0 < z < 1.

ProvidedK̂n(z−) > z for all 0 < z < 1, formula (4) then provides an estimator ofCφ within the
class of archimedean copulas.

3.2. Genest-Rivest estimation procedure for the generator in the presence of complete data

GENEST andRIVEST (1993) were the first to propose a procedure for identifying a generator in
empirical applications. Given observations from a random pairX = (X1, X2) with cdf FX , this
procedure relies on the estimation of the univariate cdf associated with the probability integral
transformationZ = FX(X1, X2). If the data were complete,K(·) could be estimated by the
empirical cdf of the pseudo-observations

zi =
1

n− 1
#

{
(x

(j)
1 , x

(j)
2 )

∣∣∣x(j)
1 < x

(i)
1 , x

(j)
2 < x

(i)
2

}

i.e.

K̂n(z) =
1

n
#{i|zi ≤ z}

where the symbol# stands for the cardinality of a set.

3.3. Wang-Wells estimation procedure for the generator in the presence of censored data

However this technique is no longer appropriate when the data is subject to censoring. For such
cases,WANG & WELLS (2000) propose a modified estimator ofK(·). SinceK(·) can be written
as:

K(z) = Pr[FX(X1, X2) ≤ z] = E[I{FX(X1, X2) ≤ z}]

the suggested estimator is given by :

K̂n(z) =

∫ ∞

0

∫ ∞

0

I[F̂X(x1, x2) ≤ z]dF̂X(x1, x2) (5)

whereF̂X stands for a nonparametric estimator of the joint distribution functionFX taking cen-
soring into account. As mentioned by the authors, this approach is sufficiently flexible to deal with
various censorship mechanisms, as long asF̂X is an appropriate estimator forFX .
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3.4. Akritas estimation procedure for a bivariate cdf under random censoring

A nonparametric estimator for the joint distribution function, when only one variable is subject
to censoring, was given byAKRITAS (1994). We will adapt this method for the case where the
censoring variable is a constant specific to each observation (making the data non identically dis-
tributed).

Let (X, Y ) be a couple of random variables with joint distribution functionF , whereX is
subject to censoring, andL is the censoring variable. One observes(T, Y ) = (min(X, L), Y ) and
an indicatorδ = I(T = L) = I(X > L). Assume thatX andL are independent (more generally,
Y is supposed to be independent ofL givenX, butL is allowed to depend onX). The proposed
estimator ofF is based on the estimator of the conditional distributionF1|2(x|y) = Pr[X ≤ x|Y =
y]:

F (x, y) = Pr[X ≤ x, Y ≤ y] =

∫ y

0

F1|2(x|z)dFY (z)

AKRITAS (1994) showed the consistency and efficiency of an estimator based on the previous
relation. LetH be a known probability density function (kernel) and{hn} a sequence of positive
constants tending to zero asn tends to infinity (bandwidth sequence). The proposed estimator is
given by :

F̂ (x, y) =

∫ y

0

F̂1|2(x|z)dF̂Y (z)

whereF̂Y (·) is the empirical distribution ofY , given by

F̂1|2(x|z) = 1−
∏

Ti≤x; δi=0

[
1− Wn2i(z; hn)∑n

j=1 Wn2j(z; hn) I[Tj ≥ Ti]

]

with

Wn2i(y; hn) =
H(y−Yi

hn
)

∑n
j=1 H

(y−Yj

hn

) .

The estimator of the joint cdf is given by

F̂ (x, y) =

∫ y

0

F̂1|2(x|z)dF̂Y (z) =
1

n

n∑

k=1

I[0 ≤ Yk ≤ y] · F̂1|2(x|Yk).

Now, coming back to (5), the latter estimator of the joint cdfF gives an estimator̂Kn of K, yielding
in turn an estimated generatorφ via (4) provided the condition of Proposition 3.1 is fulfilled.

4. APPLICATION TO Loss-ALAE

4.1. Estimation of the generator

The bandwidthh involved in Akritas estimation procedure is selected so to minimize AMSE. The
estimation ofK then follows from (5); Figure 3 depicts the resultinĝKn.
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Figure 3: Graph of̂Kn and resultinĝφ for the Loss-ALAE data set.

The condition of Proposition 3.1 is fulfilled. The generator of the archimedean copula is then
obtained from (4), that is

φ̂(u) = exp

{∫ z

z0

1

t− K̂(t)
dt

}
, with u0 = 1/1000

The resultinĝφ is depicted in Figure 3.

4.2. Graphical model selection procedure for Loss-ALAE

The idea is now to comparêKn with several parametric analoguesKα corresponding for instance
to Clayton, Gumbel or Frank copulas. To this end an estimation ofα is needed. A convenient way
to estimate the dependence parameterα is to relate it to Kendall’s tau and to deduceα̂ from τ̂ .
Kendall’s tau is easily estimated since provided the marginal distributions are continuous

τ(X1, X2) = 4E[Z]− 1 = 4

∫ 1

0

(
1−K(z)

)
dz − 1. (6)

Since the estimation ofK takes into account the censoring mechanism, the estimatedτ obtained
from (6) is suitable for censored data.

Of course, other approaches are possible. We use here the maximum pseudo-likelihood proce-
dure known as omnibus. The omnibus semiparametric procedure treats marginal distributions as
(infinite dimensional) nuisance parameters. This simple procedure consists in substituting empiri-
cal analogues for the marginal distribution functions in the likelihood for the dependence parame-
ters and then in maximizing the resulting peudo-likelihood. As shown byGENEST ET AL. (1995),
the resulting estimator is consistent and asymptotically normal, even in the presence of censorship.
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The 2-stage semiparametric estimation assumes that the marginal distributions are unknown.
First they will be estimated nonparametrically, by the Kaplan-Meier estimator (for the Loss vari-
able) and the empirical estimator (for the ALAE variable). These estimators,F̂X andF̂Y respec-
tively, are then used to estimate the dependence parameter

α̂ = arg max
α

L(α, F̂X , F̂Y )

Since the loss variable is censored, the likelihood function can be written as :

L(α, u, v) =
n∏

i=1

cα(ui, vi)
δi

[
1− ∂Cα(ui, vi)

∂vi

]1−δi

where (u, v) = (F̂X(x), F̂Y (y)), Cα is the archimedean copula andcα its density. The log-
likelihood will therefore be given by :

ln L(α, u, v) =
n∑

i=1

[
δi ln(cα(ui, vi)) + (1− δi) ln

(
1− ∂Cα(ui, vi)

∂vi

)]

The derivatives of Gumbel, Frank and Clayton’s copulas, appearing in the expression of the
likelihood function are given in the next table:

copula ∂Cα(u,v)
∂v

Gumbel v−1 · exp{−(ũα + ṽα)1/α} · [1 + ( ũ
ṽ
)α]−1+1/α

Frank [e−αv − e−α(u+v)] · [(1− e−α)− (1− e−αu)(1− e−αv)]−1

Clayton [1 + vα(u−α − 1)]−1−1/α

The estimations of the dependence parameters for the three copulas mentioned before, obtained
using this procedure are given in the following table:

copula α̂

Gumbel 1.444

Frank 3.077

Clayton 0.517

In order to select the parametric form forφ, it suffices to compare each parametric estimate
to the nonparametric estimate constructed above. The idea is to selectφ so that the parametric
estimate resembles the nonparametric one. Figure 4 displays semiparametric and parametric es-
timation ofλ. In order to evaluate the agreement between the semiparametric estimatorK̂n and
parametric analoguesKbα, QQ-plots are displayed in Figure 5. Measuring closeness can be done
by minimizing a distance such as

S(α̂) =

∫ 1

0

(Kα̂(z)− K̂(z))2dz.
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Figure 4: Semiparametric and parametric estimation ofλ involved in Proposition 2.1.
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Figure 5: QQ-plots for the semiparametriĉKn and parametric analoguesKbα associated to various
archimedean models.

Here, we get
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copula S(α̂)

Clayton 0.0001123993

Gumbel 9.302016e-05

Frank 0.0001477749

so that Gumbel copula is the closest to the semiparametric archimedean model.
Once a parametric model for the copula is selected, all the analyses performed byFREES ET

AL . (1997) andKLUGMAN & PARSA (1999) can be replicated to the data set at hand.
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Abstract

Aim of this work is to show the potential use of a global sensitivity analysis to assess the
riskiness of credit risk portfolios. We describe the obligors behavior via a latent factor model
and we study the sensitivity of commonly used risk measures with respect to three key input
factors.
Results show that a global approach provide the risk modeler with a broad picture of the risk
contributions of different elements to the model. The main finding is that the obligors default
probabilities and the correlation of the latent variables describe most of the volatility of the
risk associated with the portfolio under investigation.

1. THE MODEL

In this work we model and analyze the risk associated to a credit portfolio. A crucial point in
the model is the dependence of the obligors. The latent variables approach is chosen to describe
the behavior of them obligors (e.g. see Bluhm et al. (2003) and Frey et al. (2001)) while their
dependence is modelled via the dependence ofm underlying latent variablesW = (W1, . . . , Wm)′.
Each latent variable is driven by one common factorZ and an idiosyncratic shockεj as it follows:

Wj =
√

ajZ +
√

1− ajεj for j = 1, 2, . . . , m. (1)

aj (∈ (0, 1)) describes the exposure of obligorj to factorZ. Z andεj are assumed to be indepen-
dent and identically distributed with mean zero and variance one.

Default for obligorj is described by a state indicatorYj which takes just two values, zero and
one, correspondent respectively to non default and default states. The occurrence of default for
obligor j depends on a deterministic cutoff pointDj as it follows:

Yj = 1 ⇐⇒ Wj ≤ Dj.
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The probability of defaultπj is then given by:

πj = P (Wj ≤ Dj), (2)

while the joint default probabilityπij for two obligorsi andj can then be written as:

πij = P (Wi ≤ Di,Wj ≤ Dj)

The loss distribution is obtained via Monte Carlo (MC) simulation as follows:

1. a MC loop is performed to determine the distributionWj for each obligor, obtained as a
function of the assigned factor loading via equation (1);

2. from the obtainedWj and the input default probabilities, the cutoff vector of the obligorsD
is derived by inverting equation (2);

3. from the multivariate distributionW a number ofI draws is randomly selected and com-
pared with the cutoff vectorD, to obtain the distribution of joint defaults.

2. UNCERTAINTY ANALYSIS AND SENSITIVITY ANALYSIS

A model represents a formal way to map some information and assumptions into inference. Un-
certainty analysis (UA) and sensitivity analysis (SA) help the modeler in understanding the uncer-
tainty affecting the output variable under investigation. In fact UA quantifies the volatility in the
model output while SA assesses the relative importance of the input factors in determining such an
uncertainty.

Suppose that the model under study maps thek-dimensional input space in the output space
through a mathematical functionf :

Y = f(X1, . . . , Xk).

Each input factorXi can be considered as a random variable characterized by a specific probability
density function (pdf). In the same way the outputY (which is here considered a scalar quantity but
could also be a vector) can be thought as a random variable whose pdf is subject of investigation
for UA. The output pdf is studied empirically and obtained via MC simulation.

Once the volatility of the output has been quantified, SA helps in understanding how each input
affects the uncertainty in the output. Very often SA is defined as a local measure of the effect of
a given input on the output (e.g. see Frey et al. (2001)), obtained by estimating system derivatives
such as:

Sj =
∂Y

∂Xj

.

This local approach is practicable only when the variation around a fixed point of the input factors
is small, or when the input-output relationship is assumed to be linear.

When the ranges of variation of the input factors are material and/or the model is non-linear
the use of a global approach (Saltelli et al. (2000), (2004)) that estimates the effect of a single
factor while all the others are varied as well is compulsory (see Saltelli (1999)).
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In our exercise, we have no reason to believe a priori that the model is linear neither can we
restrict our attention to small ranges of variation for the input factors. Therefore we propose a
global sensitivity approach to determine what input factors in the portfolio model play a major role
and should be modelled carefully.

2.1. The global sensitivity measures

Assume our goal is to rank the factors according to the amount of output unconditional variance
V (Y ) that is removed when we learn the true value of a given input factor. In other words, we are
facing the problem setting known in sensitivity analysis as ”factor prioritization” (FP) (see Saltelli
et al. (2004) and Saltelli and Tarantola (2002)).

This means that factors could be ranked according toV (Y |Xi = x∗i ) , the variance obtained
by fixing Xi to its true valuex∗i . Since the true value for each inputXi is not known it sounds
sensible to look at the weighted average of the above measure over all possible valuesx∗i of Xi,
i.e. toE(V (Y |Xi)). The smaller isE(V (Y |Xi)), the more influential is the factorXi. Since

V (Y ) = E(V (Y |Xi)) + V (E(Y |Xi))

higher values forVi = V (E(Y |Xi)) correspond to influential factors. The quantityVi normalized
by the value of the unconditional variance is called first order sensitivity index and is used as a
measure of sensitivity (Sobol’ (1990) and (1993)):

Si =
Vi

V
.

It can be demonstrated thatSi, i = 1, 2, . . . , k are the proper measure to rank the factors in order
of importance in the FP setting, also in the presence of interactions1 (see Saltelli and Tarantola
(2002)).

Nevertheless when interactions are part of the model under investigation first order sensitiv-
ity coefficients are not capable to explain the entire variance of the output. This can be seen in
the context of the general variance decomposition scheme proposed by Sobol’ (1990, 1993) for
independent input factors:

V (Y ) =
∑

i

Vi +
∑

i

∑
j>i

Vij + . . . + V12...k (3)

where, for instance,
Vij = V (E(Y |Xi, Xj))− Vi − Vj

andSij = Vij/V measures the interactions betweenXi andXj. Similar equations hold for higher
order coefficients.

In this scheme a second sensitivity measure, the total indexSTi, can be introduced to estimate
the total contribution to the variance ofY due to the factorXi (Homma and Saltelli ( 1996)). The
total indexSTi is defined as the sum of all the terms of the variance decomposition (3) where at

1Two or more factors are said to interact when their effect onY cannot be expressed as the sum of their single
effects.
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least one of the indices is equal toi. It can be demonstrated that the total indices are the measures
to identify unimportant factors i.e. those factors that can be fixed at any given value within their
range of variation without significantly affecting the total output variance (chapter 5 in Saltelli et
al. (2004)).Si andSTi are estimated via MC simulation.

2.2. Steps of the analysis

In the light of the above the first step of the procedure is concerned with the choice of the output
variables of interest. As already pointed out we are interested in quantifying the maximal risk
associated with a certain portfolio: the output variables of interest are five fixed quantiles of the
loss distribution (from95% up to99.5%).

In the second step we choose the input factors and assign a specific pdf. The three independent
factors are:

1. A trigger factor which defines the shape of the multivariate distribution of the latent fac-
tors W. The trigger factor may assume three possible values: a Gaussian distribution, a
t-distribution with10 degrees of freedom or a t-distribution with4 degrees of freedom.

2. A trigger factor taking on five values which determines the degree of correlation among the
obligors, represented by am-dimensional vector ofaj. The five possible vectors of loadings
are randomly generated a priori under the assumption that theaj are uniformly distributed
within the following fixed ranges:

• very low correlation i.e.aj ∼ U [0, 0.15], j = 1, 2, . . . ,m

• low correlation i.e.aj ∼ U [0.15, 0.30], j = 1, 2, . . . , m

• medium-low correlation i.e.aj ∼ U [0.30, 0.45], j = 1, 2, . . . , m

• medium correlation i.e.aj ∼ U [0.45, 0.60], j = 1, 2, . . . , m

• medium-high correlation i.e.aj ∼ U [0.60, 0.75], j = 1, 2, . . . , m

3. A trigger factor which determines the rating portfolio composition, represented by am-
dimensional vector of default probabilitiesπj. Three possible determinations of this vector
are randomly generated a priori under the assumption that theπj are uniformly distributed
within the following fixed ranges:

• high rated obligors (e.g. class A) i.e.πj ∼ U [0, 0.05], j = 1, 2, . . . , m

• medium rated obligors (e.g. class B) i.e.πj ∼ U [0.05, 0.10], j = 1, 2, . . . , m

• low rated obligors (e.g. class C) i.e.πj ∼ U [0.10, 0.15], j = 1, 2, . . . ,m

After the definition of the input factors, an input sample of sizeN is generated through the use
of the Sobol’ method (Sobol’ (1993)) and the distribution of joint defaults is computed for each
sample point following the procedure described in section 1. This producesN determinations for
each quantiles allowing to obtain the empirical distributions for the outputs used for UA/SA.
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3. RESULTS

UA/SA results are computed for a portfolio of 1000 obligors.I = 10.000 is the number of draws
to compute the distribution of joint defaults whileN = 16.384 is the size of the input sample for
UA/SA.

Quantile 95% Quantile 97.5% Quantile 99% Quantile 99.5% Quantile 99.9 %

Mean 303 397 504 569 671

Std. Dev. 172 208 234 243 246

Minimum 52 60 65 73 75

Maximum 795 939 989 999 1000

Table 1: Basic statistics relative to the simulated distributions of the number of joint defaults
correspondent to quantiles 95%, 97.5% , 99% , 99.5% and 99.9% for a portfolio of 1000 obligors.

The main statistics of the empirical distribution for the outputs are listed in Table 1. The
numbers point out that the average number of joint defaults is rather different for the selected
quantiles and that the variability of results is also pronounced.

Quantile 95% Quantile 97.5% Quantile 99% Quantile 99.5% Quantile 99.9%

S ST S ST S ST S ST S ST

Degree Correlation 0.237 0.318 0.369 0.441 0.499 0.558 0.572 0.632 0.634 0.761

Multivariate Distr. 0.021 0.035 0.026 0.050 0.033 0.078 0.049 0.107 0.065 0.178

Ptf. Composition 0.672 0.774 0.547 0.629 0.398 0.461 0.329 0.396 0.198 0.308

Table 2:Global sensitivity analysis results: first order indicesS and total indicesST for the three consid-
ered input factors.

Results of global sensitivity analysis for the portfolio under investigation are presented in Ta-
ble 2 where the obtained first and total order sensitivity indices are listed for the three factors in
correspondence to the five outputs. The following conclusions can be easily drawn from these
numbers:

1. Since the differences betweenSi andSTi are not so pronounced for each of the three factors,
interactions between factors are not very important.

2. More than 80% of the total variance can be explained by the degree of correlation among
obligors and by the portfolio rating composition in all cases (the sum of their first order in-
dices is always greater than 0.8). The relative importance of the portfolio rating composition
and the degree of correlation among the obligors depends strongly on the quantile that is
considered. At lower quantiles the rating portfolio composition is predominant (> 65% of
the total variance) while it decreases to 19.8% at higher quantiles.

3. Although influencing the number of joint defaults, the multivariate distribution of the latent
variables explains a smaller fraction of the total variability in the outputs than the other two
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factors. Even if we look at its overall effects (STi) and we consider extreme events quantile
99.9% its contribution to the total variance is lower than20%.
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Figure 1: Evolution of first order indices for the three factors as a function of the quantiles of the loss
distribution.

Figure 1 plots the evolution of first order sensitivity indices of the three factors as a function of the
quantile fixed in the loss distribution. The plot shows that the shape of the multivariate distribution
is much less important than the other factors at all quantiles, while the portfolio rating composition
is the most influential factor for quantiles lower than≈ 98%.

4. CONCLUSIONS

This paper has introduced the concept of global sensitivity analysis to evaluate credit risk mod-
els. We showed that global sensitivity analysis reveals the relative contributions of different input
factors to the total output variability. Our study reveals that the portfolio composition is the most
important factor for lower quantiles of the loss distribution while the degree of correlation has
more influence at higher quantiles. Results show that the importance of the shape of the multivari-
ate distribution of the latent variables is smaller than that of the other two factors.

In practice the obtained results imply that at higher quantiles, modelling the degree of cor-
relation is more effective in reducing the uncertainty in the output than modelling the portfolio
composition. More care must be placed in the credit portfolio construction at lower quantiles.
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Abstract

The Vasicek, the CIR and the CEV term structure models define the short rate processr as a
linear diffusion with continuous scales′(r) and speedm(r) densities. In this contribution, we
permit the speed density to be discontinuous at the levelr∗. Similarly to Gorovoi and Linetsky
(2004), we obtain eigenfunction expansions for the prices of general contingent claims when
analytical expressions exist for the continuous case. We interpret the resulting term structure
as a continuous-time version of the Self Exciting Threshold AutoRegressive models (SETAR)
popular in time series analysis. Finally, we calibrate a SET model with two Vasicek regimes
to the U.S. yield curve.

1. INTRODUCTION

The dynamic of the short-term interest rate has received considerable attention in the financial
literature. Among many others, the Vasicek (1977) and the Cox-Ingersoll-Ross (1985) models
define the short rate as a linear diffusion with mean reverting instantaneous drift that guarantees the
stationarity of the process. The Vasicek model assumes a constant instantaneous volatility while
the volatility of the CIR model vanishes rapidly when the short rate falls off in order to make zero
unattainable. The Vasicek and the CIR models are very tractable as closed-form expressions exist
for the transition density and the bond price. Unfortunately, these models partly fail in capturing
the empirical behavior of short rate time series.

The Japanese interest rates since the Asian crisis illustrate the unadequacy of classical models.
As mentioned by Goldstein and Keirstead (1997) and Gorovoi and Linetsky (2004), the Japanese
short-term rate during the period 1996 – 2003 remained at a very low level, but with a rather high
volatility. The Vasicek model is consistent with high volatility at low interest rate regime but the
probability for the short rate to become negative is not negligible whereas the CIR model precludes
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negative interest rate through a low volatility near zero. The second difficulty encountered when
modeling the Japanese term structure of interest rates relates to the so-called Zero Interest Rate
Policy (ZIRP). In February 1999, the Bank of Japan adopted the ZIRP by providing the necessary
liquidity to offer very cheap credit against the deflationary pressure. The ZIRP was abandoned in
Augustus 2000 and reactivated on March 19, 2001. The changes in the policy of the Bank of Japan
have resulted in a regime switching behavior of the short-term rate depending whether the ZIRP is
activated to maintain the short rate near zero or deactivated to permit short rate around0.5 percent.
Goldstein and Keirstead (1997) provide a solution to this problem by imposing a reflecting or an
absorbing boundary to the short rate process while Black (1995) proposes the use of a shadow rate.
As explained in details in Gorovoi and Linetsky (2004), analytical expressions can be recovered
by using eigenfunction expansions for both models.

The U.S. interest rates have a similar regime switching feature depending on the level of the
short rate. As mentioned in Pfann, Schotman and Tschering (1996), during the period 1979 –
1982 interest rates were very high and extremely volatile. They argue that the volatility of the
U.S. interest rates plummets when the short rate falls below8.5 percent. Markov switching regime
models were introduced in the literature to capture this behavior. Under these models, the short
rate switches between discrete regimes each of them driven by a diffusion process with distinct
drift and volatility. Ait-Sahalia (1996) criticizes such models on their time-inhomogeneous fea-
ture and argues in favor of a short rate process with bimodal transition probability, both modes
corresponding to a different regime. This can be achieved through a diffusion process with highly
nonlinear instantaneous drift and volatility, see Ait-Sahalia (1996).

In this paper, we define the short-term rate as a linear diffusion on the state spaceI = (e1, e2)
and we allow the speed density to be discontinuous at the levelr∗ ∈ (e1, e2). In cases′(r) is
continuous, the short rate{rt}t≥0 is solution of a stochastic differential equation with two regimes

drt =

{
µ1(rt)dt + σ1(rt)dWt, e1 < rt ≤ r∗

µ2(rt)dt + σ2(rt)dWt, r∗ < rt < e2,

where{Wt}t≥0 is a standard Brownian motion under the risk-neutral measure1, the differences
µ2(r

∗) − µ1(r
∗) andσ2(r

∗) − σ1(r
∗) are finite. The resulting term structure is a time-continuous

version of the Self Exciting Threshold AutoRegressive (SETAR) time series model used by Pfann,
Schotman and Tschering (1996). We write for short that the processr is a SET diffusion with
two regimes. Following Linetsky (2002) and Gorovoi and Linetsky (2004), we obtain closed-
form expressions for the transition density and the prices of European-style contingent claims that
facilitate the calibration of the models.

The paper is organized as follows. In section2, we start with a description of the model. We
define the short-term rate process as a diffusion with our specific assumptions on the scale and the
speed densities. We introduce the notion of pricing semi-group and state-price density. In section
3, we adapt the results of Linetsky (2002) to our models and we obtain eigenfunction expansions
when the spectrum of the pricing semi-group is discrete. We give also analytical results in terms
of special functions for the case of two Vasicek regimes. Finally, we calibrate a SET model with
two Vasicek regimes to the U.S. zero-yield curve.

1We assume in the sequel that the market risk premium is time-homogeneous and also discontinuous at the level
r∗, thus the scale and the speed densities are discontinuous under both the historical and the risk-neutral measures.
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2. THE MODEL

One-factor models of term structure are based on a single state variable which is usually the short-
term rate. Most of the models define the short rate as a linear diffusionX with infinitesimal drift
µ(x) and infinitesimal volatilityσ(x) taking values on an intervalI = (e1, e2). Let {Pt}t≥0 be the
semi-group of operators such that for every bounded functionf

(Ptf)(x) := Ex[f(Xt)]

=

∫

I

f(y)p(t; x, y)dy

wherep(t; x, y) is the transition probabilityw.r.t. the Lebesgue measure. The scales′(x) and speed
m(x) densities are defined by

s′(x) = exp

{
−

∫ x 2µ(z)

σ2(z)
dz

}

m(x) =
2

s′(x)σ2(x)
(1)

and give rise to the next representation of the infinitesimal generator ofX, G : f ∈ D → g:
∫

[a,b)

g(x)m(dx) =
df

ds
(b)− df

ds
(a); ∀a, b ∈ I

wheredf
ds

(x) = limy→x
f(y)−f(x)
s(y)−s(x)

is thes-derivative, acting on the domain

D =

{
f : f,Gf ∈ Cb(I),

df

ds
(x) exists, conditions ate1 ande2

}
.

Usual assumptions are the continuity of the functionsµ, µ′, σ, σ′ andσ′′. As mentioned in the
introduction, we consider rather thatµ andσ are discontinuous at the levelr∗ whereµ(r∗+)−µ(r∗−)
andσ(r∗+)− σ(r∗−) are finite. This implies thatm(x) ands′′(x) can be discontinuous.

The price of a contingent claim with payouth ∈ Cb(I) is the expectation under some risk
neutral measure of the discounted payments. Gorovoi and Linetsky (2004) introduce the pricing
semi-group{P̂t}t≥0

(P̂th)(x) := Ex

[
e−

R t
0 Xsdsh(Xt)

]

=

∫

I

p̂(t; x, y)h(y)dy

wherep̂(t; x, y) is called the state-price density and can be interpreted as the prices of fundamental
securities, or Arrow-Debreu securities that yield1 only if the short rate equalsy at time to maturity.
We can replicate any European-style contingent claims with continuous payoutc(x, t) and final
payoffh(x) by purchasing a portfolio of these basic securities and determine the price as

∫

I

∫ t

0

p̂(τ ; x, y)c(y, τ)dydτ +

∫

I

p̂(t; x, y)h(y)dy, (2)
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see e.g. Beaglehole and Tenney (1991).
WhenX takes non-negative values,{P̂t}t≥0 is the semi-group of a linear diffusion killed at a

ratex. Let X̂ be the non-conservative linear diffusion with scale and speed densities defined by
(1) sent to a cemetery∂ when the additive functional

∫ t

0
Xsds exceeds an independent exponential

random variableτ with parameter1, then

(P̂th)(x) = Ex[h(Xt)1(τ<t)]

= Ex[h(X̂t)]

assuming thatf(∂) = 0. The generator of̂X is defined byĜ : f ∈ D → g

∫

[a,b)

g(x)m(dx) =
df

ds
(b)− df

ds
(a)−

∫

[a,b)

f(x)k(x)dx

wherek(x) = m(x)xdx is the killing measure and acts on the same domain asG. We refer to
Gorovoi and Linetsky (2004) and Linetsky (2002) for more details on pricing semi-group.

3. EIGENFUNCTION EXPANSIONS

The Vasicek and the CIR models are very popular since the transition probability and the state-
price density are known in closed form. When analytical solutions exist for both regimes1 and
2, we can use the spectral theory to recover tractable expressions. According to Ito and McKean
(1974), the transition densityw.r.t. to the Lebesgue measure associated to the semi-group with
infinitesimal generatorG satisfies the partial differential equation

Gu(t; x) =
d

dt
u(t; x),

and can be constructed by means of an eigenfunction expansion. The eigenfunctionsϕλ(x) are the
continuous solutions with continuous scale derivativedϕλ

ds
(x) of the Sturm-Liouville problem

−(Gu)(x) = λu(x), ∀x ∈ I = (e1, e2) (3)

for someλ ∈ C such thatϕλ(x) is m-square integrable and satisfies appropriate boundary condi-
tions. The ordinary differential equation (3) can be solved as soon as analytical solutions exist on
the intervals(e1, r

∗] and[r∗, e2).
Applications of spectral theory to finance are recent, we refer to the pioneer papers of Linetsky

(2002) and of Gorovoi and Linetsky (2004). For most of the models in finance, the spectrum of
the state-price density is a countable sequence{λn}n∈N and the spectral decomposition reduces to
the series

p̂(t; x, y) = m(y)
+∞∑
n=0

e−λntϕn(x)ϕn(y) (4)

whereϕn(x) is thenormalizedeigenfunction associated toλn andm(y) is the speed density. As
mentioned in Gorovoi and Linetsky (2004), if the short-term rate can reach negative value, the
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pricing semi-group is not the contraction semi-group of a linear diffusion. In this case, the eigen-
valuesλn are no longer guaranteed to be positive. This can lead to economical contradiction as the
yield of the zero-coupon bonds converges toλ0 for increasing maturities. In this section, we adapt
the Proposition3.3 in Gorovoi and Linetsky (2004) to the present situation. The following theorem
gives a method to obtain the eigenfunctions and the eigenvalues for the transition probability and
the state-price density of SET models with discrete spectra. We give also analytical results in terms
of special functions for the case of two Vasicek regimes.

Theorem 3.1 Assume the linear diffusion with infinitesimal volatilityσ(r) = σ1(r)1(r<r∗) +
σ2(r)1(r≥r∗), infinitesimal driftµ(r) = µ1(r)1(r<r∗) + µ2(r)1(r≥r∗) and with domainI = (e1, e2);
−∞ ≤ e1 < e2 ≤ +∞. Let φλ(r) be the unique (to some multiplicative constant) continuous
solution with continuous scale derivativedφλ

ds
(r) of the ODE

−1

2
σ2

1(r)u
′′(r)− µ1(r)u

′(r) + ru(r) = λu(r) ∀r ∈ (e1, r
∗]

such that
∫ r∗

e1
|φλ(r)|2m(r)dr < +∞ andφλ(r) satisfies the appropriate condition ate1.

Let ψλ(r) be the unique continuous solution with continuous scale derivativedψλ

ds
(r) of the

ODE

−1

2
σ2

2(r)u
′′(r)− µ2(r)u

′(r) + ru(r) = λu(r) ∀r ∈ [r∗, e2)

such that
∫ e2

r∗ |ψλ(r)|2m(r)dr < +∞ andψλ(r) satisfies the appropriate condition ate2.
Then, the eigenvaluesλ0 < λ1 < λ2 < · · · of the Sturm-Liouville problem (3) associated to

the state-price density are the zeros of the Wronskianω(λ)

ω(λ) := φλ(r
∗)

ψλ

ds
(r∗)− ψλ(r

∗)
φλ

ds
(r∗) = 0

and the eigenfunctionsϕn(r) read

ϕn(r) =





√
ψλn(r∗)

∆nφλn(r∗)
φλn(r), e1 < r ≤ r∗

√
φλn(r∗)

∆nψλn(r∗)
ψλn(r), r∗ ≤ r < e2,

where∆n = dω(λ)
dλ
|λ=λn .

Proof. The proof is similar to Proposition3.3 in Gorovoi and Linetsky (2004). Following Lemma
1 in Linetsky (2002), there exists a unique (to some multiplicative constant) solutionφλn(r) to the
ODE

−1

2
σ2

1(r)u
′′(r)− µ1(r)u

′(r) + ru(r) = λnu(r)

on the intervalI = (e1, e2) which ism-square integrable in a neighborhood ofe1 and satisfies the
appropriate condition at the boundarye1. As the eigenfunctionϕn(r) is alsom-square integrable
in a neighborhood ofe1 and satisfies the appropriate condition at the boundarye1, ϕn(r) must be
equal toφλn(r) up to a constant. Similarly, we can deduce thatϕn(r) is also equal toψλn(r) up
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to a constant. We conclude that there exists a non-zero constantAn such thatφλn(r) = Anψλn(r).
The Wronskian is defined as

ω(λ) := φλ(r)
ψλ

ds
(r)− ψλ(r)

φλ

ds
(r),

it is easy to check thatω(λ) depends only onλ asφλ(r) andψλ(r) are both continuous solutions of
−(Gu) = λu. Moreover,φλn(r) = Anψλn(r) implies thatw(λ) = 0 for λ = λn. From Theorem
5 in Linetsky (2002), we know that||φλn(r)|| = Anω′(λn) and thus,ϕn(r) is continuous atr∗ and
||ϕn(r)|| = 1. 2

3.1. SET Vasicek model

The Vasicek model (1977) defines the short rate as the Gaussian process solution of the stochastic
differential equation

drt = κ(θ − rt)dt + σdWt,

with state spaceI = (−∞, +∞). Similarly, the Self Exciting Threshold Vasicek model is driven
by the short rate process solution of

drt =

{
κ1(θ1 − rt)dt + σ1dWt, −∞ < rt ≤ r∗

κ2(θ2 − rt)dt + σ2dWt, r∗ ≤ rt < +∞.

The resulting process is a scalar diffusion with scale density

s′(r) =





e
k1(θ1−r)2

σ2
1 , −∞ < r ≤ r∗

e
k1(θ1−r)2

σ2
1

− k1(θ1−r∗)2
σ2
1

+
k2(θ2−r∗)2

σ2
2 , r∗ ≤ r < +∞;

and speed densitym(r) = 2/(s′(r)σ2(r)) with σ2(r) = σ2
11(r<r∗) + σ2

21(r≥r∗) discontinuous at the
level r∗. A direct application of Theorem 3.1 leads to the next Proposition.

Proposition 3.2 The functionsφλ(r) andψλ(r) defined in Theorem 3.1 corresponding to the SET
Vasicek model are given by

φλ(r) = ez2
1/4Dµ1(−(α1 − z1))

ψλ(r) = ez2
2/4Dµ2(α2 − z2)

wherez1 =
√

2κ1

σ1
(θ1 − r) and z2 =

√
2κ2

σ2
(θ2 − r); α1 = σ2

1

√
2/κ3

1 and α2 = σ2
2

√
2/κ3

2; and
Dµ(z) are the parabolic cylinder functions of parametersµ1 = σ2

1/2κ
3
1 + (λ1 − θ1)/κ1 andµ2 =

σ2
2/2κ

3
2 + (λ2 − θ2)/κ2.

Proof. The functionφλ(r) of Theorem 3.1 is solution of theODE

−1

2
σ2

1u
′′ + κ1(θ1 − r)u′ + ru = λu, r ∈ (−∞, r∗]. (5)
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We look for solutions in the formu(r) = ez2
1/4v(z1) with z1 =

√
2κ1

σ1
(θ1 − r). Substitutingu(r) in

equation (5), we obtain thatv(z) satisfies the Weber-Hermite equation

v′′ +
(

1

2
+ µ1 − (α1 − z2)

4

)
v = 0, z ∈ [√

2κ1θ1/σ1, +∞
)

with µ1 = σ2
1/2κ

3
1 + (λ1 − θ1)/κ1 andα1 = σ2

1

√
2/κ3

1. The solutionm-square integrable in a
neighborhood of+∞ is the parabolic cylinder functionDµ1(−(α1−z1)). With similar arguments,
we find thatψλ(r) = ez2

2/4Dµ2(α2 − z2) is the unique solution of

−1

2
σ2

2u
′′ + κ2(θ2 − r)u′ + ru = λu, r ∈ [r∗, +∞).

that ism-square integrable in a neighborhood of+∞. 2

4. CALIBRATION TO THE U.S. ZERO-YIELD CURVE

In this section, we calibrate a SET Vasicek model to the U.S. bond market. The data set consists of
15 STRIPS bond prices obtained from Datastream on 14/12/2003. We minimize the root squared
error between the STRIPS yield curve and the model yield curve2. The optimization procedure
provides the parameter estimatesκ1 = 0.3999, θ1 = 0.0606 and σ1 = 0.0105; κ2 = 0.197,
θ2 = 0.097 andσ2 = 0.0284; r∗ = 0.0813 for the SET Vasicek andκ = 0.2563, θ = 0.0654
andσ = 5.119e−5 for the Vasicek model. Figure1 compares the STRIPS yield curve with the
Vasicek and the SET Vasicek yield curves (withk = 120 terms). The SET vasicek model improves
significantly the fit to the current term structure. The volatility estimate of the Vasicek model is
almost zero which is consistent with low levels of the U.S. short-term rate rate but in contradiction
with higher regimes. Finally, we draw the same conclusions than Pfann, Schotman and Tschering
(1996), the U.S. short-term rate have two distinct regimes with a discontinuity of the volatility
around8.5 percent.
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U.S. STRIPS  yield curve
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Figure 1:U.S. zero-yield curve on 14/12/2003, Datastream

2We only consider bonds with maturities larger than 2Y to avoid numerical problems.
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Abstract

We investigate multiperiod portfolio selection problems in a Black & Scholes type market
where a basket of 1 riskless andm risky securities are traded continuously. We look for the
optimal allocation of wealth within the class of ‘constant mix’ portfolios. First, we consider the
portfolio selection problem of a decision maker who invests money at predetermined points in
time in order to obtain a target capital at the end of the time period under consideration. Several
optimality criteria and their interpretation within Yaari’s dual theory of choice under risk are
presented. We propose accurate approximations based on the concept of comonotonicity, as
studied in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b). Our analytical approach
avoids simulation, and hence reduces the computing effort drastically. This paper is a reduced
version of Dhaene, Vanduffel, Goovaerts, Kaas and Vyncke (2004).

1. INTRODUCTION

Strategic portfolio selection is the process used to identify the best allocation of wealth among a
basket of securities for an investor with a given consumption/saving behavior over a given invest-
ment horizon. The basket of available securities will typically be a selection of risky assets such
as stocks, bonds and real estate, and risk-free components such as cash and money market instru-
ments. The individual investor or the asset manager chooses an initial asset mix and a particular
tactical trading strategy within a given set of strategies, according to which he will buy and sell
risky and risk-free assets, during the whole time period under consideration.

In this paper we will investigate multi-period optimal portfolio selection problems in a Black
& Scholes (1973) lognormal setting. We will assume that the investor has to choose the optimal
investment strategy for a given consumption or savings pattern, within the class of constant mix
strategies. In this paper we will consider only the terminal wealth problem. Similar results can be
obtained for the so-called reserving problem.
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In theterminal wealth problem, the decision maker will invest a given series of positive saving
amountsα0, α1, . . . , αn−1 at predetermined times0, 1, . . . , n − 1 such that his terminal wealth at
timen will reach or exceed some target capitalK with a sufficiently large probability.

As terminal wealth is a sum of dependent lognormal random variables, its distribution function
cannot be determined exactly and is too cumbersome to work with. Therefore, we will present
accurate approximations for the distribution function at hand. The first approximation that we will
consider for the distribution of terminal wealth will be called the ‘comonotonic upper bound’ as it
is an upper bound for the exact distribution in the convex order sense. It is derived by keeping the
marginal distributions exact but approximating the copula that describes the dependency structure
between the random accumulation factors involved by the comonotonic copula.

Our second approximation for the exact distribution is based on the technique of conditioning.
In this approach, the marginal distributions are changed and as a result the copula describing the
dependency structure is replaced by the comonotonic copula. We will call this the ‘comonotonic
lower bound’ approach as it can be proven that it is a lower bound in the sense of convex order-
ing. Especially this lower bound will perform very accurately as an approximation to the exact
distribution.

The approximations that we propose have several advantages. First, for any given investment
strategy they provide an accurate and easy to compute approximation for any risk measure that is
additive for comonotonic risks, such as distortion risk measures (VaR and TailVaR for instance).
Second, it turns out that for the comonotonic approximations we propose, the optimal investment
mix can be found on the mean-variance efficient frontier. Third, the comonotonic approximations
reduce the multivariate randomness of the multiperiod problem to a univariate randomness.

The proposed methodology can be used to solve several personal finance problems: for instance
the so-called ‘saving for retirement problem’. In this case, one wants to retire inn years with a ‘nest
egg’ ofK — in real terms, i.e. in today’s Euro’s. How much does one have to save monthly — in
real terms — in order to assure a (1− ε) chance to reach the retirement financial goal? Clearly the
answer will depend on the investment mix. The theory on comonotonicity gives a quick, elegant
and accurate answer to this question.

As the time horizon that we consider is long (typically 10, 20 or more years), assuming a
Gaussian model seems to be appropriate, at least approximately, by the Central Limit Theorem.
In order to verify whether the theoretical setup can be approximately compared with the data
generating mechanism of real situations, we refer to Cesari & Cremonini (2003). For the period
1997-1999, the authors conclude that weekly (and longer period) returns can be considered as
normal and independent. Daily returns on the other hand are both non-normal and autocorrelated.

The paper is organized as follows. In Sections 2 and 3 we present some results concerning risk
measures, comonotonicity, the Black & Scholes setting, constant mix portfolios and mean-variance
analysis that will be used throughout the paper. Next, the problem of finding optimal investment
strategies in a general multivariate final wealth model with savings at discrete points in time is
analyzed in Section 4. To the best of our knowledge, determining optimal investment strategies
for terminal wealth problems by means of the comonotonic approach, as presented in Section 4, is
new. We refer the interested reader to Dhaene, Vanduffel, Goovaerts, Kaas & Vyncke (2004) for a
more extended and complete version of this paper.
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2. RISK MEASURES AND COMONOTONICITY

In this section, we will introduce some definitions and present some results related to risk measures
and comonotonicity that will be used throughout this paper. More details about comonotonicity can
be found in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b), more details about the relation
between risk measures and comonotonicity can be found in Dhaene, Vanduffel, Tang, Goovaerts,
Kaas & Vyncke (2004).

2.1. Risk measures

A risk measure summarizes the information contained in the distribution function of a random
variable in one single real number. For a random variableX, thep-quantile risk measure is defined
as

Qp [X] = inf {x ∈ R | FX(x) ≥ p} , p ∈ (0, 1) ,

whereFX(x) = Pr [X ≤ x] and by convention,inf {φ} = +∞. A related risk measure is denoted
by Q+

p [X] and is defined by

Q+
p [X] = sup {x ∈ R | FX(x) ≤ p} , p ∈ (0, 1) ,

where by conventionsup {φ} = −∞. If FX is strictly increasing, both risk measures will coincide
for all values ofp. In this case, we can also define the(1− p)-quantiles by

Q1−p [X] = sup
{
x ∈ R | FX(x) ≥ p

}
, p ∈ (0, 1) ,

whereFX(x) = 1− FX(x).
In the sequel, we will always consider random variables with finite mean. The Conditional Tail

Expectation (CTE) at levelp will be denoted by CTEp [X]. It is defined by

CTEp [X] = E [X | X > Qp [X]] , p ∈ (0, 1) .

The CTE measures the right tail of the distribution function. We will also need a risk measure that
measures the left tail of the distribution function. Therefore, we introduce the Conditional Left
Tail Expectation, which is defined by

CLTEp [X] = E
[
X | X < Q+

p [X]
]
.

One can prove that the following relation holds betweenCTE andCLTE:

CLTE1−p [X] = −CTEp [−X] , p ∈ (0, 1) .

2.2. Comonotonic bounds for sums of dependent random variables

A random vectorY = (Y0, Y1, . . . , Yn) is said to be comonotonic if

(Y0, Y1, . . . , Yn)
d
= (F−1

Y0
(U), F−1

Y1
(U), . . . , F−1

Yn
(U)),
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whereU is a random variable which is uniformly distributed on the unit interval and where the

notation
d
= stands for ‘equality in distribution’.

For any random vectorX = (X0, X1, . . . , Xn), we will call its comonotonic counterpart any ran-
dom vector with the same marginal distributions and with the comonotonic dependency structure.
The comonotonic counterpart ofX = (X0, X1, . . . , Xn) will be denoted byXc = (Xc

0, X
c
1, . . . , X

c
n).

Hence for any random vectorX = (X0, X1, . . . , Xn), we have

(Xc
0, X

c
1, . . . , X

c
n)

d
= (F−1

X0
(U), F−1

X1
(U), . . . , F−1

Xn
(U)).

It can be proven that a random vector is comonotonic if and only if all its marginals are non-
decreasing functions (or all are non-increasing functions) of the same random variable.

The random variableX is said to precede the random variableY in the stop-loss order sense,
notationX ≤sl Y , if X has lower stop-loss premiums thanY :

E[(X − d)+] ≤ E[(Y − d)+], −∞ < d < +∞. (1)

On the other hand,X is said to precedeY in the convex order sense, notationX ≤cx Y , if X ≤sl Y
and in addition E[X] =E[Y ]. In Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a) a proof for
the following theorem can be found.

Theorem 2.1 (Convex bounds for sums of random variables)
For any random vector(X0, X1, . . . , Xn) and any random variableΛ, we have that

n∑
i=0

E [Xi | Λ] ≤cx

n∑
i=0

Xi ≤cx

n∑
i=0

F−1
Xi

(U). (2)

The theorem above states that the least attractive random vector(X0, X1, . . . , Xn) with given
marginalsFXi

, in the sense that the sum of its components is largest in the convex order, has the
comonotonicjoint distribution, which means that it has the joint distribution of the random vector(
F−1

X0
(U), F−1

X1
(U), . . . , F−1

Xn
(U)

)
.

The random variableSc =
∑n

i=0 F−1
Xi

(U) will be called the comonotonic upper bound ofS =∑n
i=0 Xi, whereas the random variableSl =

∑n
i=0 E [Xi | Λ] will be referred to as a lower bound

for S.
The random vector(E [X0 | Λ] , E [X1 | Λ] , . . . , E [Xn | Λ]) will in general not have the same
marginal distributions as(X0, X1, . . . , Xn). If one can find a conditioning random variableΛ with
the property that all random variablesE [Xi | Λ] are non-increasing functions ofΛ (or all are non-
decreasing functions ofΛ), then the lower boundSl =

∑n
i=0 E [Xi | Λ] is a sum ofn comonotonic

random variables. The advantage of the comonotonic dependency structure is that any distortion
risk measure of a sum of comonotonic random variables equals the sum of the risk measures of the
marginals involved. For the quantile risk measures defined above, we find for allp ∈ (0, 1) :

Qp [Sc] =
n∑

i=0

Qp [Xi] ,

Q+
p [Sc] =

n∑
i=0

Q+
p [Xi] .
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For the CTE and the CLTE a similar result can be proven, provided all marginal distributionsFXi

are continuous:

CTEp [Sc] =
n∑

i=0

CTEp [Xi] , provided allFXi
are continuous,

CLTEp [Sc] =
n∑

i=0

CLTEp [Xi] , provided allFXi
are continuous.

2.3. Sums of lognormal random variables

Consider the sum

S =
n∑

i=0

αi e
Zi

where theαi are non-negative constants and theZi are linear combinations of the components of
the random vector(Y1, Y2, . . . , Yn) which is assumed to have a multivariate normal distribution:

Zi =
n∑

j=1

λij Yj.

Let U be uniformly distributed on the unit interval. The comonotonic upper boundSc =∑n
i=0 F−1

αieZi
(U) of S is given by

Sc =
n∑

i=0

αi e
E[Zi]+σZi

Φ−1(U).

Taking into account the additivity property, the following expressions can be derived for the risk
measures associated withSc:

Qp [Sc] = Q+
p [Sc] =

n∑
i=0

αi e
E[Zi]+σZi

Φ−1(p),

CTEp [Sc] =
n∑

i=0

αi e
E[Zi]+

1
2
σ2

Zi
Φ (σZi

− Φ−1(p))

1− p
,

CLTEp [Sc] =
n∑

i=0

αi e
E[Zi]+

1
2
σ2

Zi
1− Φ (σZi

− Φ−1(p))

p
, p ∈ (0, 1) .

In order to define a comonotonic lower boundSl for S, we choose a conditioning random
variableΛ which is a linear combination of theYj:

Λ =
n∑

j=1

βj Yj.
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After some computations, we find that the lower boundSl =
∑n

i=0 αi E
[
eZi | Λ]

is given by

Sl =
n∑

i=0

αi e
E[Zi]+

1
2(1−r2

i )σ2
Zi

+ri σZi
Φ−1(U),

where the uniformly distributed random variableU follows from Φ−1(U) ≡ Λ−E(Λ)
σΛ

, andri is the
correlation betweenZi andΛ.

If all ri are positive, thenSl is a comonotonic sum. Hence, assuming that allri are positive, we
find the following expressions for the risk measures associated withSl:

Qp

[
Sl

]
= Q+

p

[
Sl

]
=

n∑
i=0

αi e
E[Zi]+

1
2(1−r2

i )σ2
Zi

+ri σZi
Φ−1(p),

CTEp

[
Sl

]
=

n∑
i=0

αi e
E[Zi]+

1
2
σ2

Zi
Φ (ri σZi

− Φ−1(p))

1− p
,

CLTEp

[
Sl

]
=

n∑
i=0

αi e
E[Zi]+

1
2
σ2

Zi
1− Φ (ri σZi

− Φ−1(p))

p
, p ∈ (0, 1) .

Several examples in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002b) show that especially
the lower bound approximation performs very well as an approximation for the risk measures for
sums of lognormals. Therefore, in the sequel we will only study how the lower bound enables us
to approximate efficiently “optimal portfolio’s”.

3. STOCHASTIC RETURN PROCESSES

3.1. The Black & Scholes setting

Throughout the paper, we will assume the classical continuous-time framework that was pioneered
by Merton (1971) and is nowadays mostly referred to as the Black & Scholes (1973) setting. We
suppose that there is a market in which(m+1) securities (assets or investment accounts) are traded
continuously. One of the assets is the risk free asset. LetP 0(0) = P 0 > 0 be the current price, at
time 0, of 1 unit of the risk free asset, whereasP 0(t) is its price at timet. This price is assumed to
evolve according to the following ordinary differential equation:

dP 0(t)

P 0(t)
= rdt,

with r > 0. On the other hand, letP i(0) = P i > 0 be the current price, at time 0, of 1 unit of risky
asseti, whereasP i(t) is the price at timet (including reinvestment of dividend income) of one
unit of risky asseti. The price processP i(t) evolves according to a geometric Brownian motion
stochastic process, represented by the following stochastic differential equation:

dP i(t)

P i(t)
= µidt +

d∑
j=1

σij dW j(t), i = 1, . . . , m, (3)
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where
(
W 1(τ), W 2(τ), . . . , W d(τ)

)
is ad-dimensional standard Brownian motion process. The

W i(τ) are mutually independent standard Brownian motions.
Them-dimensional vectorµT = (µ1 · · · µm) is called the drift vector of the risky assets. We

will assume thatµ 6= r1, with 1T = (1 1 · · · 1) .
The(m× d) matrixΣ defined by

Σ =




σ11 σ12 · · · σ1d

σ21 σ22 · · · σ2d

· · · · · · · · · · · ·
σm1 σm2 · · · σmd




is called the diffusion matrix. Further, we define the(m×m) matrixΣ as

Σ = Σ ·ΣT
=




σ2
1 σ12 · · · σ1m

σ21 σ2
2 · · · σ2m

· · · · · · · · · · · ·
σm1 σm2 · · · σ2

m


 , (4)

with coefficientsσij andσ2
i given byσij =

∑d
k=1 σik σjk andσ2

i = σii. We have thatσij = σji.
The matrixΣ is called the variance-covariance matrix. We will assume thatΣ is positive definite.
In particular, this assumption implies that allσi are strictly positive. Hence, allm risky assets are
indeed risky. It also implies thatΣ is non-singular, meaning that its determinant is strictly positive,
and henceΣ has a matrix inverseΣ−1. As we will see further on, the elements of the matrixΣ
describe the covariances between the yearly returns of the different investment accounts.

We define the processBi(τ) by

Bi(τ) =
1

σi

d∑
j=1

σijW
j(τ).

Rewriting equation (3), we find

dP i(t)

P i(t)
= µidt + σi dBi(t), i = 1, . . . , m. (5)

The solution to equation (5) is

P i(t) = P i exp

{(
µi − 1

2
σ2

i

)
t + σi Bi(t)

}
,

which means thatP
i(t)
P i is lognormally distributed with parameters

(
µi − 1

2
σ2

i

)
t andσ2

i t, respec-
tively. This implies that the expectation and standard deviation of the price of asseti at timet are
given by

E
[
P i(t)

]
= P i eµit,

σ
[
P i(t)

]
= P i eµit

√
eσ2

i t − 1.
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Let k = 1, 2, . . .. Investing an amount of1 at timek − 1 in investment accounti will grow to the
random amounteY i

k at timek, whereY i
k denotes the yearly return in yeark of accounti. One finds

that

Y i
k =

(
µi − 1

2
σ2

i

)
+ σi

(
Bi(k)−Bi(k − 1)

)
.

Hence, it follows that the random yearly returnsY i
k of asseti are independent and have identical

normal distributions with

E
[
Y i

k

]
= µi − 1

2
σ2

i ,

V ar
[
Y i

k

]
= σ2

i ,

Cov
[
Y i

k , Y j
l

]
=

{
0 k 6= l
σij k = l

.

As announced earlier, the matrixΣ is the variance-covariance matrix of the yearly return vector
(Y 1

k , Y 2
k , . . . , Y n

k ).

3.2. Constant mix strategies

Assume one can invest wealth in one or more of them + 1 assets as defined above. Letπ(t)T =
(π1(t), π2(t), . . . , πm(t)) be the vector describing the portfolio process, i.e.πi(t) is the fraction of
the wealth that is invested in risky asseti at timet. The residual, i.e.1−∑n

i=1 πi(t) is invested in
the risk free asset, or, if negative, finances the risky asset purchases. A negative proportion invested
in the risk free asset means borrowing (going short) on the risk free asset.

We will restrict to constant portfoliosπ(t)T = πT = (π1, π2, . . . , πm), which means that
the fractions invested in the different assets remain constant over time. Investing according to
a constant portfolio process implies that one has to follow a dynamic trading strategy. Indeed,
as the risky asset returns evolve randomly, one has to trade at each instant in order to keep the
fractions invested in the different assets constant. Such investment strategies are known as constant
mix strategies, or also as constant proportional investment strategies. Optimality of constant mix
strategies in a utility theory setting is considered in Merton (1971).

Let us now consider one unit of a security that is constructed according to the continuously
rebalanced investment strategy(π1, π2, . . . , πm) , and letP (t) be the price of that unit at timet,
with P (0) = P . One can prove that the price processP (t) evolves according to the dynamics

dP (t)

P (t)
=

m∑
i=1

πi
dP i(t)

P i(t)
+

(
1−

m∑
i=1

πi

)
dP 0(t)

P 0(t)
(6)

=

(
m∑

i=1

πi (µi − r) + r

)
dt +

m∑
i=1

πi σidBi(t).

For a non-zero vectorπ, One can verify that the processB(τ) defined by

B(τ) =
1√

πT ·Σ · π
m∑

i=1

πi σi Bi(τ).
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is a standard Brownian motion. Equation (6) can then be rewritten as

dP (t)

P (t)
= µ (π) dt + σ (π) dB(t) (7)

with
µ (π) = r + πT · (µ− r1) and σ2 (π) = πT ·Σ · π, (8)

where1 is them-vector(1 1 · · · 1). The solution to equation (7) is

P (t) = P exp

{(
µ (π)− 1

2
σ2 (π)

)
t + σ (π) B(t)

}
,

with expectation and standard deviation given by

E [P (t)] = P eµ(�)t,

σ [P (t)] = P eµ(�)t
√

eσ2(�)t − 1.

The stochastic differential equation (7) was derived by Merton (1971, 1990), see also Rubinstein
(1991).

Let k be a strictly positive integer. Investing according to investment strategyπ, an amount of
1 at timek − 1 will grow to the random amounteYk(�) at timek, whereYk (π) denotes the yearly
return in yeark of investment strategyπ. One finds that

Yk (π) =

(
µ (π)− 1

2
σ2 (π)

)
+ σ (π) (B(k)−B(k − 1)) .

Hence, the random yearly returnsYk (π) of the constantly rebalanced portfolioπ are independent
and identically distributed normal random variables with

E [Yk (π)] = µ (π)− 1

2
σ2 (π) ,

V ar [Yk (π)] = σ2 (π) .

The priceP (k) can be written in terms of the yearly returns as follows:

P (k) = P exp (Y1 (π) + Y2 (π) + · · ·+ Yk (π)) .

3.3. Markowitz mean-variance analysis

In 1990, Harry M. Markowitz received the Nobel Prize in Economics (shared with William F.
Sharpe and Merton H. Miller) for his theory on portfolio selection under uncertainty. As men-
tioned in the press release of the Royal Swedish Academy of Sciences, Markowitz’s theory can
be considered as the first approach to solving the problem that each investor faces, namely how to
find the optimal trade-off between risk and return, i.e. how to find the optimal investment strat-
egy under the two conflicting objectives of high expected return versus low risk of the investment
portfolio. Markowitz proposed a way to reduce the complicated and multidimensional problem
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of finding the optimal portfolio with respect to a large number of different assets to a conceptual
simple two-dimensional problem, known as mean-variance analysis.

Several variants of the classical single-period mean-variance problem exist. Here, we will
consider the formulation that we will need later on in the paper. Among all constant mix portfolios
π with a given portfolio driftµ (π) = µ, we look for the one with the smallest volatilityσ (π).
Hence, for any given value ofµ, we want to find the solution of the following problem:

Min� σ2 (π) subject toµ (π) = µ. (9)

We will denote the portfolio that corresponds to the minimum in(9) by πµ.
The assumption thatµ 6= r1, together with the assumptions that the variance-covariance matrix
is positive definite and that short-selling is allowed implies that there exists a unique local global
minimum for problem (9). A Lagrange optimization yields:

σ2 (πµ) =
(µ− r)2

(µ− r1)T ·Σ−1 · (µ− r1)
(10)

and

πµ = (µ− r)
Σ−1 · (µ− r1)

(µ− r1)T ·Σ−1 · (µ− r1)
. (11)

Note thatσ2 (πµ) andπµ are well-defined, because the inverse of a positive definite matrix is also
positive definite.

The efficient frontier refers to the set of all solutions{(σ (πµ) , µ)} for the optimization prob-
lem (9). From (10) we see that the efficient frontier consists of two straight lines in the(σ, µ)-plane:

µ = r +

√
(µ− r1)T ·Σ−1 · (µ− r1) σ (πµ) , µ ≥ r, (12)

µ = r −
√

(µ− r1)T ·Σ−1 · (µ− r1) σ (πµ) , µ ≤ r.

The portfoliosπµ belonging to the efficient frontier are called mean-variance efficient portfolios.
Portfolios on the lower branch are irrelevant from a mean-variance optimization viewpoint as they
lead to a positive volatility while their drift is lower thanr. The upper branch{(σ (πµ) , µ) | µ ≥ r}
is referred to as the ‘Capital Market Line’.

In the following, we will call portfoliosπ that fulfill the condition1T × π = 1 risky-assets-
only portfolios because such portfolios consist only of risky assets. It can be proven that if we only
consider risky-assets-only portfolios, the efficient frontier is a hyperbola in the mean - standard
deviation space (provided there are at least two risky assets with different drift). Now consider the
risky-assets-only global minimal variance portfolioπ(m), i.e. the portfolio that is the solution of
the following problem:

Min� σ2 (π) subject to1T · π = 1.

This portfolio and its drift are given by

π(m) =
Σ−1 · 1

1T ·Σ−1 · 1 ,

µ
(
π(m)

)
=

1T ·Σ−1 · µ
1T ·Σ−1 · 1 .
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One can prove that under the condition

µ
(
π(m)

)
> r,

the Capital Market Line is at a tangent to the upper branch of the hyperbola that corresponds to
the efficient frontier of risky-asset-only portfolios. Whenµ

(
π(m)

)
< r, the decreasing part of the

efficient frontier (12) will be tangent to the lower branch of the hyperbola.
Let us now assume thatµ

(
π(m)

) 6= r. The portfolio that corresponds to the point of intersection
between the efficient frontier (12) and the risky-assets-only efficient frontier is called the ’tangency
portfolio’, and is denoted byπ(t). The assumption thatµ

(
π(m)

) 6= r implies thatµ
(
π(t)

) 6= r.
One can easily verify thatπ(t) is given by

π(t) =
Σ−1 · (µ− r1)

1T ·Σ−1 · (µ− r1)
. (13)

Note that (11) can be rewritten as

πµ =

(
µ− r

µ(πt)− r

)
π(t).

This means that every mean-variance efficient portfolioπµ consists of a fraction( µ−r
µ(�(t))−r

) in-

vested in the risky-assets-only portfolioπ(t) and a fraction(1− µ−r
µ(�(t))−r

) invested in the risk free
asset. Mean-variance optimizing investors only differ in terms of which fraction of their wealth
they put in the tangency portfolio.
The result that all mean-variance investors will hold only two kinds of portfolios (or mutual funds),
the exclusively risky portfolioπ(t) and the risk free asset, is often called a Mutual Fund Theorem
or a Two Fund Separation Theorem.

In caseµ
(
π(m)

)
> r is fulfilled, also the inequalityµ

(
π(t)

)
> r holds. The Capital Market

Line can then be rewritten as

µ = r +

(
µ
(
π(t)

)− r

σ (π(t))

)
σ (πµ) .

This equation describes the drift of the return for an investor as related to the volatility that he is

willing to accept. The slope
µ(�(t))−r

σ(�t)
is referred to as the ‘Sharpe ratio’. It can be interpreted as

the price of risk reduction: It shows by how much the drift increases if the volatility increases by 1
unit.

4. SAVING AND TERMINAL WEALTH

4.1. General problem description

In this section, we will consider the problem of how to invest periodic saving amounts in order to
reach some target capital at a predetermined future timen. Let α

i
be the positive amount that will
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be invested at timei, (i = 0, 1, 2, . . . , n). We assume that these amounts are invested according
to a constant mix portfolioπ as defined in Section 3.2. The choice of the constant portfolio mix
has to be made at time0. An amount of1 unit invested at timei will grow to the random amount
e
Pn

j=i+1 Yj(�) at timen.
Let Wj (π) be the wealth at timej, defined by the following recursive relation:

Wj (π) = Wj−1 (π) eYj(�) + αj, j = 1, . . . , n, (14)

with initial value W0 (π) = α0. Hence,Wj (π) is the wealth that will be available at timej,
including the savings amountαj at timej. The realization ofWj (π) will be known at timej, and
depends on the investment returns (stochastic part) and on the savings (deterministic part) in the
past. Note that the random variablesYj (π) are i.i.d. and normal distributed with parametersµ (π)
andσ (π) as defined in (8).

From the recursion (14) for the wealth process, we find the following explicit expression for
terminal wealthWn (π):

Wn (π) =
n∑

i=0

αi e
Pn

j=i+1 Yj(�). (15)

By convention,
∑n

i=m bi is set equal to0 if m > n.
Within the expected utility theory framework of Von Neumann & Morgenstern (1947), the

investor could choose the investment strategyπ that maximizes his expected utility of final wealth:

max
�

E [u(Wn (π))] ,

whereu is the utility function he uses to appreciate the different levels of final wealth.
Another approach, within the framework of Yaari’s (1987) dual theory of choice under risk, is

to choose the optimal investment strategy as the one that maximizes the distorted expectation of
final wealth:

max
�

ρf [Wn (π)] , (16)

wheref is the investor’s distortion function andρf is the ‘distorted expectation’, determined with
f (Pr (Wn (π) > x)) :

ρf [Wn (π)] = −
(∫ 0

−∞
1− f (Pr (Wn (π) > x))

)
dx +

∫ ∞

0

f (Pr (Wn (π) > x)) dx.

While in utility theory, choosing among risks is performed by comparing expected values of
transformed wealth levels (utilities), in Yaari’s theory the quantities that are compared are the
’distorted expectations’ of wealth levels. The distorted expectation of final wealthWn (π) can be
interpreted as an expectation ofWn (π) evaluated with a ‘distorted probability measure’ in the
sense of a Choquet-integral, see Denneberg (1994). The decision maker acts in order to maximize
the distorted expectation of final wealth.

For a distortion functionfp, 0 < p < 1, given by

fp(x) =

{
0 0 ≤ x < p
1 p ≤ x ≤ 1

(17)
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we find

ρfp [Wn (π)] = Q+
1−p [Wn (π)] (18)

= sup {x ∈ R | Pr (Wn (π) > x) ≥ p} .

The optimization problem (16) with distortion function given by(17) determines the optimal in-
vestment strategy as the one that maximizes the largest amount that will be reached with a proba-
bility of at leastp.

For the convex distortion functiongp, 0 < p < 1, given by

gp(x) =





0 0 ≤ x < p

x− p

1− p
p ≤ x ≤ 1

(19)

we find
ρgp [Wn (π)] = CLTE1−p [Wn (π)] .

In Yaari’s theory, a decision maker is called risk-averse if he has a convex distortion function.
Hence, the optimization problem (16) with distortion function (19) can be interpreted as the prob-
lem to be solved by a risk-averse decision maker with distortion functiongp. The optimal invest-
ment strategy is the one that maximizes the conditional expected value of final wealth, given that
thep-target capital is not reached.

For a more detailed comparison between the two theories of choice under risk and their relation
to risk measures, see e.g. Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke (2004).

4.2. Comonotonic lower bound approximations

From (15), we see thatWn (π) is a sum of non-independent lognormal random variables. As it is
impossible to determine the distribution function ofWn (π) analytically, we will derive a convex
order lower boundW l

n (π) for Wn (π).
RewritingWn (π) as

Wn (π) =
n∑

i=0

αi e
Zi ,

we see that we can apply the results of Section 2.3 with

Zi = Yi+1 (π) + Yi+2 (π) + · · ·+ Yn (π) ,

E [Zi] = (n− i)

[
µ (π)− 1

2
σ2 (π)

]
,

σ2
Zi

= (n− i) σ2 (π) .

In order to define a convex lower boundW l
n (π) for Wn (π), we choose the conditioning random

variable as follows:

Λ (π) =
n∑

j=1

βj (π) Yj (π)
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where the coefficientsβj (π) are as follows:

βj (π) =

j−1∑

k=0

αke
−kµ(�)

It follows that for this choice of the parametersβj (π), the variance of the lower bound will be
close to the variance ofWn (π), providedσ2 (π) is small enough.
From Section 2.3, we find

W l
n (π) =

n∑
i=0

αie
(n−i)µ(�)− 1

2
r2
i (�)(n−i)σ2(�)+ri(�)

√
n−iσ(�)Φ−1(U) (20)

where the coefficientsri (π) are given by

ri (π) =

∑n
j=i+1

∑j−1
k=0 αke

−kµ(�)

√
n− i

√∑n
j=1

(∑j−1
k=0 αke−kµ(�)

)2
.

Note that the correlation coefficientsri (π) are non-negative which implies thatW l (π) is a comono-
tonic sum of lognormal random variables.
The following expression can be derived for the risk measureQ+

1−p(W
l
n (π)), p ∈ (0, 1):

Q+
1−p

[
W l

n (π)
]

= Q1−p

[
W l

n (π)
]

=
n∑

i=0

αie
(n−i)(µ(�)− 1

2
r2
i (�)σ2(�))−ri(�)

√
n−iσ(�)Φ−1(p), (21)

while for CLTE1−p

[
W l

n (π)
]

we find

CLTE1−p

[
W l

n (π)
]

=
n∑

i=0

αi e(n−i)µ(�) 1− Φ
(
ri (π)

√
n− i σ (π) + Φ−1(p)

)

1− p
.

4.3. Determining the investment strategy that maximizes the target capital, for a given prob-
ability level

4.3.1. THE p-TARGET CAPITAL

For a given probability level1
2

< p < 1 and a given investment strategyπ, we define thep-target
capitalK as the(1− p)-th order “+”-quantile of terminal wealth:

K = Q+
1−p [Wn (π)] . (22)

One immediately finds that

K = sup {x ∈ R | Pr [Wn (π) > x] ≥ p} .

Hence, the target capital at probability levelp can be interpreted as the maximal amount that will
be available at timen, with a probability of at leastp.
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Now assume that a probability levelp is fixed and that the optimal investment strategyπ∗ is
determined as the one that maximizes thep-target capital. Denoting the optimal target capital by
K∗, we have

K∗ = max
�

Q+
1−p [Wn (π)] . (23)

Note that from (16) and (18), it follows that this optimization problem can be interpreted in terms
of Yaari’s dual theory of choice under risk.
Solving (23) is from a computational point of view a complicated problem because of the multi-
dimensionality involved. Indeed, a ‘time-dimensionality’ occurs becauseWn (π) is a sum ofn
dependent accumulation factors. There is also a ‘portfolio-dimensionality’ involved as the maxi-
mum has to be determined over all portfoliosπ. In the following section we will show how to get
rid of this ‘curse of dimensionality’.

4.3.2. THE COMONOTONIC LOWER BOUND FORWn (π)

We also propose to approximate the optimal investment strategyπ∗ by πl, whereπl is the invest-
ment strategy that maximizesQ+

1−p(W
l
n (π)). Thep-target capitalK∗ is then approximated byK l,

which is given by
K l = max

�
Q+

1−p

[
W l

n (π)
]
.

It follows from (21) that for a given value ofµ (π), the correlation coefficient is fixed and the
quantileQp(W

l
n (π)) is a decreasing function ofσ (π). Hence,πl is an element of the set of effi-

cient portfolios. The general maximization problem can be reduced to the following maximization
problem:

K l = max
µ

Q+
1−p

[
W l

n (πµ)
]
. (24)

The approximated optimization problem (24) solves the curse of dimensionality. The multi-
dimensionality caused by timen is reduced to one dimension by introducing the comonotonic
dependency structure. Also the portfolio-dimensionalitym is reduced to one dimension because
the optimal solutions are to be found on the efficient frontier.

4.3.3. CONSTANT SAVINGS AMOUNTS

In this subsection, we consider the special case that the saving amounts are constant. For each
investment strategyπ we look for the required periodic saving amountα that leads to ap-target
capital equal to 1. From (22) we find that this saving amountα is given by

α (π) =
1

Q+
1−p

[
W n (π)

] ,

with W n (π) given by

W n (π) =
n∑

i=0

e
Yi+1(�)+Yi+2(�)+···+Yn(�)

.
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The optimal investment strategy is now defined as the one that minimizes the period savings.
Denoting the minimal saving amount byα∗, we have

α∗ = min
�

α (π) .

Note that in the case of constant saving amounts, the investment strategy that maximizes thep-
target capitalK for given saving amountsα is identical to the investment strategy that minimizes
the periodic savingsα for a given target capitalK.

Now, we approximateW n (π) by W
l

n (π) as explained in (20). The minimal periodic savings
amountα∗ is then approximated byαl which is given by

αl = min
µ

1

Q+
1−p

[
W

l

n (πµ)
] .

4.3.4. NUMERICAL ILLUSTRATION
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Figure 1: The minimal savings amountαl (solid line - left scale) and the optimal risky proportion
πl (dashed line - right scale) as a function ofp.

Consider a Black & Scholes market with a risk free asset with a yearly returnr = 0.03 and two
risky assets with yearly drifts equal toµ1 = 0.06 andµ2 = 0.10 respectively. The volatilities of
the risky assets are given byσ1 = 0.10 andσ2 = 0.20. Pearson’s correlation coefficientσ12

σ1σ2
is

given by0.5. From (13) we find that the tangency portfolio is given byπ(t) = (5
9
, 4

9
) with drift

µ
(
π(t)

)
= 7/90 and volatilityσ(π(t)) =

√
43

2700
.
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We assume constant saving amountsα at times0, 1, . . . , 39 and a target capital equal to 1 to
be reached at time40. In Figure 1, we consider the investment strategy that minimizes the yearly
savings amount for different probability levelsp of the target capital. The computations were
performed with the lower bound approximationW

l

40 (π) for W 40 (π).
The solid line represents the (approximated) minimal savings amountαl for different probability
levelsp of a target capital equal to 1 (left scale). As we see from the figure, increasing the required
probability of reaching the target of 1, increases the optimal savings amount. Note that the required
savings amount in case of the risk free investment, i.e. the one that corresponds top = 1, is given
by 0.0127.
The dashed line represents the (approximated) optimal risky proportionπl to be invested in the
tangency portfolio, for different probability levelsp (right scale). As could be expected, increasing
the probability of reaching the target capital decreases the optimal risky proportion in the portfolio.
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Abstract

An important part of the current financial and actuarial research deals with the investigation
of present value functions in the case of a stochastic interest rate. In the present contribution,
it is shown how interest rates can be restricted to meet special types of financial or actuarial
constraints. Approximate but analytical expressions are given for the distribution of different
types of annuities, and their accuracy is illustrated graphically.

1. INTRODUCTION

Many of the problems in the current financial and actuarial research can be reduced to the problem
of finding the distribution of the present value of a cash-flow in the form

V (t) =
n∑

i=1

α(ti) e−X(ti), (1)

where0 < t1 < t2 < · · · < tn = t, whereα(ti) is a (positive or negative) payment at timeti, and
whereX = {X(t)} is a stochastic process withX(ti) denoting the compounded rate of return for
the period[0, ti].

There exists a broad range of stochastic processes that seem to be useful to model the stochastic
interest rates, which is shown by the long list of papers investigating these models. However, in
many cases, the model would be more realistic if the interest rates are not completely free, but
restricted to some range of acceptable values. If for example the interest rates appearing in the cash-
flow are nominal interest rates, they can not become negative. If an insurance contract guarantees
a minimal return, the interest rate model should be adapted in order to meet this warranty. Due to
special regulations, it can also be necessary to impose an upper limit for the yield of a financial
effect.

In this paper, we want to introduce a model that meets these last requirements. We show how
to adapt common models to these restrictions, and we show the influence on the present value
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of classical actuarial functions such as annuities. Except for some special cases (concerning the
restrictions and concerning the actual stochastic model), as a consequence of the adaptation, the
exact distribution of the present value can no longer be calculated analytically. Therefore, we will
make use of an approximation by means of convex bounds, as introduced by Goovaerts et al. [4],
and generalized in Dhaene et al. [2, 3].

2. METHODOLOGY

2.1. Restrictions on the interest rates

A. NON-NEGATIVE INTEREST RATES

A first and common restriction, needed in many financial applications, goes back to the fact that
(if nominal rates are used) negative interest rates should be avoided. A possible solution to this
problem can be reached by multiplying the compounded rate of return with the Heaviside-function
U , defined by

U(x) =

{
1 if x > 0
0 if x ≤ 0,

such that the discount factor in the present value becomese−X(t) U(X(t)). See also [1]. With this ad-
justment, the compounded interest rate is kept equal to zero as long as the value ofX(t) is negative.

B. TRUNCATE INTEREST RATES WITH FIXED FLOOR AND CEILING

A more general solution consists of a truncate interest rate, by defining a ceiling and a floor for the
interest rate – with the previous restriction as a special case. This can be done by mappingX(t)
onc ∈ R whenever X(t) exceedsc, and by mappingX(t) onf ∈ R wheneverX(t) is smaller than
f .

Definition 2.1 Letf, c ∈ R with f < c. The truncate functionSc
f : R→ [f, c] then is defined by

Sc
f (x) =





f if x < f
x if f ≤ x ≤ c
c if c < x.

The left plot of figure 1 shows a possible realisation of such a truncate interest rate. With this
truncate function applied on the stochastic interest rate, the discount factor in the present value
becomese−S

c
f (X(t)).

C. TRUNCATE INTEREST RATES WITH LINEAR FLOOR AND CEILING

Since the stochastic variableX(t) corresponds to thecumulativeinterest rate for the period[0, t],
it seems more appropriate to use a fixed floor and ceiling per unit time period, or a linear floor
and ceiling for the whole time period. This results in the following alternative definition for the
truncation of the interest rates.
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Figure 1: Example of a stochastic truncate (left) and a stochastic linear truncate (right) interest
rate.

Definition 2.2 Letf, c ∈ R with f < c. The linear truncate functioñSc
f : R+ ×R→ R is defined

by

S̃c
f (t, x) =





f · t if x < f · t
x if f · t ≤ x ≤ c · t
c · t if c · t < x.

The right plot of figure 1 shows a possible realisation of such a linear truncate interest rate. With
this linear truncate function applied on the stochastic interest rate, the discount factor in the present
value becomese−S̃

c
f (t,X(t)).

2.2. Convex bounds

Since the compounded rates of returnX(ti) for successive periods only differ for the last part of the
period, the present value of (1) is made up as a sum of rather dependent terms. As a consequence,
it is nearly impossible to derive an exact analytical expression for the distribution of such a present
value. In order to solve this problem, Goovaerts et al. [4] and Dhaene et al. [2] present bounds
in convexity order. Following their method, the original sumV (t) is replaced by a new sum, for
which the components have the same marginal distributions as the components in the original sum,
but with the most “dangerous” dependence structure that is possible, and for which the calculation
of the distribution is much more easy.

In this subsection, we just briefly recall definitions and most important results about this ap-
proximation method. For details, we refer to Dhaene et al. [2].

Definition 2.3 Let X and Y be two random variables, thenX is said to besmallerthan Y in
convex order sense, (notationX ≤cx Y ), if and only if

E[v(X)] ≤ E[v(Y )]

for all real convex functionsv : R→ R, provided the expectations exist.
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In fact this ordering means that the variableY is more likely to reach extreme values than it is the
case forX, or, that the variableY is more dangerous thanX. Note that for such variables it is true
thatE[X] = E[Y ] andV ar[X] ≤ V ar[Y ].

Theorem 2.1 LetX1, X2, . . . , Xn be random variables with marginal distribution functions known
asFX1 , FX2 , . . . , FXn, then

X1 + X2 + · · ·+ Xn ≤cx F−1
X1

(U) + F−1
X2

(U) + · · ·+ F−1
Xn

(U), (2)

and
X1 + X2 + · · ·+ Xn ≥cx E[X1|Λ] + E[X2|Λ] + · · ·+ E[Xn|Λ], (3)

with U a uniform(0,1) distributed random variable, and withΛ an arbitrary variable for which the
conditional distributions ofXi givenΛ are known.
The upper bound of (2) can be improved to a closer bound

X1 + X2 + · · ·+ Xn ≤cx F−1
X1|Λ(U) + F−1

X2|Λ(U) + · · ·+ F−1
Xn|Λ(U), (4)

with U andΛ as before.

Note that the lower bound of (3) and the improved upper bound of (4) perform better the moreΛ
resembles the original sum.

If we define the inverse distribution asF−1
Xi

(p) = inf{x ∈ R : FXi
(x) ≥ p}, andF−1+

Xi
(p) =

sup{x ∈ R : FXi
(x) ≤ p}, p ∈ [0, 1], the results of theorem 2.1 can be extended to functions of

the variablesXi, by making use of the following lemma:

Lemma 2.2 If ψ is a continuous real-valued function andp is any number in]0, 1[, then ifψ is
non-decreasing,F−1

ψ(X)(p) = ψ(F−1
X (p)), and ifψ is non-increasing,F−1

ψ(X)(p) = ψ(F−1+
X (1− p)).

2.3. Stochastic interest rate model

As mentioned in the introduction, there exists a long list of stochastic processes, useful to model
interest rates. In the sequel we will give an elaborated example of our method for a well known and
frequently used easy model, the Brownian motion with drift, defined by the stochastic differential
equation

dX(t) = µdt + σdW (t),

with W = {W (t)} a standard Brownian motion.
This model benefits from the fact that it is one of the most easiest models to describe a stochastic
interest rate. An advantage of this model can be found in the appropriateness for situations with
rather great variation; a disadvantage however is that for long periods, a very large value (both
positive and negative) could be reached, which imposes the possibility of instability. However,
by implementing a restriction as suggested in subsection 2.1, this disadvantage can be perfectly
avoided.
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If we use the notationF (t, x) for the cumulative distribution function of the variableX(t), it is
well known that

F (t, x) = Φ
(

x−µt

σ
√

t

)
, x ∈ R

F−1(t, p) = µt + σ
√

tΦ−1(p), p ∈ [0, 1],

with Φ(x) the standard normal cumulative distribution function.

3. CONSTANT ANNUITIES

In this section, we first present our results without specifying the stochastic process used to model
the interest rate. We provide expressions for stochastic bounds to general constant annuities. Af-
terwards, we show how for each of these bounds analytical results can be obtained in the case of a
Brownian motion with drift.

3.1. General case

Consider a discrete annuity over the time-interval[0, t], with linear truncate stochastic interest rate
with floor f and ceilingc as defined in definition 2.2:

V (t) =
n∑

i=1

e−S̃
c
f (ti,X(ti)), (5)

whereX = {X(t)} is a stochastic process withX(ti) denoting the compounded rate of return for
the period[0, ti].

Applying the methodology of convex bounds (see subsection 2.2), the following results can be
obtained straightforwardly:

Theorem 3.1 The annuity of equation (5) can be bounded in convex ordering sense as

Vlow(t) ≤cx V (t) ≤cx Vimupp(t) ≤cx Vupp(t),

where the stochastic bounds are determined by





Vupp(t) =
n∑

i=1

e
−S̃c

f (ti,F
−1+
X(ti)

(1−U))

Vlow(t) =
n∑

i=1

E[e−S̃
c
f (ti,X(ti))|Λ]

Vimupp(t) =
n∑

i=1

e
−S̃c

f (ti,F
−1+
X(ti)|Λ(1−U))

.

In these expressions,U is a uniform(0,1) distributed random variable, andΛ is an arbitrary vari-
able such that the distribution ofX(ti)|Λ is known.
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By taking limits, the case of a continuous annuityV (t) =
∫ t

0
e−S̃

c
f [τ,X(τ)] dτ can be solved in a

similar way.

Remark: Note that each of the previous results remain valid when the linear truncate interest rate
S̃c

f [t,X(t)] is replaced by an ordinary truncate rateSc
f [X(t)].

3.2. The case of a discrete annuity with a brownian motion

Consider a discrete annuity certain as in equation (5).
SinceX(ti) corresponds to thecumulativeinterest rate for the period[0, ti], it can be written as
X(ti) = Y (t1) + · · ·+ Y (ti), with Y (tk) the interest rate for the period[tk−1, tk]. In the Brownian
model, we assume that the vectorY = (Y (t1), Y (t2), . . . , Y (tn)) consists of independent normally
distributed variables.
Next, defineΛ as a lineair combination of the variablesY (tk), or

Λ =
n∑

i=1

aiY (ti), ai ∈ R,

such that the distribution function ofΛ kan be written as

FΛ(λ) = Φ

(
λ− µt

∑
ai√

σ2t
∑

a2
i

)
.

SinceΛ and each variableX(ti) (i = 1, ..., n) are combinations of the components ofY , it follows
thatX(ti)|Λ is also normally distributed with mean and variance given by

{
µ̄i(Λ) = E[X(ti)] + corr[X(ti), Λ]

σX(ti)

σΛ
(Λ− E[Λ])

σ̄2
i = σ2

X(ti)
(1− corr[X(ti), Λ]2).

The following results hold :

Theorem 3.2 In the Brownian case, the discrete annuity certain as in equation (5) can be bounded
by

Vlow(t) ≤cx V (t) ≤cx Vimupp(t) ≤cx Vupp(t),

where

Vupp(t) =
n∑

i=1

e−S̃
c
f [(µti+σ

√
tiΦ

−1(1−U))],

Vlow(t) =
n∑

i=1

(
e−f ·tiΦ

(
f · ti − µ̄i(Λ)

σ̄i

)
+ e−c·tiΦ

(
µ̄i(Λ)− c · ti

σ̄i

)

+ e−µ̄i(Λ)+ 1
2
σ̄2

i ·
(

Φ

(
c · ti − µ̄i(Λ) + σ̄2

i

σ̄i

)
− Φ

(
f · ti − µ̄i(Λ) + σ̄2

i

σ̄i

)))
,
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and

Vimupp =
n∑

i=1

Gi(U, Λ),

where the functionsGi : [0, 1]× R→ R+ : (p, λ) 7→ Gi(p, λ) are defined by

Gi(p, λ) =





e−c·ti if p ∈ [0, p
(2)
i (λ)[

e−f ·ti if p ∈ [1− p
(1)
i (λ), 1]

eσ̄iΦ
−1(p)−µ̄i(λ) if p ∈ [p

(2)
i (λ), 1− p

(1)
i (λ)[

with p
(1)
i (λ) = Φ(f ·ti−µ̄i(λ)

σ̄i
) andp

(2)
i (λ) = Φ(−c·ti+µ̄i(λ)

σ̄i
).

Proof. This follows after a few calculations when the methodology explained in subsection 2.2 is
applied. 2

Concerning the distributions of these bounds, the results are summarized in the following the-
orem, where the notationFZ is used as notation for the cumulative distribution function of the
variableZ, or FZ(x) = Prob (Z ≤ x).

Theorem 3.3 The cumulative distribution functions of the convex bounds of theorem 3.2 can be
calculated as follows: 




FVupp(x) = 1− Φ(νx),

FVlow
(x) = 1− Φ

(
λx−µt

P
ai√

σ2t
P

a2
i

)
,

FVimupp
(x) =

∫ +∞

−∞
κ(λ, x)dFΛ(λ),

with νx, λx defined implicitly andκ(λ, x) defined explicitly as




n∑
i=1

e−S̃
c
f [ti,µti+σ

√
tiνx] = x,

Vlow(t)|Λ=λx = x,

κ(λ, x) = sup{p ∈ [0, 1] | ∑n
i=1 Gi(p, Λ = λ) ≤ x}.

Proof. In order to prove these statements, use can be made of the results mentioned in subsec-
tion 2.2. Note that the values reached by the functionsGi : [0, 1]×R→ R+ in fact can be written
as

Gi(p, λ) = F−1

e
−S̃c

f
(ti,X(ti))|Λ=λ

(p) = Prob
(
e−S̃

c
f (ti,X(ti)) ≤ p | Λ = λ

)
.

2

Remark: Note that — in analogy with the previous subsection — each of the previous results can
be reformulated easily when the linear truncate interest rateS̃c

f [t,X(t)] is replaced by an ordinary
truncate rateSc

f [X(t)].
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Some numerical examples of these convex bounds are shown in figures 2 and 3, for different
choices of the parameters. Both figures consist of four plots of the distribution function of the orig-
inal discrete annuity of (5)(simulated by means of a Monte-Carlo procedure) and the distribution
functions for the three convex bounds as obtained in theorem 3.3. Figure 2 deals with the case of
an ordinary truncate stochastic interest rate, while in figure 3 the plots are made for linear truncate
stochastic interest rates.
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10.6 10.8 11 11.2 11.4 11.6
0

0.2

0.4

0.6

0.8

1

19 20 21 22 23
0

0.2

0.4

0.6

0.8

1

(c) µ = ln 1.05, σ = 0.10, t = 1, n = 12 (d) µ = ln 1.05, σ = 0.05, t = 2, n = 24

Figure 2: Examples of annuities with Brownian motion, truncate interest rate

The four plots in figure 2 are considered in a Brownian context, where we change in each plot
the values for one of the parametersµ, σ, t andn. The conditioning variableΛ is defined by its
coefficientsai = 1 + i

24
; for the floor and ceiling the parameter values aref = 0.02 andc = 0.3.

It can be seen that the improved upper bound and the lower bound are close to the simulation of
the distribution. The bounds are more accurate the lower the volatilityσ. Note in each plot the
kink in the distribution functions, the position of which is proportional to the probability that the
stochastic interest rate is smaller thanf (in the case of a kink on the right) or greater thanc (in the
case of a kink on the left).

Similar results about the performances of the bounds can be observed in the plots of figure 3,
where we used a lineair truncate interest rate and a longer time horizon. The conditioning variable
Λ here is defined by its coefficientsai = 20− i/2, with i = 1, . . . , 20 for plots (e),(f) and (g) and
i = 1, . . . , 40 for plot (h). For the floor and ceiling, the values aref = 0.02 andc = 0.3 for the
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plots (e), (f), (h) andf = 0.03 andc = 0.1 for plot (g).
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Figure 3: Examples of annuities with Brownian motion, lineair truncate interest rate

4. APPLICATIONS AND EXTENSIONS

Consider a general discrete annuity over the time-interval[0, t], with a linear truncate stochastic
interest rate with floorf and ceilingc as defined in definition 2.2:

V ∗(t) =
n∑

i=1

α(ti) e−S̃
c
f (ti,X(ti)), (6)

whereX = {X(t)} is a stochastic process withX(ti) denoting the compounded rate of return for
the period[0, ti]. Theorem 3.1 can be extended as follows:

Theorem 4.1 The annuity of equation (6) can be bounded in convex ordering sense as

V ∗
low(t) ≤cx V ∗(t) ≤cx V ∗

imupp(t) ≤cx V ∗
upp(t), (7)
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where the stochastic bounds are determined by




V ∗
upp(t) =

n∑
i=1

max(0, α(ti)) e
−S̃c

f (ti,F
−1+
X(ti)

(1−U)) −
n∑

i=1

min(0,−α(ti)) e
−S̃c

f (ti,F
−1
X(ti)

(U))

V ∗
low(t) =

n∑
i=1

α(ti) E[e−S̃
c
f (ti,X(ti))|Λ]

V ∗
imupp(t) =

n∑
i=1

max(0, α(ti)) e
−S̃c

f (ti,F
−1+
X(ti)|Λ(1−U)) −

n∑
i=1

max(0,−α(ti)) e
−S̃c

f (ti,F
−1
X(ti)|Λ(U))

,

whereU is a uniform(0,1) distributed random variable, and whereΛ is an arbitrary variable such
that the distribution ofX(ti)|Λ is known.

Applications of this more general result are obvious, e.g.

• for an indexed payment, use can be made ofα(t) = (1 + dt)
t, with dt the indexing factor for

the period[ti−1, ti];

• for a life annuity,α(t) = tpx, wheretpx is the classical notation used for the probability of a
person of agex to be still alive aftert years;

• for an indexed life annuity:α(t) = (1 + dt)
t · tpx;

• for a life assurance policy:α(t) = tpx · µx+t, whereµx is the mortality intensity at agex.

In figure 4, we illustrate the possibilities of these applications. The four plots deal with the
distribution function of the present value of

(i) an indexed payment, yearly 3%, 24 payments;

(j) a life annuity, age 35, 20 payments;

(k) an indexed life annuity, yearly 1.5%, age 30, 10 payments;

(l) a life assurance policy, age 40, duration of 20 years.

In order to conclude, we would like to mention that these results can be nicely extended, mainly
in two directions. Firstly, the underlying stochastic process used to model the interest rates, can
be modified. The use of a Vasicek or Ho-Lee model e.g. instead of a Brownian motion, seems
to be more realistic. Secondly, also the functionS̃c

f can be altered, in order to deal with spe-
cific economic prerequisites, e.g. certain amortization schemes. Results about these and similar
generalizations will be presented in forthcoming papers.
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Abstract

We consider the modelling of forward swap rates when the driving process is a general Lévy
process. We present two ways of modelling these interest rates and show also how swaptions
can be priced using bilateral Laplace transforms.

1. INTRODUCTION

The swaption market is one of the main interest rate markets. The models for forward swap rates
in pure diffusion (Brownian motion) setting were developed by Jamshidian (1997) and Rutkowski
(1999, 2001). More recent approaches for interest rate models involve jump-diffusions and more
generally, models driven by Lévy processes. The latter are becoming increasingly popular in
finance since they allow for greater flexibility compared to classical diffusion models (see e.g.
Eberlein (2001)). A Ĺevy processL = (Lt)t≥0 is a continuous in probability, càdl̀ag1 stochastic
process with independent and stationary increments. We denote the left-hand limit att by Lt− :=
lims↑t Ls. The jump of a process att is defined as∆Lt = Lt − Lt−. The distribution of a Ĺevy
process is uniquely determined by any of its one-dimensional marginal distributionsPLt , say by
PL1, which is infinitely divisible.

In the context of instantaneous, continuously compounded interest rates, Björk, Kabanov and
Runggaldier (1997) extend the classical Heath, Jarrow and Morton (1992) (henceforth HJM)
framework to the case of a diffusion-multivariate point process, and Björk, Di Masi, Kabanov
and Runggaldier (1997) to general semimartingales. Glasserman and Kou (2003) characterized
the arbitrage-free dynamics of interest rates when the term structure is modelled through forward
Libor rates or forward swap rates, in presence of both jumps and diffusion. They consider the case
when a jump process is modelled through a finite number of marked point processes, in which

1meaning: right-continuous sample paths with existing left-hand limits

83



84 J. Liinev and E. Eberlein

case the purely discontinuous part is of bounded variation. More explicitly, they place themselves
into the generalized HJM framework of Björk, Kabanov and Runggaldier (1997) and show that the
simple forward rates can be embedded in an arbitrage-free model of instantaneous forward rates.
Eberlein andÖzkan (2002) push the approach of Glasserman and Kou (2003) for forward Libor
rates further into a more general setting of jump measures. Apart from the HJM framework of
Björk, Di Masi, Kabanov and Runggaldier (1997), they consider the Lévy setting of Eberlein and
Raible (1999). They show that the Lévy term structure approach to Libor markets can be embed-
ded in the very general semimartingale approach of Jamshidian (1999). In addition, they construct
the discrete tenor Ĺevy Libor model directly through backward induction, whence extending the
approach of Musiela and Rutkowski (1997a, 1997b) from the case of pure diffusion to this Lévy
setting.

In turn, we will develop a model of the forward swap rates by allowing the driving process to
be a Ĺevy process. In that sense we slightly generalize the corresponding result in Glasserman and
Kou (2003). However, our approach differs from that of Glasserman and Kou (2003) in a way that
we do not start by showing that the forward swap rate model can be embedded in the framework of
instantaneous forward rates of Björk, Di Masi, Kabanov and Runggaldier (1997) or Eberlein and
Raible (1999). In fact, as pointed out in Hunt and Kennedy (2000), the extra burden of proving that
the models fall within the HJM class is unnecessary. Instead, we use a numéraire-based approach
and hence we do not explicitly specify the dynamics for the instantaneous forward rates or the
bond prices. The outline of such a modelling approach in a pure diffusion setting can be found for
instance in Pelsser (2000), and in Hunt and Kennedy (2000). Furthermore, we extend the backward
induction method of Rutkowski (1999, 2001) to the case when the forward swap rates are driven
by a general Ĺevy process.

We assume in the sequel that we are given a complete probability space(Ω,F , P ) equipped
with filtration (Ft)t≥0, such that the filtered probability space(Ω,F , P, (Ft)t≥0) satisfies the usual
conditions, cf. Jacod and Shiryaev (1987).

In what follows, we consider a family of forward swap ratesSi(t) := S(t, Ti, TN) which have
the same maturity dateTN for all i = 0, . . . , N − 1

Si(t) =
B(t, Ti)−B(t, TN)

Ci,N(t)
, (1)

whereB(t, T ) denotes the timet price of a zero-coupon bond maturing atT . The accrual factor
for any individual swap rate from such a family is given by

Ci,N(t) :=
N∑

j=i+1

δjB(t, Tj).

2. SWAP MARKET MODELS BASED ON A SINGLE MEASURE

Our aim is to develop an arbitrage-free model for the term structure of interest rates specified
through forward swap ratesSi(·) under a single measure, namelyTN -forward measurePN (also
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called terminal measure2). This is a useful approach if we want to determine the price of more
complicated derivatives such as barrier swaptions where the pricing is done with respect to the
collection of swap rates which reset on different dates but have a common maturity date. We extend
the approach found in Hunt and Kennedy (2000), and in Pelsser (2000). We start by specifying
the dynamics for the forward swap rates and then determine the necessary relationship for any
corresponding term structure model to be arbitrage-free. Here we do not explicitly assume that the
driving process is a Ĺevy process. However, the latter can be embedded in the given setting.

We assume that the tenor structure0 < T0 < T1 < . . . < TN is given, andδj = Tj − Tj−1 for
j = 1, . . . , N . By choosing the bond with the largest maturityTN to be a nuḿeraire, the discounted
accrual factor (w.r.t. that nuḿeraire) reads

P i
t :=

N∑
j=i+1

δjB(t, Tj)

B(t, TN)
=

Ci,N(t)

B(t, TN)
. (2)

We also define for0 ≤ i ≤ N − 1 the following product

Ψi
t :=

i∏
j=0

(1 + δj+1Sj+1(t)) . (3)

We follow the convention that empty sums and products denote zero and one, respectively. Note
thatPN

t ≡ SN ≡ 0. By using (1), we can express (2) through the recursive relation

P i
t = δi+1 + (1 + δi+1Si+1(t)) · P i+1

t , (4)

for i = 0, . . . , N − 1. Multiplying both sides of the equation (4) byΨi−1
t , we obtain by backward

induction, down fromi = N − 1, the non-recursive expression forP i
t :

P i
t =

∑N−1
j=i δj+1Ψ

j−1
t

Ψi−1
t

=
N−1∑
j=i

δj+1

j∏

k=i+1

(1 + δkSk(t)). (5)

The next theorem states the forward swap rate model under the terminal measurePN , and slightly
generalizes Theorem 5.1 in Glasserman and Kou (2003).

Theorem 2.1 For eachi = 0, . . . , N − 1, let θi(·) be a boundedRd-valued function andGi :
R+ × Rr → (−1,∞) be a deterministic function inGloc(µ) 3. Let WN be a standard Brownian
motion inRd with respect toPN , andµ the jump measure of a semimartingale with the continuous
compensatorνN(dt, dx) = λN(t, dx)dt. The dynamics ofSi(·), i = 0, . . . , N − 1, is assumed to
satisfy

dSi(t)

Si(t−)
= αi(t)dt + θi(t)dWN

t +

∫

Rr

Gi(t, x)(µ− νN)(dt, dx). (6)

Then this model is arbitrage-free if

αi(t) = −
N−1∑

j=i+1

δj

∑N−1
k=j δk+1

∏k
l=i+1(1 + δlSl(t−))Sj(t−)θj(t)θi(t)∑N−1

k=i δk+1

∏k
l=i+1(1 + δlSl(t−)) · (1 + δjSj(t−))

+

∫

Rr

Gi(t, x)

[
1−

∑N−1
j=i δj+1

∏j
k=i+1

(
1 + δkSk(t−)(1 + Gk(t, x))

)
∑N−1

j=i δj+1

∏j
k=i+1(1 + δkSk(t−))

]
λN(t, dx). (7)

2This is the measure associated to the numéraire bond priceB(t, TN ).
3For the definition of this set we refer to Jacod and Shiryaev (1987) II.1.27
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Proof. As we want the model (6) to be arbitrage-free, each of theP i
t , i = 0, . . . , N − 1, defined in

(2), has to be a local martingale under the measurePN . This imposes a relationship between the
finite variation terms and the diffusion coefficients in (6), which we now derive.
Applying Itô’s product rule to (4) yields

dP i
t = (1 + δi+1Si+1(t−)) dP i+1

t + δi+1P
i+1
t− dSi+1(t) + δi+1d

[
Si+1, P

i+1
]
t
. (8)

The quadratic covariation term on the right-hand side of (8) can be written as
[
Si+1, P

i+1
]
t
= 〈Sc

i+1, P
i+1, c〉t +

∑
0≤s≤t

∆Si+1(s)∆P i+1
s ,

where∆Si+1(t) and∆P i+1
t denote the jumps ofSi+1(t) andP i+1

t , respectively. The superscriptc
indicates that we consider the process with continuous sample paths.
Recall thatP i

t has to be a local martingale under the measurePN . Equating the local martingale
parts of the SDE (8) while invoking (6) yields

dP i
t = (1 + δi+1Si+1(t−)) dP i+1

t + P i+1
t− δi+1Si+1(t−)θi+1(t)dWN

t + δi+1Si+1(t−)×

×
∫

Rr

Gi+1(t, x)

[
N−1∑
j=i+1

δj+1

j∏

k=i+2

(
1 + δkSk(t−)(1 + Gk(t, x))

)
]

(µ− νN)(dt, dx) (9)

In order to obtain a non-recursive expression fordP i
t , we multiply both sides of the equation (9)

by Ψi−1
t− , and proceed by backward induction, down fromi = N − 1. It can then be shown that the

diffusion term in that non-recursive SDE equals

P i
t−

N−1∑
j=i+1

Ψj−1
t− P j

t−
Ψi−1

t− P i
t−

(
δjSj(t−)

1 + δjSj(t−)

)
θj(t)dWN

t . (10)

Equating the finite variation terms in (8) yields

δi+1P
i+1
t− αi+1(t)Si+1(t−)dt + δi+1d〈Sc

i+1, P
i+1, c〉t + δi+1Si+1(t−)×

×
∫

Rr

Gi+1(t, x)

[
N−1∑
j=i+1

δj+1

j∏

k=i+2

(
1 + δkSk(t−)(1 + Gk(t, x))

)− P i+1
t−

]
νN(dt, dx) = 0,

(11)

where from (6) and (10)

d〈Sc
i+1, P

i+1, c〉t = Si+1(t−)θi+1(t)P
i+1
t−

N−1∑
j=i+2

Ψj−1
t− P j

t−
Ψi−1

t− P i+1
t−

(
δjSj(t−)

1 + δjSj(t−)

)
θj(t)dt. (12)

Combining (11) and (12) by taking into account the definition (3) and relation (5), we can easily
express the drift termαi in (6) through forward swap rates and their volatilities, yielding (7).2

Similarly, one can construct another type of forward swap rate model for so-called reverse
swap markets where the family of swap rates to be modelled has a common start date and different
maturities. Such type of swap rates underlie for example the spread options. In pure diffusion
setting this model is dealt with in Hunt and Kennedy (2000), and Pelsser (2000). It is also possible
to extend this model into semimartingale setting, see Liinev (2003) for details.
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3. THE DISCRETE TENOR L ÉVY SWAP RATE MODEL

We make the following assumptions concerning the dynamics of the forward swap rates. LetµL

be the jump measure of a Lévy processL. We also assume that the initial term structure of interest
rates, specified by bond pricesB(0, Tj), j = 0, . . . , N , is given and thatB(0, Tj) are strictly
decreasing in the second variable, i.e.B(0, Tj) > B(0, Tj+1), j = 0, . . . , N − 1.

Assumption 3.1
For any maturityTi, i = 0, . . . , N − 1, there exists a functionγ1(·, ·, Ti) : Ω × [0, Ti] → R+, and
a functionγ2(·, ·, ·, Ti) : Ω× R× [0, Ti] → R+, both predictable withγ2 ∈ Gloc(µ

L), such that

dS(t, Ti, TN)=S(t−, Ti, TN)

(
γ1(t, Ti)dW

Ti+1

t +

∫

R
γ2(x, t, Ti)(µ

L− νTi+1,L)(dt, dx)

)
, (13)

whereW Ti+1 is aPTi+1
-standard Brownian motion andνTi+1,L(dt, dx) = νTi+1(dx)dt is thePTi+1

-
compensator ofµL. We assume thatνTi+1,L satisfies the integrability condition∫
|x|>1

exp(ux)νTi+1(dx) < ∞, for −M ≤ u ≤ M , whereM is a positive constant. To guarantee
that the swap rate is positive we assume thatγ2(∆Lt, t, Ti)1l∆Lt 6=0 > −1.

We also assume that the functionsγ2 andγ1 satisfy the integrability conditions∫ Ti

0

∫
R

(√
γ2(x, t, Ti) + 1− 1

)2

νTi+1,L(dt, dx) < ∞ a.s. and
∫ Ti

0
(γ1(t, Ti))

2(dt) < ∞ a.s., re-

spectively, and that the initial condition for (13) is given byS(0, Ti, TN) = B(0,Ti)−B(0,TN )
Ci,N (0)

.
In the following section we show how to construct measuresPTi+1

such that (13) in Assumption
3.1 is satisfied.

3.1. Construction of the forward swap measures

We follow Rutkowski (1999, 2001) in order to construct an arbitrage-free bond market which is
based on the Ĺevy swap rate model. We consider again the family of forward swap ratesS(t, Ti) :=
S(t, Ti, TN) for i = 0, . . . , N − 1 which have a common expiration dateTN , but differ in length
of the underlying swap agreement. The essence of this approach is that by fixingTN , one starts
the construction of the model backwards in terms of maturities (thus, starting from the largest
maturity), specifying at each step the change of measure under which the swap rate in the following
step is a local martingale.

We assume that the tenor structure0 < T0 < T1 < · · · < TN = T ∗ is given, andδi = Ti−Ti−1

for i = 1, . . . , N , δ0 is the length of accrual period from settlement toT0. Note thatTi =
∑i

j=0 δj.
For our construction we setT ∗

l = TN−l and, in particular,T ∗ := T ∗
0 = TN . Thus, we consider a

“reversed” tenor structure0 < T ∗
N < T ∗

N−1 < · · · < T ∗
1 < T ∗

0 = TN .
Suppose for the moment that we are given a family of bond pricesB(t, Tm), m = 1, . . . , N .

We postulate thatP ∗ := PT ∗ is the forward measure for the dateT ∗, the processW T ∗ is the
corresponding Brownian motion, andνT ∗,L the corresponding compensator ofµL. For anym =
1, . . . , N − 1 the accrual factor is then given by

CN−m,N(t) =
N∑

l=N−m+1

δlB(t, Tl) =
m−1∑

k=0

δN−kB(t, T ∗
k ), ∀t ∈ [0, TN−m+1]. (14)
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ThroughCN−m,N(·) we introduce the forward swap measure as follows. For a fixedi = 0, . . . , N ,
a probability measurẽPTi

, equivalent toP ∗, is called the fixed-maturity forward swap measure for
the dateTi if for everyk = 0, . . . , N , the relative bond price

ZN−i+1(t, Tk) :=
B(t, Tk)

Ci−1,N(t)
=

B(t, Tk)

δiB(t, Ti) + · · ·+ δNB(t, TN)
(15)

follows a local martingale under̃PTi
. Thus, the forward swap measure corresponds to the choice

of the accrual factor as a numéraire asset. Put another way, for any fixedm ∈ {1, . . . , N}, the
relative bond prices

Zm(t, T ∗
k ) =

B(t, T ∗
k )

CN−m,N(t)
=

B(t, T ∗
k )

δN−m+1B(t, T ∗
m−1) + . . . + δNB(t, T ∗)

, t ∈ [0, T ∗
k ∧ T ∗

m−1],

(16)

follow local martingales under̃PT ∗m−1
. For all t ∈ [0, T ∗

m] the forward swap rate for dateT ∗
m equals

S(t, T ∗
m) =

B(t, T ∗
m)−B(t, T ∗)

δN−m+1B(t, T ∗
m−1) + . . . + δNB(t, T ∗)

= Zm(t, T ∗
m)− Zm(t, T ∗), (17)

for all t ∈ [0, T ∗
m]. ThereforeS(·, T ∗

m) also follows a local martingale under̃PT ∗m−1
.

Remark 3.1 The relative bond price

Z1(t, T
∗
k ) =

B(t, T ∗
k )

CN−1,N(t)
=

B(t, T ∗
k )

δNB(t, T ∗)
=

1

δN

FB(t, T ∗
k , T ∗), (18)

whereFB(t, T ∗
k , T ∗) stands for forward price, and thus the probability measureP̃T ∗ coincides with

the forward martingale measurePT ∗ .

We proceed with the backward construction of forward swap measures. The first step is to intro-
duce the forward swap rate for the dateT ∗

1 by postulating (according to Assumption 3.1) that the
forward swap rateS(·, T ∗

1 ) solves the SDE

dS(t, T ∗
1 ) = S(t, T ∗

1 )

(
γ1(t, T

∗
1 )dW̃ T ∗

t +

∫

R
γ2(x, t, T ∗

1 )(µL − ν̃T ∗,L)(dt, dx)

)
, (19)

for all t ∈ [0, T ∗
1 ], whereW̃ T ∗ = W T ∗ and ν̃T ∗,L = νT ∗,L, with initial condition S(0, T ∗

1 ) =
B(0,T ∗1 )−B(0,T ∗)

δNB(0,T ∗) .

To specify the processS(·, T ∗
2 ), we need first to introduce a forward swap measureP̃T ∗1 . Re-

ferring to Remark 3.1 we have that̃PT ∗ = PT ∗ , andZ1(·, T ∗
k ) follows a (strictly) positive local

martingale under̃PT ∗,

dZ1(t, T
∗
k ) = Z1(t−, T ∗

k )

(
ξ1(t, T

∗
k ) dW̃ T ∗

t +

∫

R
ξ2(x, t, T ∗

k )
(
µL − ν̃T ∗,L)

(dt, dx)

)
. (20)
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By suitably rewriting (15) we can express the relative bond priceZ2(·, T ∗
k ) as

Z2(t, T
∗
k ) =

Z1(t, T
∗
k )

δN−1Z1(t, T ∗
1 ) + 1

.

According to the definition of a forward swap measure, we postulate that for everyk

Z2(t, T
∗
k ) =

Z1(t, T
∗
k )

δN−1Z1(t, T ∗
1 ) + 1

(21)

follows a local martingale under̃PT ∗1 .

In order to find the dynamics ofZ2 underP̃T ∗1 we use the following lemma.

Lemma 3.1 Let G, H be real-valued adapted processes under some probability measureP , sat-
isfying the following SDEs

dGt = g1(t) dWt +

∫

R
g2(t, x) (µL − νL)(dt, dx)

dHt = h1(t) dWt +

∫

R
h2(t, x) (µL − νL)(dt, dx)

whereWt is P -Brownian motion andνL(dt, dx) is P -compensator ofµL. Let g1, h1 be square-
integrableP -a.s. andg2, h2 ∈ Gloc(µ

L). SupposeHt > −1. Define

Yt :=
1

1 + Ht

> 0.

Then the processY G has the local martingale dynamics

d(Y G)t = Yt−(g1(t)− Yt−Gt−h1(t))dW̃t

+

∫

R

(
Gt− + g2(t, x)

1 + Ht− + h2(t, x)
− Gt−

1 + Ht−

)
(µL − ν̃L)(dt, dx)

under a new measurẽP , P̃
loc¿ P , and wherẽWt is P̃ -Brownian motion,

dW̃t = dWt − Yt−h1(t) dt,

and ν̃L(dt, dx) is P̃ -compensator ofµL given by

ν̃L(dt, dx) =
1 + Ht− + h2(t, x)

1 + Ht−
νL(dt, dx).

Applying Lemma 3.1 to processesG = Z1(·, T ∗
k ) andH = δN−1Z1(·, T ∗

1 ), it is easy to see that for
Z2(·, T ∗

k ) to follow a local martingale under̃PT ∗1 it suffices to assume that the processW̃ T ∗1 follows

a Brownian motion under̃PT ∗1 , and that̃νT ∗1 ,L is aP̃T ∗1 -compensator ofµL. Note that from (17) and
(18)

Z1(t, T
∗
1 ) =

B(t, T ∗
1 )

δNB(t, T ∗)
= S(t, T ∗

1 ) + Z1(t, T
∗) = S(t, T ∗

1 ) + δ−1
N . (22)
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Differentiating both sides of the last equality and invoking (19) and (20), we obtain

Z1(t−, T ∗
1 )ξ1(t, T

∗
1 ) dW̃ T ∗

t + Z1(t−, T ∗
1 )

∫

R
ξ2(x, t, T ∗

1 )
(
µL − ν̃T ∗,L)

(dt, dx)

= S(t−, T ∗
1 )γ1(t, T

∗
1 )dW̃ T ∗

t + S(t−, T ∗
1 )

∫

R
γ2(x, t, T ∗

1 )(µL − ν̃T ∗,L)(dt, dx).

As the Gaussian and the jump part of a semimartingale do not interact (see Jacod and Shiryaev
(1987) II.2.34), in order for this equality to hold we set

Z1(t−, T ∗
1 )ξ1(t, T

∗
1 ) = S(t−, T ∗

1 )γ1(t, T
∗
1 )

Z1(t−, T ∗
1 )ξ2(x, t, T ∗

1 ) = S(t−, T ∗
1 )γ2(x, t, T ∗

1 ).

Consequently,̃W T ∗1 is explicitly given by the formula

W̃
T ∗1
t = W̃ T ∗

t −
∫ t

0

δN−1S(s, T ∗
1 )

1 + δN−1δ
−1
N + δN−1S(s, T ∗

1 )
· γ1(s, T

∗
1 )ds,

and theP̃T ∗1 -compensator ofµL by

ν̃T ∗1 ,L =
1 + δN−1δ

−1
N + δN−1S(s, T ∗

1 ) + S(s, T ∗
1 )γ2(x, t, T ∗

1 )

1 + δN−1δ
−1
N + δN−1S(s, T ∗

1 )
ν̃T ∗,L.

Now we can define, using Girsanov’s theorem, the associated forward swap measureP̃T ∗1 (through
Lemma 3.1).

Subsequently, we introduce the processS(t, T ∗
2 ) by postulating that it solves the SDE

dS(t, T ∗
2 ) = S(t−, T ∗

2 )

(
γ1(t, T

∗
2 )dW̃

T ∗1
t +

∫

R
γ2(x, t, T ∗

2 )(µL − ν̃T ∗1 ,L)(dt, dx)

)
,

for all t ∈ [0, T ∗
2 ] with the initial conditionS(0, T ∗

2 ) =
B(0,T ∗2 )−B(0,T ∗)

δN−1B(0,T ∗1 )+δNB(0,T ∗) .

In the next inductive step we are looking forS(t, T ∗
3 ) by considering the processZ3(t, T

∗
k ),

and consequently definẽPT ∗2 . Extension to the general case, where we would like to determine the

forward swap measurẽPT ∗m, and the forward swap rateS(·, T ∗
m+1) is straightforward, see Liinev

(2003) for details.

3.2. Special cases

We now turn to the special case whereγ1 andγ2 in (13) are deterministic. In this case we can
model the swap rates directly through the driving Lévy process.

Assume that there exists a constantc ≥ 0 and a functionγ on [0, T ] such that

γ1(t, Ti) =
√

cγ(t, Ti), γ2(x, t, Ti) = γ(t, Ti)x.
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Then L̃
Ti+1

t :=
√

cW̃
Ti+1

t +
∫ t

0

∫
R x

(
µL − ν̃Ti+1,L

)
(ds, dx) is a Lévy process under̃PTi+1

. The

dynamics of the forward swap rate is driven by the Lévy process̃LTi+1:

dS(t, Ti, TN) = S(t−, Ti, TN)γ(t, Ti)dL̃
Ti+1

t .

We can write this as a stochastic exponential

S(t, Ti, TN) = S(0, Ti, TN)E
(∫ ·

0

γ(s, Ti)dL̃Ti+1
s

)

t

.

In order to ensure that the swap rates are positive we have to assume that the jumps of
∫ ·
0
γ(s, Ti)dL̃

Ti+1
s

are strictly larger than−1. However, this can be replaced by the following alternative assumption:

S(t, Ti, TN) = S(0, Ti, TN)exp

(∫ t

0

γ(s, Ti)dL̃Ti+1
s

)
, (23)

whereγ is a positive deterministic function such that
∫ t

0
(γ(s, Ti))

2 ds < ∞. We also assume that
there existsc ≥ 0, and a continuously differentiable functionb : R+ → R such that

L̃
Ti+1

t − b(t) =
√

cW̃
Ti+1

t +

∫ t

0

∫

R
x

(
µL − ν̃Ti+1,L

)
(ds, dx) (24)

is a Lévy process under̃PTi+1
andν̃Ti+1,L denotes the Ĺevy measure of̃LTi+1

1 − b(1), and that
∫ t

0

γ(s, Ti)b
′(s)ds =−

(∫ t

0

∫

R

(
eγ(s,Ti)x − 1− γ(s, Ti)x

)
ν̃Ti+1,L(ds, dx)

+
c

2

∫ t

0

(γ(s, Ti))
2 ds

)
. (25)

According toÖzkan (2002) Lemma 4.7, the assumptions (23)-(24) and the condition (25) are
necessary in orderS(·, Ti, TN) to be a martingale under̃PTi+1

. It can also be shown that the
modelling approach (23) is equivalent to

S(t, Ti, TN) = S(0, Ti, TN)E
(√

c

∫ ·

0

γ(s, Ti)dW̃ Ti+1
s

+

∫ ·

0

∫

R

(
eγ(s,Ti)x − 1

) (
µL − ν̃Ti+1,L

)
(ds, dx)

)

t

.

4. NOTE ON PRICING OF SWAPTIONS

By using general valuation results (see e.g. Musiela and Rutkowski (1997b)), the timet = 0 price
of the forward payer swaption is given by

PS0 =
N∑

k=i+1

δkB(0, Tk)E
ePTi+1

[
(S(Ti, Ti, TN)−K)+

]

= Ci,N(0)E
ePTi+1

[
(S(Ti, Ti, TN)−K)+

]
. (26)
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Eberlein and Raible (1999) and Raible (2000) propose a method for the evaluation of European
stock options in a Ĺevy setting by using bilateral (or, two-sided) Laplace transforms. This approach
is based on the observation that the pricing formula for European options can be represented as
a convolution. Whence one can use the fact that the bilateral Laplace transform of a convolution
is the product of the bilateral Laplace transforms of the factors (the latter transforms are usually
known explicitly). Inversion of the bilateral Laplace transform then yields the option prices as a
function of the current price of the underlying asset, and can be accomplished through the Fast
Fourier Transform algorithm.

This method could also be employed for pricing the forward payer swaptions (26) as we shall
shortly explain in the following. We concentrate on the purely discontinuous case (c = 0 in (24))
in view of applications using generalized hyperbolic Lévy processes. We consider the forward

swap rate as given in (23). We defineXt :=
∫ t

0
γ(s, Ti)dL̃

Ti+1
s so thatXTi

= ln
(

S(Ti,Ti,TN )
S(0,Ti,TN )

)
.

By definingw(x,K) := (x−K)+, the payoff of the swaption is given byw(S(Ti, Ti, TN), K)

and its price at timet = 0 by E
ePTi+1 [w(S(Ti, Ti, TN), K)]. We consider the modified payoff

w̃(x,K) := w(e−x, K).
Let ζi := − ln S(0, Ti, TN), thenS(Ti, Ti, TN) = e−ζi+XTi . Furthermore, denote byV (ζi, K) the
time zero price of the swaption, and letL[w̃] be the bilateral Laplace transform ofw̃:

L[w̃](z) =

∫ +∞

−∞
e−zxw̃(x)dx, z = R + iu ∈ C, R, u ∈ R.

The price of the swaption at time zero can be written (apart from the discount factor) as a convo-
lution of functionsw̃(x) andρ(x), taken at the pointζi:

V (ζi, K) = Ci,N(0)E
ePTi+1 [w̃(ζi −XTi

, K)] = Ci,N(0)

∫

R
w̃(ζi − x,K)ρ(x)(dx),

whereρ is the density function ofXTi
. As remarked above, the bilateral Laplace transform of a

convolution equals the product of the bilateral Laplace transforms of the factors. Thus, we have
that

L[V ](R + iu) = Ci,N(0)L[w̃](R + iu) · L[ρ](R + iu). (27)

As described in Raible (2000), we can invert the bilateral Laplace transform to obtain the swaption
priceV :

V (ζi, K) =
1

2πi

∫ R+i∞

R−i∞
eζizL[V ](z)dz =

eζiR

2π
lim

M →∞
N →∞

∫ N

−M

eiuζiL[V ](R + iu)du. (28)

Note that the identityL[ρ](R + iu) = χ(iR − u), whereχ(iR − u) := E
ePTi+1

[
ei(iR−u)XTi

]
is

the extended characteristic function ofXTi
. By substituting (27) into (28) we obtain the swaption

pricing formula

V (ζi, K) = Ci,N(0)
eζiR

2π
lim

M →∞
N →∞

∫ N

−M

eiuζiL[w̃](R + iu)χ(iR− u)du. (29)



Forward swap market models with jumps 93

According to Raible (2000) it is sufficient to consider the case where the strike price equals one,
as

V (ζi, K) = KV (ζi + ln K, 1).

The bilateral Laplace transformL[w̃] for K = 1 is given byL[w̃](z) = (z(z+1))−1, if Rez < −1.
We remarkthatthe described approach can be used also for more complicated payoff functions as

long as the payoff depends only onXTi
. The characteristic functionχ(u) := E

ePTi+1

[
eiuXTi

]
can

be determined more precisely once the distribution ofL1 is specified. Hence, we can calculate
equation (29) numerically in an efficient way.

Acknowledgements

Jan Liinev gratefully acknowledges the financial support of the BOF-project 001104599 of the
Ghent University, and of the European Community’s Human Potential Programme under contract
HPRN-CT-2000-00100, DYNSTOCH.

References

[1] Björk T., Di Masi G., Kabanov Y. and Runggaldier W. (1997): Towards a general theory of
bond markets.Finance and Stochastics,1, 141-174.

[2] Björk T., Kabanov Y. and Runggaldier W. (1997): Bond market structure in the presence of
marked point processes.Mathematical Finance, 7, 211-239.

[3] Eberlein E. (2001): Application of generalized hyperbolic Lévy motions in finance. In:
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plications, Birkhäuser, 319-336.
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Abstract

In this article we give an overview of the compound option theory and generalize this idea to
the n-fold compound options. Furthermore, the use of this option valuation in the financial
world and in other areas such as pharmaceutical R&D, is illustrated.

1. INTRODUCTION

1.1. Some notations

The following notations are introduced:

aij = (ai, ai+1, . . . , aj)

b
ij

= (bi, bi+1, . . . , bj)

as = bs + σ
√

ts − t (1)

bs =
ln V

V s
+

(
r − 1

2
σ2

)
(ts − t)

σ
√

ts − t

Rj
i = covariance matrix of(Xi, Xi+1, . . . , Xj)

cov(Xv, Xw) =

√
tv − t

tw − t
v < w.

We also use the standard notationsr for the risk-free interest rate,V for the value of the underlying
asset andσ to denote its volatility. The valueV of the asset underlying the considered options is
supposed to follow a geometric Brownian motion unless mentioned otherwise. The datesti are the
exercise dates of a compound option and later on in this article we will also use the notationsKi

for the corresponding exercise prices.
If we now introduce functionsCs(V, t), ∀s = 1, . . . , n as(n − s + 1)-fold compound options, it

95
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is possible to compute the critical valueV s of V for which at timets the functionCs+1 equals the
exercise priceKs:

V s ⇒ Cs+1(V s, ts) = Ks ,

where for convenienceV n = Kn.
Furthermore, we need the k-variate normal cumulative distribution function (CDF), which is given
by

Nk(a
1k; 0, Rk

1) =

∫ a1

−∞
· · ·

∫ ak

−∞

1√
(2π)k · det(Rk

1)
exp

[
−1

2
xt(Rk

1)
−1x

]
dx ,

with zero mean, covariance matrixRk
1 and with boundaries defined by the k-variate vectora1k.

1.2. The compound option

-
t t1 t2

K1 K2

C1 C2

In introducing the compound option in 1979, Geske [4] wanted to value European call options
with as underlying a European call option. He considered the European call optionC1(V, t) with
maturity datet1 and strike priceK1 and as underlying asset a European call optionC2(V, t) with
maturity datet2 and strike priceK2.
In assuming that the underlying assetV of the callC2 follows a Brownian motion (as in the typical
Black-Scholes setting), the value of the underlying callC2 is known as a function ofV and given
by the well-known formula:

C2(V, t) = V ·N1(a
11; 0, R1

1)−K2 · e−r(t2−t) ·N1(b
11

; 0, R1
1). (2)

In deriving the value of the compound callC1 by an analogous strategy but with an adapted bound-
ary condition, he managed to prove a closed-form formula forC1:

C1(V, t) = V ·N2(a
2; 0, R2)−K1 · e−r(t1−t) ·N1(b

1
; 0, R1) (3)

−K2 · e−r(t2−t) ·N2(b
2
; 0, R2).

Remark: the notations in (2) and (3) were introduced in section 1.1.
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1.3. The n-fold compound option

-
t t1 t2 t3 . . . tn

K1 K2 K3 . . . Kn

C1 C2 C3 . . . Cn

We generalize this idea to a composition of European call options, or roughly speaking an option
on an option on an option on. . . . In proving some transformation theorems for the multivariate
normal CDF, an analogous strategy makes it possible to value such an n-fold compound call. If
we use the notationsCn for the usual Black-Scholes option,Cn−1 for the 2-fold compound option
with Cn as underlying option, . . . ,C1 for the n-fold compound option, and if we suppose that all
the valuesCi are already defined fori < n, the resulting closed-form formula forC1 is given by
the following theorem:

Theorem 1.1 If the (n + 1− i)-fold compound call optionsCi are known and defined by:

Ci(V, t) = V ·Nn+1−i(a
in; 0, Rn

i )−
n∑

j=i

Kj · e−r(tj−t) ·Nj+1−i(b
ij
; 0, Rj

i ),

the n-fold compound call optionC1 is given by:

C1(V, t) = V ·Nn(a1n; 0, Rn
1 )−

n∑
i=1

Ki · e−r(ti−t) ·Ni(b
1i
; 0, Ri

1).

For a full proof of this theorem we refer to Thomassen and Van Wouwe [13].

2. PRACTICAL USE OF THE COMPOUND OPTION

Some practical applications of the n-fold compound option are discussed, as there are R&D devel-
opments, American options,. . .

2.1. R&D in the pharmaceutical world

This first application is the development of a new drug, which typically evolves in 6 stages: discov-
ery, preclinical testing, three clinical test phases (each time on larger test groups), FDA approval
and finally the post-marketing testing. If now the new drug fails a test, an investor wants to have the
opportunity to withdraw from the process. So the whole process can be seen as a 6-fold compound
option because at the end of the subsequent phases, the investor has the possibility to leave in case
of bad test results or to continue if not. The average drug testing process follows this scheme
concerning time schedule and investment costs:
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-
0 2 6 7 9 12 14 time (years)

13
.8

00

2.
80

0
6.

40
0

18
.1

00

3.
30

0
31

.2
00

cost (million$)

The evaluation of the corresponding 6-fold compound option leads to a resulting value of $27.500
million. The following conclusion can be drawn: considering an initial cost of $2.200 million to
start the development, it is really worthwhile to invest in this R&D because the whole process adds
value compared to the initial investment.
A detailed description of this application can be found in Cassimon et al. [2].

2.2. Unprotected American call option on stocks with discrete known dividends

The compound option theory can be used to derive closed-form formulas for an American call op-
tion with an underlying asset paying discrete known dividends. The initial valuation is performed
by Roll, Geske and Whaley ([5], [6], [8] and [15]) for an option with at most 2 dividends.
A generalization of the formula toward an arbitrary amount of payment dates can be obtained as
follows. Suppose we want to value an American call option with exercise priceK and maturity
datetn+1 on some underlying asset paying dividendsDi at intermediate datesti, i = 1, 2, . . . , n.

-
t t1 t2 t3 . . . tn tn+1

D1 D2 D3 . . . Dn

Consider the following hedging portfolioP :

a) a long position on an American call option with maturity datetn+1 and exercise priceK on
a stock payingn− 1 dividends (D2, . . . , Dn),

b) a long position on a European call option with exercise priceV +D1 and exercise datet1− ε
on a stock paying 1 dividend (D1) during the life of the option,

c) a short position on a compound option, composed as follows: a European call option with
exercise priceV +D1−K and exercise datet1− ε with an underlying American call option
as the one in a),

with V representing the critical value ofV (ex-dividend) above which the American call option
will be exercised at a time just prior tot1. Clearly, both the portfolioP and the American call have
the same value by the principle of no-arbitrage.
We supposẽV to follow a log-normal process instead ofV , to avoid a positive probability of not
being able to pay the dividends in the future:

Ṽ = V −
n∑

i=j+1

Di e
−r(ti−t), t+j ≤ t ≤ t−j+1, j = 0, 1, . . . , n.
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Using the compound option theory together with the induction principle, a closed-form formula
for the American call option is obtained:

CA,n(Ṽ , t) = Ṽ · [1−Nn+1(−a1,n+1; 0, Rn+1
1 )

]

−K

n+1∑
i=2

e−r(ti−t) Ni(−b
1i∗

; 0, Ri∗
1 )−K e−r(t1−t) N1(b1; 0, R

1
1)

+
n∑

i=2

Di e
−r(ti−t)

i∑
j=2

Nj(−b
1j∗

; 0, Rj∗
1 )

+
n∑

i=1

Di e
−r(ti−t) N1(b1; 0, R

1
1)

with

b
1i∗

= (b1, b2, . . . , bi−1,−bi)

Ri∗
1 = the covariance matrix of(X1, X2, . . . , Xi−1,−Xi).

Example: In January 2004, American call options could be bought on assets of GM. The value
of such an asset was $53.77 on the23th of January and the asset would pay $0.5 dividend on the
11th of February and on the13th of May. The option matures the19th of June.

-
23/01 11/02 13/05 19/06

0.5 0.553.77

We use the Fortran code MVNDST by Genz [3] to evaluate the multivariate normal CDF’s in the
American option formula and obtain the following comparison between the real market prices and
the theoretical values of our model:

K market V 1 V 2 model Eur.
45 8.90 49.03 47.31 8.89 8.70
50 5.00 55.18 52.88 4.82 4.74
55 2.20 61.45 58.48 2.13 2.09
60 0.80 67.84 64.13 0.75 0.74
65 0.25 74.36 69.82 0.22 0.21

We mentioned the critical pricesV 1 andV 2 above which the valueV should rise at datet1 respec-
tively t2, before early exercise becomes profitable at these moments.
In the last column, the prices of a corresponding European call option are given. Clearly, these
prices fall below the American option prices, as expected theoretically.

3. DECOMPOSITION OF THE N-FOLD COMPOUND OPTION

The n-fold compound option was initially defined as a 1-fold on an (n-1)-fold. Further research
about the sensitivity of the n-fold toward for instance the position of the intermediate dates and the
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related exercise prices, urged for more general decompositions of the n-fold.
Therefore we proved that an n-fold compound option can be constructed as an (n-k)-fold on a
k-fold:

Theorem 3.1 First PDE: C1 is the solution of

∂C1

∂t
= r C1 − r V

∂C1

∂V
− 1

2
σ2

V V 2 ∂2C1

∂V 2
. (4)

Second PDE: C1 is the solution of

∂C1

∂t
= r C1 − r Cn−k+1

∂C1

∂Cn−k+1

− 1

2
σ2

n−k+1 C2
n−k+1

∂2C1

∂C2
n−k+1

, (5)

with Cn−k+1 the underlying asset, satisfying itself a similar PDE

∂Cn−k+1

∂t
= r Cn−k+1 − r V

∂Cn−k+1

∂V
− 1

2
σ2

V V 2 ∂2Cn−k+1

∂V 2
. (6)

PDE (5) can be rewritten into PDE (4) with the specific boundary conditions.

A detailed proof of the theorem can be found in Thomassen, Van Casteren and Van Wouwe [12].
Another advantage of this theorem is that it permits a controlling mechanism for the numerical
results. If for instance an n-fold is calculated in several ways, the same numerical value should be
obtained for the n-fold. Suppose a virtual case wherer = 0.05, σ = 0.2, V = 90. Consider a
4-fold compound option with exercise dates2, 5, 9, 10 and each exercise price equal to 1. Valuing
the 4-fold at timet = 0 results in:

4-fold option as: value
1-fold on 3-fold 87.07220298755823
2-fold on 2-fold 87.07220298755823
3-fold on 1-fold 87.07220298755823
1-fold on 1-fold on 1-fold on 1-fold 87.07220298755824
4-fold 87.07220298755823

4. GENERALIZATION OF THE MODEL

The setting of n-fold compound options is performed in the well-known world of Black and Sc-
holes. However, in looking at the practical use of n-fold compound options, it is clear that it can
invoke long-term contracts, so that the assumption of a constant interest rate over the whole period
seems a bit unrealistic.

4.1. Discrete change in interest rate

As a first generalization, we allow the interest rate to exhibit discrete changes over each interval
between two subsequent exercise dates:
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-
t t1 t2 t3 . . . tn−1 tn

K1 K2 K3 . . . Kn−1 Kn

£ ¢ £ ¢ £ ¢ £ ¢
r1 r2 r3 rn

Again under this assumption a closed-form formula can be obtained for the value of an n-fold
compound call option:

C1(V, t) = V ·Nn(a1n; 0, Rn
1 )

−
n∑

i=1

Ki e
−r1(t1−t)

i∏
j=2

e−rj(tj−tj−1) Ni(b
1i
; 0, Ri

1)

where the vectorsb
1i

now are given by:

bj =
ln V

V j
+ (rj − 1

2
σ2)(tj − t)

σ
√

tj − t
+ S1j +

j−1∑

k=2

Skj

(
tk − tk−1

tk − t

)

Skj = (rk − rj)· tk − t

σ
√

tj − t

and wherea1n still is defined according to equation (1).

4.2. Continuous interest rate

This subsection is based on the work by Miltersen, Sandmann and Sondermann [7], who obtained
a closed-form formula for a European call option in the setting of a stochastic interest rate.
They supposed the simple forward ratesf to follow a log-normal distribution, to avoid both the
problem of possibly negative interest rates and exploding interest rates:

df(·, T, α)t = µ(t, T, α) · f(t, T, α)dt + γ(t, T, α) · f(t, T, α)dWt

In this modelP (t, T +α), the value for a zero-coupon bond maturing at timeT +α, andF (t, T, α),
a forward contract (to buy at timeT a zero-coupon maturing atT + α), are:

P (t, T + α) = P (t, T )
1

1 + α · f(t, T, α)

F (t, T, α) =
P (t, T + α)

P (t, T )
=

1

1 + α · f(t, T, α)

Miltersen, Sandmann and Sondermann [7] found the following closed-form formula for a European
call option with maturity dateT , exercise priceK and with as underlying assetP (t, T +α) a zero-
coupon bond maturing atT + α:

C
(
P (t, T + α), t

)
= P (t, T + α) · (1−K) ·N1(a1; 0, R

1
1)

−K
(
P (t, T )− P (t, T + α)

)
N1(b1; 0, R

1
1)
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where:

a1 = b1 +
√

s1

b1 =
1√
s1


ln

∣∣∣∣∣∣
P (t, T + α) · (1−K)

K ·
(
P (t, T )− P (t, T + α)

)
∣∣∣∣∣∣
− s1

2




s1 =

∫ T

t

γ2(u, T, α)du

Again we are able to generalize this expression to an n-fold compound call with exercise datesti,
exercise pricesKi for i = 1, . . . , n, and a zero-coupon bondP (t, tn + αn) as underlying.
The closed-form formula for the n-foldC1 in terms of its forward valuêC1 is:

Ĉ1 = F ·Nn

(
a1n; 0, Gn

)
·

n−1∏
i=1

P (ti, ti+1)

−
n∑

i=1

Ki · F ·Ni

(
a1i; 0, Gi

) i−1∏
j=1

P (tj, tj+1)

−
n∑

i=1

Ki · (1− F ) ·Ni

(
b
1i
; 0, Gi

) i−1∏
j=1

P (tj, tj+1)

where the relation between the n-fold compound option and its forward value is given by:

C1 = P (t, t1) · Ĉ1

and

F = F (t, tn, αn) (short notation)

aj = bj +
√

sj

bj =
1√
s1

[
ln
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F · (1− Fj)

Fj · (1− F )

∣∣∣∣−
sj

2

]

sj =

∫ tj

t

γ2(u, tn, αn)du

Fj : solution ofP (tj, tj+1) · Ĉj+1(F (t, tn, αn), tj) = Kj

Gk =

(√
si

sj

)
i = 1, . . . , j
j = 1, . . . , k

symmetric

5. FUTURE RESEARCH

Because a lot of real life processes are compounded, such as investment plans, R&D developments,
. . . , it is worthwhile not only to value such processes, but also to value the possibility of choosing
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at certain intermediate dates between the continuation of the process or ending the process. This
is a valuation strategy where n-fold compound options are needed.
Of course, a lot of research concerning valuation of such choices, or concerning the possible
stretching of conditions in our model, still has to be performed. The last subsection is only a
first step in the relaxation of conditions. It shows that it is possible to value n-fold compound
options in a stochastic interest rate setting.
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Abstract

We review the ongoing deregulation process in power markets around the globe. We point out
where financial challenges remain in electricity price risk management and we revisit existing
literature on the subject.

1. INTRODUCTION

In recent years, we have witnessed a worldwide tendency towards deregulation in network in-
dustries and energy markets. The main driving force behind the deregularization is a quest for
increased competition with the ultimate aim to reduce prices for end-users. The UK was the first
state to create the legal framework for an open power market in the form of the 1989 Electricity
Act. In mainland Europe, the Nordic countries Denmark, Finland, Norway and Sweden followed
the UK’s example when creating the Nordic exchange area in 1998. All EU member states are
committed to the opening of their domestic power markets by 2007 and opening has been achieved
to a varying extent as we write.

The deregularization of domestic electricity markets involves the vertical separation of the once
fully state-controlled power sector. The generation-, transport-, distribution- and supply building
blocks were disentangled and private companies now compete with one-another within most of
these branches. A state monopoly usually remains in the transport segment, as it requires the sort
of large scale investment in infrastructure that renders it less competitive. Power exchanges or
‘pools’ were then created, where electrical energy is traded by the megawatthour (MWh). Next
to physical and financial trading floors, they sometimes act as a clearing house for OTC supply
agreements. Nowadays, electrical energy is increasingly traded as a standard commodity, despite
its unique properties.

Electrical energy is generated out of basic energy sources such as fossile fuels, wind-, water- or
nuclear forces. The produced power is then transported over high voltage lines before finally being
supplied to end-users. The main difference between electrical energy and other commodities is the
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property that it cannot be economically stored once generated. Only countries with hydroelectric
capabilities have a means to store generated power for later use, albeit indirectly. In addition, the
unstoreable nature of electrical energy has dramatic consequences for its price behaviour as we
shall see later.

This paper is structured as follows: We first discuss the stylized facts of power spot prices
and we refer to the known mathematical models to capture them. Section three deals with the
nature and properties of forward prices. Although futures and forwards are principally a form of
derivatives contract, they should be distinguished from the standard power options and more exotic
types treated in section four. Pricing and hedging of electricity derivatives is severely restricted by
the unstoreable character of the underlying. Nonstandard approaches are therefore required and
we discuss a few of them before concluding this note in section five. Our objective here is to
provide an overview of topics that are of interest to both financial practitioners and researchers.
The bibliography is representative for state-of-the-art economical- and mathematical research in
power markets.

2. POWER SPOT PRICES

2.1. Stylized facts
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Figure 1: Daily peakload (07-23h) power spot prices at the APX, 2003 (Euro/MWh). Price
ticks above 400 EUR/MWh have been skipped. [1].

Figure 1 displays peakload spot prices recorded from the Dutch APX power auction over the year
2003. This chart confronts us with generic behaviour of prices for the physical delivery of one
MWh of electrical energy over each of the 24 hours of the following day. Most power exchanges
provide an electronic ‘trading floor’ for bulk delivery on the next day in the form of an auction
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that is often referred to as a ‘one-day-ahead market’. Both generators and suppliers submit their
respective supply- and demand bids for all 24 hourly intervals of the next day. An automated
trading system then establishes the equilibrium ‘system prices’, after which all participants are
informed on both prices and delivery schedules. Power prices corresponding to different hourly
intervals usually differ due to changing demand or ‘load’ patterns.

The most important stylized facts observed in power spot prices arestrong seasonality, mean
reversionand so-called pricespikes. Thecausalityof price fluctuations is worth mentioning too,
meaning that that they reflect instantaneous supply and demand levels as an immediate conse-
quence of the unstoreable nature of electrical energy. We discuss these important stylized facts in
the remainder of this section.

The strong seasonalityobserved in one-day-ahead prices for power occurs on a variety of
time scales. There are periodic patterns on an hourly, daily, weekly and seasonal basis that go
hand in hand with similar fluctuations in the demand for this commodity. Seasonal patterns are
typically observed in prices for goods that suffer from storage constraints, think about agricultural
products such as wheat for instance. The effect is further enhanced for products that are difficult or
expensive to stockpile and it meets an extreme end in case of power. Electricity demand is usually
higher during the day and consumption drops over weekends or on holidays. The load increases in
winter and summer, respectively due to heating and air conditioning. These ‘foreseeable’ demand
variations reflect themselves in prices as the latest generation plant employed to meet demand
levels delivers at the highest marginal cost. This leads to an aggregated supply curve that is upward
sloping.

Themean revertingfeature of power spot prices can be explained from the generation process.
Most power is generated by combusting fossile fuels such as coal, natural gas, oil or through
nuclear fission. Renewable energy sources such as wind-, water- and biothermal power are a
relatively new phenomenon still, while they are sometimes unavailable for geographic reasons.
Consequently, marginal cost levels fluctuate around long term averages set by prices for these
more basic fuel sources, augmented with plant-managing fees and profit margins. The bulk of the
annual seasonality in power prices is in most cases an immediate consequence of similar periodic
patterns in basic fuel costs.

Sudden, short-lived but dramatic price rises are the most striking feature of power spot prices.
In early August 2003, prices of up to 3000 Euro/MWh were recorded at the Dutch APX exchange,
about a 100 times the average as figure 1 indicates. Needless to say that suchprice spikescan
severely damage the financial health of market participants and it drives their quest for methods to
mitigate this risk. Price spikes may be induced by transmission failures, breakdowns at generation
plants or simply by extreme weather conditions boosting load levels further up in times of peak
demand. Clearly, such events are hard to predict long enough in advance.

Consider a power market where a 100 MW plant suddenly breaks down. Repairs are estimated
to last over the next 24 hours and providers must search the one-day-ahead market for 100 MW
of replacement capacity as they are obliged to meet customer needs. In extreme situations such as
peak load and hot periods, the spot market may turn out too illiquid to deal with this unforeseen
demand level and prices skyrocket as a consequence. Only in markets with hydroelectric genera-
tion capabilities one may encounter smoother price behaviour and the Scandinavian market here
serves as a clear cut example.
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2.2. Mathematical models

A key reference on mathematical spot price models is the work by Lucia and Schwartz [15]. This
paper treats spot prices arising at the Nordic Exchange and discusses the performance of one- and
two factor models for capturing all main trends. Other references are [5] and the regime switching
model introduced in [10] that assumes two different market states in one of which price spikes
arise. The regime switching model was recently revisited in [18] where an insurance premium
formula was derived to cover spot price risk. Numerous attempts intend to capture power spot
price behaviour in micro-economically inspired models and bottom up models form the most so-
phisticated example. An economically intuitive and appealing attempt was made by Barlow in [2].
Spot prices are there obtained from a nonlinear mapping of a one-factor mean reverting diffusion
process, reflecting the inverse mapping of exogenous given demand by a stylized supply curve. A
second micro-economical approach is described in the paper by Elliottet al. in [7], where price
spikes arise as a consequence of large plants going offline. Their model was inspired by the Al-
berta power market where only fourteen different plants are present. Further attempts involve the
modelling of the auction pricing that is behind price formation in power markets and the reader is
referred to [9] and references therein. The number of statistical surveys of power spot price data is
limited, but the work of Weron [23] deserves mentioning here.

3. POWER FORWARD PRICES

3.1. Stylized facts

Many power exchanges trade forward contracts as a primary form of electricity derivative. These
contracts are highly standardized, for instance entailing the financial supply of a constant flow of
1 MWh per hour within a delivery period specified in the contract. Their counterparts for physical
delivery trade in the OTC market and exchanges like NordPool sometimes also act as a clearing
house for such agreements. At NordPool, delivery periods vary from days over weeks, blocks
(four weeks) and seasons, up to entire years. Contracts for delivery over yearly periods become
available about four years in advance and gradually decompose into contracts with shorter delivery
windows. The ‘forward cascade’ is the set of rules maintained by the exchange to decompose the
forward contracts into contracts with shorter delivery periods. The cascading occurs in a fully
deterministic fashion until the shortest delivery period is met.

The daily, weekly and block financial contracts traded at NordPool are futures contracts while
the remaining instruments are of the pure forward type. In both cases, gains and losses are settled
through a margin account, but in case of forwards, they are accumulated up to the instant of de-
livery. A futures contract can be entered into at no cost, but eventual gains are settled in a daily
‘marked-to-market’ procedure involving the margin account.

Consider an example futures contract that delivers 1 MWh per hour over a one week period,
corresponding to(7× 24) = 168 individual hours. Todays price equals 30.00 EUR/MWh and one
such contract is entered into. In case tomorrows closing price for the same contract equals 31.00
EUR/MWh, the exchange will increase the margin account by168× (31.00− 30.00) = 168 EUR.
Similarly, when prices drop to 29 EUR/MWh, the exchange will kindly pass a 168 EUR margin
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call per contract to all holders of a long futures position. In this way, the futures trader will have
received the difference (delivery price− entered price) by the time the delivery takes place, just
as with a forward contract. The only difference is that the futures settlement occurs over the entire
period before delivery, involving the interest-bearing margin account. Apart from this ‘interest
rate convexity’, futures- and forward positions are completely identical financially. Both futures
and forwards are eventually settled on an ‘ex-post’ basis: Positions are gradually cleared over the
delivery period. In the above example, the holder of the futures contract receives 24 times the
difference (average daily price− 30) EUR/MWh, every day within the delivery week.

Futures and forward contracts are de facto power derivatives because one-day-ahead (spot)
prices remain the basic underlying. Forward positions prove highly valuable in the volatile physical
markets, allowing for price risk to be spread over longer periods. Forward markets also prove
convenient in long term decision making, as prices indicate future cost levels as anticipated by the
aggregated market.

Consider a power market where a governmental decision is made to close an important nuclear
plant in five years. The plant was known to be a reliable source of cheap baseload electrical
energy and as soon as the decision is made public, power forward prices for delivery within five
years or later start to rise. These higher prices should stimulate market participants to invest in
fresh production capacity that is to replace the Nuclear plant. In a regulated environment capacity
planning used to be a public matter but a forward market naturally completes the feedback loop in
any liberalized market.

The most noteworthy feature of power forward prices is theanomalous behaviourencountered
as maturity closes in. This property groups two different effects that strengthen as time-to-maturity
decreases: one is the sharp increase in volatility also observed in other commodity futures markets
where it is known as Samuelson effect. The second one is the appearance of an unusual stochastic
drift that becomes stronger near expiry.

These facts have an important impact on mathematical modelling attempts. Futures prices
converge against the spot price level at the instant of delivery, since positions in one such futures
contract or 1 MWh of time-T spot power are financially equivalent at timeT , thus in every contin-
uous model one has

lim
t↑T

F (t, T ) = XT , (1)

whereF (t, T ) is the forward price of one MWh at timet for delivery at timeT andXT is the
spot price of one MWh at timeT . As the latter is known to be very volatile, one has an intuitive
explanation for the anomalous effect mentioned, occurring for timest close toT .

The equality in (1) may be violated in some special circumstances. In case physical power can
not be delivered due to transmission failures, the futures- and spot price levels may decouple, see
for instance [21]. This of course is an argument against the use of continuous models. Furthermore,
relation (1) is usually blurred by the forward cascade as futures prices merely reflect ‘rational
expectations’ of spot price levels over the delivery period. But generally any mathematical attempt
to model theF (t, T ) futures prices should yield a spot price model with the accustomed properties
through (1). An interesting approach in this sense can be retrieved in [22] and it was inspired upon
the spot price model introduced by Barlow in [2].
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3.2. Mathematical models

Reference [15] is a good start for our literature survey on power forward prices. The mathematical
spot price models treated there imply futures and forward dynamics on no arbitrage grounds. Such
an attempt can only be approximately valid, as the unstoreable nature of electrical energy seriously
limits dynamic hedging strategies. In an empirical study of power forward curves reported in
[13], it was found that prices referring to different instants of delivery vary in less dependent ways
compared to other commodities. Because of the severe storage constraints, such contracts become
completely different financial vehicles. The anomalous effect was first described in [19] and a
micro-economical model was introduced to provide a possible explanation. The anomalous effect
was implicitly treated in [3], where an increasing volatility structure was employed to price vanilla
futures derivatives in the Nordic market yet also by questionable no-arbitrage methods. For a
statistical survey of power forward prices, we refer to [14], which provides a detailed analysis of
American PJM prices. One of the main challenges in power markets remains to define accurate
models for the term structure dynamics that also provide satisfactory spot price behaviour through
the limit (1). As far as we know, only one such an ‘integrated’ model was introduced sofar in [4]
apart from [22] and both required very sophisticated approaches.

4. ELECTRICITY DERIVATIVES

Derivatives contracts seem essential risk managing tools in the volatile spot markets. In power
markets, such financial vehicles appear in a variety of different forms and this section contains a
comprehensive classification of these types, together with some comments on their valuation.

4.1. Overview

A first derivatives contract is thefutures option, i.e. a European Call or Put option that is written
on the price for a futures or forward contract at a given strike. Such options are openly quoted at
NordPool and they usually expire shortly before financial delivery of the underlying commences.
At NordPool, trade in these contracts is often illiquid, in contrast to the higher daily trading vol-
umes for their underlying. The pricing and hedging of futures options requires a model for the
price behaviour of futures contracts that should capture the anomalous behaviour mentioned in
section three. In the simplest case, one employs a geometric Brownian motion process with a
time-dependent volatility, leading to a valuation formula of the Black-Scholes type. Such an at-
tempt was suggested in [3], [19] and [20]. The derivative can be replicated by a portfolio consisting
of a position in the underlying forward contract and a cash account.

It turns out that most power derivatives are OTC agreements. Their prices are not openly quoted
and they are often matched to the buyers’ needs. Examples of such contracts are of theAsian type,
cross-commodity derivatives, virtual power plants, swing optionsand ordinaryinsurances.

TheAsian type optionsare bilateral agreements that entail a settlement at the end of a delivery
period, according to the average spot price registered in it. LetXt; t ≥ 0 represent the time-t spot
price for power, delivered over the hour followingt. An asian option with strikeK EUR/MWh
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over the time window[T1, T2] is a time-T2 contingent claim with payoffϕ(T2) given by

ϕ(T2) = max{ 1

T2 − T1

∫ T2

T1

Xu du−K, 0} =: (
1

T2 − T1

∫ T2

T1

Xu du−K)+.

For most choices of the price process{Xt : t ≥ 0}, the pricing and hedging question for Asians
proves a very complicated one. It is challenging to try to understand how such contingent claims
could ‘best’ be replicated (in least-square sense for instance), by means of widely available fu-
tures contracts. An approximate valuation technique was introduced in [3] and to-date and to our
knowledge there is no alternative answer.

Spark spread options are tailored to the peculiarities of the power market. They are a form of
cross commodity derivativebased on the fact that electrical energy is produced out of more basic
sources such as natural gas for instance. In such a gas-fired power market, extra power can be
delivered at short notice and plant ramp-up times are often negligible. The spark spread is there
defined as the power spot price minus the gas spot price times a conversion factor. Gas prices
Yt; t ≥ 0 are quoted in EUR/Btu (British thermal units) and the conversion factorH is plant-
specific. It tells us thatH British thermal units of natural gas must be feeded to the plant in order
to produce 1 MWh of electrical energy. The spark spread option is often a European type Call on
the time-T value of the spark spread, i.e. it has a payoffϕ(T ):

ϕ(T ) = (XT −H · YT )+,

whereXt is the time-t spot price for electrical power in EUR/MWh. Spark spread options can be
replicated by a portfolio consisting of both gas- and power futures maturing at timeT . However,
such hedging attempts are jeopardized by the presence of the forward cascade that renders the
required futures prices invisible up to shortly before timeT . The reader is referred to [6] for
additional discussion and quantitative analysis.

Powerswing optionsand virtual power plantsare financial contracts whose payoffs mimic
the characteristics of a real power plant. The owner of a virtual power plant can access power
at a predetermined unit pricek, up to a specified upper boundpup MW over the period of time
[T1, T2]. He thus fictively possesses a plant withpup as its maximum output that produces at the
marginal costk. In case of swing options, there is an additional lower bound0 ≤ plow ≤ pup to
the load patternp(t), i.e. the buyer of the contract is forced to accept at leastplow MW at all times.
Furthermore, the total amount of purchased power is limited by

elow ≤
∫ T2

T1

p(u) du ≤ eup,

with 0 ≤ elow ≤ eup. For a discussion on the partial replication of swing options with basic power
derivatives, the reader is referred to Keppo [11] and references therein.

Insurance contractsare a final class of risk managing tools available to power market partici-
pants. One can think of circumstances where active hedging of spot price risk is either unfavourable
or impossible, while some of that risk is passed on to end-users. Intermediate consumers of electri-
cal energy may then come to bear considerable financial risk against which they want to be insured.
Such contracts can be tailored to the buyers’ needs and their valuation becomes a pure actuarial
matter in the absence of any dynamic hedging attempts. One premium formula for European Call
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options written on power spot prices was inspired by the work [10] and reported on in [18]. Al-
ternative premium principles can be of use here and we refer to the excellent reference [12] for a
treatise on them.

4.2. Hedging aspects

There are basically two ways to hedge power derivatives: either directly byoperating a production
plant, see [8], or indirectly using afutures market. Let us illustrate both methods by an example
situation.

Consider a European Call option, written on the power spot price process{Xt : t ≥ 0},
expiring at timeT against the strikeK EUR/MWh. The time-T payoff for this contingent claim
thus readsϕ(T ), with

ϕ(T ) = max{XT −K, 0} := (XT −K)+. (2)

The writer of the derivatives contract happens to own a plant that produces electrical energy at
marginal costk EUR/MWh and we shall neglect fixed costs and ramp-up periods for a moment.
Ownership of the plant is financially equivalent to a long position in the real optionη(t), with

η(t) = (Xt − k)+,

as the plant will only go online in case the spot priceXt is above the marginal cost levelk. In
caseK = k, the plant ‘physically’ replicates the European Call option. More generally, the wealth
of such a plant owner that is short one Call is given by the differenceη(T ) − ϕ(T ), which is
positive providedK ≥ k, i.e. it is favourable to produce power at marginal costs below the strike
price. Clearly, the time-t option value becomes dependent on the plants’ characteristics through
the marginal cost levelk and Call premia will not be indifferent to it either. The production- based
valuation of power derivatives therefore reduces to an optimization problem for the dispatch profile
of the plant. Both historical price- and load levels and plant characteristics play an important role in
this pricing stage. Such studies fit into the field of operations research rather than within financial
mathematics, see the work by Hinz in [9] and references therein.

A liquid futures marketprovides promising financial opportunities to hedge power spot deriva-
tives. The key observation here is the limit (1), expressing that futures prices converge towards
spot price levels at delivery, provided basis risk is neglected. LetF (t, T ) denote the time-t price
for 1 MWh of electrical energy delivered atT . At time T , the payoff for a European Callϕ(T ) in
(2) on the spot price becomes equivalent to

ϕ(T ) = lim
t↑T

(F (t, T )−K)+,

and this identity suggest that time-T spot derivatives can be replicated by a portfolio consisting of
a time-T futures position.

To fully exploit futures hedging of spot derivatives one needs term structure models for forward
prices that yield consistent spot prices in the limit (1) and there still is a lack of satisfactory results
at this point. Futures hedging is further limited by the presence of a forward cascade, as prices for
the precise futures contract underlying the spot derivative may remain hidden in the market until
shortly before expiry.
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5. CONCLUSIONS AND OUTLOOK

We gave an overview of current financial research in deregulated power markets. Many mathe-
matical challenges remain in this rapidly expanding field. There is a growing need for good term
structure models that capture both typical forward price behaviour and the main stylized facts for
power spot prices. Such mathematical models are a key requirement for pricing many different
types of derivatives. It looks like this futures hedging is the only way in which these contingent
claims can be hedged fully financially. A second method involves the use of physical production
capacity that demands for deeper commitment to the power market. Market players that do not
have any production capabilities must rely upon either futures contracts or energy insurances to
mitigate combined price and volume risk.

We included many references to earlier work throughout the text, such as to give a comprehen-
sive as well as up to date overview of the field. We hope that the present paper may prove useful
to both theorists and practitioners of power risk management.
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Abstract

The old Belgian legal bonus-malussystem does not accomplish the two goals of a bonus-
malussystem, which are: reaching a financial balance in the company and anticipation of the
risk the insured brings to the company. This paper presents a model that does fulfil both goals
by integrating a priori segmentation into the bonus-malussystem.

1. INTRODUCTION

To determine the premium of an insurance risk, the risk should first be evaluated. There are two
important ways for evaluating a risk in a car portfolio: a priori, where we, by the use of criteria,
such as the age and the sex of the insured, evaluate the risk before the insured is able to drive on the
road. The goal of the a priori segmentation is to distinguish different homogeneous risk classes:
the insured in the same risk class pay the same base premium. But even if we use many criteria
it is impossible to make a correct prediction of the claim frequency only by the use of a priori
classification, because the portfolio is heterogeneous: there are things in a car portfolio that can’t
be measured, such as the driving behaviour of the conductor. That is why there is also need of an a
posteriori evaluation, where we take into account the claim history of the insured. The a posteriori
evaluation is done by the use of a bonus-malus system. The goal of a bonus-malus system is the
correction of an a priori wrong judged risk by an increment or a decrement of the premium.

A car insurance portfolio is heterogeneous. We are, by the use of criteria never able to predict
how a certain risk will behave. The difference between the real number of accidents and the pre-
dicted number of accidents is called the heterogeneity. By a priori classification the heterogeneity
will decrease, because the predictions are based on data of a select group instead of on data of the
whole portfolio. But a bonus-malus system remains necessary, because the heterogeneity can’t be
eliminated.
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A bonus-malussystem has two important goals for the insurance company:

1. a better anticipation of the risk, so that every body pays, after a while, a premium that
corresponds to his own claim frequency, and

2. the keeping of a financial balance in the company.

Both goals are not accomplished in the old legal system: an insured with a claim frequency
of 12% pays less than 20% more than an insured with a claim frequency of 10% and the average
premium level of an insured with a claim frequency of 10% keeps decreasing, because the insured
has reached the lowest level, so there can never be a financial balance in the company.

The reason why the old legal system does not accomplish those demands is that there is only
one bonus-malussystem for the whole portfolio. This is actually wrong, because after a priori
classification, the remaining heterogeneity is to be found at the level of the risk classes, so it is
more appropriate to use a bonus-malusscheme for each risk class.

Based on this idea, Gisler developed a model where he combines the a priori classification and
the a posteriori evaluation. The model of Gisler is based on the credibility theory, more specific
the Buhlmann-Straub model, where the credibility predictor is given by a linear combination of
the collective predictor and the individual predictor for each risk class.

2. MODEL WITHOUT A PRIORI SEGMENTATION

DefineNij as the number of claims of riski in yearj. Each riski has a risk parameterλi, the
claim frequency. The average claim frequency of the whole portfolio is represented byλ. Define
ϑi = λi

λ
, ϑi is the real bonus-malus level of riski: it is the level in which the riski is better or

worse than the average risk.
In order to get a better representation of the results, we defineÑij =

Nij

λ
. ThenÑij fulfils the

conditions of the Buhlmann-Straub model, so the credibility estimator forϑi can be determined
with it. The credibility weight is equal to:

zi =
nλ

nλ + w−1
,

with:

• weights equal to the number of yearsn,

• Var[µ(ϑi)] = w, the heterogeneity,

• E[σ2(ϑi)] = λ−1.

Because in this modelm = E[µ(ϑi)] = 1 and the individual estimator of the claim number is equal
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to
P

j
eNij

n
, the credibility estimator is equal to

ϑ̂i =

(
1− nλ

nλ + w−1

)
+

nλ

nλ + w−1

∑
j Ñij

n

= 1 +
nλ

nλ + w−1

(∑
j Ñij

n
− 1

)
. (1)

nλ is the a priori expected claim number within the observation period ofn years. Without more
information we expect that an insured with claim frequencyλ in a period ofn years will causenλ
accidents.

The equation (1) is also equal to:

λ̂i = λ +
n

n + (wλ)−1

(∑
j Nij

n
− λ

)
.

The structural parametersλ andw can be determined from the data of the portfolio. WhenI is the
number of contracts in the portfolio, thanλ andw can be estimated as follows:

λ̂ =
1

I

∑
i

Ni

ŵ = λ̂−2(σ̂2
Ni
− λ̂),

with σ̂2
Ni

= 1
I−1

∑
i(Ni − λ̂)2 (no indexj because we observe only one year).

This model assumes that all risks have the same a priori claim frequency and that differences
in claim frequency of the risks are due to the individual risk characteristicsϑi. According to this
model an insured of 20 years old, who is inexperienced, drives with a sport car and uses his car
mostly in the city has as much probability of causing an accident then somebody who is 40 years
old, experienced, drives with a family car and uses his car mostly at the country side. This is of
course not very realistic.

3. MODEL WITH A PRIORI SEGMENTATION

The previous model doesn’t take the differences between the risks due to the profile of the insured
or the type of the car into account. We can adapt the previous model by assigning to each risk
a parameterϑi and a claim frequencyλij, depending on the yearj. Instead of working with the
global average claim frequency, we take the average claim frequency over the yearsj of each risk
i into account.

Define Nij as the number of claims of riski in the yearj, and as in the previous model:
Ñij =

Nij

λij
, then the conditions of the Buhlmann-Straub model are fulfilled and the credibility

estimator is equal to:

ϑ̂i = 1 +
λi·

λi· + w−1

(
Ni·
λi·

− 1

)
(2)
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with λi· =
∑n

j=1 λij andNi· =
∑n

j=1 Nij.

Formula (1) and formula (2) look very similar, but there are two major differences:

1. Formula (2) takes the claim frequency of each risk separately into account. If we would a
priori separate the risks in risk classes, we would find a bonus-malus system for each risk
class. Instead of the claim frequency for each risk we take the average claim frequency for
each risk class.

2. In formula (2) the a priori expected claim number is given by
∑

j λj. The formula (2) can
change based on the a posteriori variables, which are taken into account in the price of the
insurance. This was not possible in formula (1), where this number was given bynλ.

4. INFLUENCING FACTORS

The larger the expected claim number,λi·, the larger the credibility weight. If for instance the
expected claim number of a risk in classi is only half the number of a risk in classj, then the risk
in classi needs two times more time to reach the same premium percentage as a risk in classj.

If λi· is very small, which means that there are very little accidents caused by the insured in
that class, then the credibility weight will also be very small, and consequently the bonus of a
risk without claims is also small. But if an accident happens the bonus-malus factor will increase
drastically and bring a high malus. The reason is that an insured, in a class with a low claim
frequency, already pay a much lower base premium than an insured in a class with a high claim
frequency. If an accident happens the malus is that high because the insured maybe belongs in a
class with a higher claim frequency with a higher base premium. The opposite is also true. An
insured in a class with a higher claim frequency and so a high base premium, who drives for years
without accident, gets a high bonus because he should be in a class with a lower claim frequency,
where he pays a lower base premium.

Another factor that influences the bonus-malussystem in each risk class is the remaining het-
erogeneity. In case of a high heterogeneity the probability of a misjudgement is bigger than in
the case of a low heterogeneity, so there is more need of a posteriori corrections in case of high
heterogeneity.

5. NUMERICAL EXAMPLE

We separate the portfolio by the age of the insured, the year in which they got their licence and
the zone in which they live. The a priori expected claim frequency is determined by the use of a
generalised linear model (for details see Vreven [4]).
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Age Licence Zone Number of contracts Claim frequency
18 - 22 1999 - 2001 country 733 0,121
18 - 22 1999 - 2001 city 561 0,158

23 - 29 1990 - 1998 country 3.297 0,08
23 - 29 1990 - 1998 city 2.618 0,104
23 - 29 1999 - 2001 country 724 0,145
23 - 29 1999 - 2001 city 510 0,173

30 - 69 before 1990 country 60.360 0,051
30 - 69 before 1990 city 21.512 0,067
30 - 69 1990 - 1998 country 4.416 0,071
30 - 69 1990 - 1998 city 3.331 0,105
30 - 69 1999 - 2001 country 78 0,156
30 - 69 1999 - 2001 city 59 0,182

70 - 103 before 1990 country 4.129 0,05
70 - 103 before 1990 city 3.095 0,06
70 - 103 1990 - 1998 country 24 0,161
70 - 103 1990 - 1998 city 18 0,176
70 - 103 1999 - 2001 country 2 0,194
70 - 103 1999 - 2001 city 1 0,225

Total 105.468 λ = 0, 062

Table 1:Distribution portfolio

We multiply the a priori expected claim frequency with the average cost of a claim for the
company. Assume that the average cost is equal to 4.155 Euro, than the base premium for an
insured of 25 year old, who got his licence in 1995 and lives at the country side (zone 1) is 329,20
Euro. For an insured with the same age and licence year, who lives in the city (zone 2), the base
premium is equal to 433,32. After 5 years the insured reach their 30 years, so they change risk
class. Their base premium becomes 315,99 Euro in zone 1 and 415,92 Euro in zone 2.

Insured living zone 1
t BPt 0 claims 1 claim 2 claims

BMF Premiums BMF Premiums BMF Premiums
1 329,20 89% 292,99 228% 750,58 366% 1.204,87
2 329,20 80% 263,36 205% 674,86 330% 1.086,36
3 329,20 73% 240,32 186% 612,31 300% 987,60
4 329,20 67% 220,56 171% 562,93 275% 905,30
5 329,20 62% 204,10 158% 520,14 254% 836,17
6 315,99 60% 189,59 154% 486,25 248% 783,66
7 315,99 56% 176,95 144% 455,03 232% 733,10
8 315,99 53% 167,47 136% 429,75 218% 688,86
9 315,99 50% 158,00 128% 404,47 206% 650,94
10 315,99 47% 148,52 121% 382,35 195% 616,18

Table 2:Bonus-malusfactors and a posteriori premiums for a 25 year old conductor living in zone 1
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The first column represents the number of yearst, the second column (BPt) contains the base
premium, the third column (BMF) represents the bonus-malusfactor in case the insured causes no
accident in the period[0, t]. The fourth column gives the pure premium. The next two columns
represent the bonus-malusfactor and pure premium for an insured who causes one accident during
this period and the last two columns give the bonus-malusfactor and pure premium for an insured
who causes two accidents during this period.
The a posteriori premiums are the product of a base premium, depending on the personal character-
istics of the insured and a bonus-maluscoefficient. This bonus-maluscoefficient is also depending
on the personal characteristics of the insured. A 25 year old driver, who got his licence in 1995
and lives in the city, has another base premium, but also other bonus-malusfactors than the 25 year
old driver, who got his licence in 1995, but lives at the country side.

Insured living zone 2
t BPt 0 claims 1 claim 2 claims

BMF Premiums BMF Premiums BMF Premiums
1 433,32 86% 372,83 220% 954,45 354% 1.537,07
2 433,32 76% 327,16 193% 837,54 311% 1.347,91
3 433,32 67% 291,46 172% 746,14 277% 1.200,82
4 433,32 61% 262,78 155% 672,73 250% 1.082,67
5 433,32 55% 239,24 141% 612,47 227% 985,69
6 415,92 52% 216,28 132% 549,01 213% 885,91
7 415,92 48% 199,64 122% 507,42 197% 819,36
8 415,92 44% 183,00 114% 474,15 183% 761,13
9 415,92 42% 174,69 106% 440,87 171% 711,22
10 415,92 39% 162,21 100% 415,92 161% 669,63

Table 3:Bonus-malusfactors and a posteriori premiums for a 25 year old conductor living in zone 2

When we compare both tables, we note that the 25 year old driver living in zone 1 will always
have a lower base premium than the 25 year old driver living in zone 2. But the insured from zone
1 has higher bonus-malusfactors, so he gets fewer bonuses and more malus than the insured from
zone 2. This is a consequence of the fact that good risks get already a bonus by paying a lower
base premium, so the level of his real bonus decreases. Or, the insured who are a priori wrong
classified in a certain risk class, because their claim frequency is lower than the claim frequency of
the other risks, but more comparable with the claim frequency of the insured in another class, get
a bonus that is large enough that after a certain number of years they pay as much as the insured
from the right risk class.

6. EVALUATION OF THE SEGMENTATION MODEL

As already mentioned, a bonus-malussystem has two important goals for the insurance company: a
better judgement of the risks, that everybody pays, after a certain time, a premium that corresponds
with his own claim frequency and the keeping of a financial balance in the company. The level
in which these goals are accomplished is different in each bonus-malussystem. That’s why we
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compare the old legal system and the segmentation model by the methods described by Lemaire:
the average premium level and the variation of the premium. Also the number of assigned bonuses
and maluses in both systems were counted.

The comparisons are made by the use of simulation programs in SAS. These simulation pro-
grams use a database in which every insured has his claim frequency l. To simulate the old legal
system, we let everybody start in class eleven. After one year, the insured had zero, one or two or
three accidents, simulated with a random number from a Poisson distribution. It is also possible
that the insured leaves the company for competitional reasons or that the insured dies with the con-
sequence that the policy disappears from the portfolio. Also new customers enter in the portfolio.
If we assume that the number of policies that disappears from the portfolio is equal to the num-
ber of policies that enters the portfolio, we can simply solve this by assigning a random number
between zero and one, simulated with a uniform(0, 1) distribution. When this number is smaller
than a certain threshold, depending from company to company, we assume that this policy leaves
the portfolio and enters in bonus-malus eleven. The threshold was determined by comparing the
distribution of the portfolio over the different bonus-maluslevels obtained by the simulation with
the real distribution of the portfolio.

An important property of the old legal system is the high concentration of insured in the lowest
classes, the classes with the highest discounts. The first simulation program calculates for the old
legal system and for the system with segmentation, the average premium level after one hundred
years of an insured with a claim frequency of 10%. The result is shown in figure 1.

 

  ____: Segmentationsystem 
   
 ------: Old legal system 

Figure 1: Average premium level in case of a claim frequency of 10% over 100 years

The goal of reaching a financial balance is not accomplished in the old legal system: the average
premium level keeps decreasing. On the contrary in the system with segmentation we reach a
financial balance after 20 years. After this time the insured pays a premium that corresponds with
his own claim frequency.

The second comparison we’ve made is the number of bonuses and maluses in each system.
Because most of the people are in the lowest classes in the old legal system, the number of bonuses
assigned by the company is much higher than the number of maluses, which causes also a distur-
bance in the financial balance of the company.

The second simulation program counts the number of insured in the portfolio that pays after
30 years less than 100% of the premium and the number of insured that pays after 30 years more
than 100% of the premium and this for the old legal system and for the system with a priori
segmentation.
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Number Average Level
BONUS: premium< 100% 100.298 0,59
MALUS: premium> 100% 3.718 1,42

Table 4: Bonuses and maluses in the old legal system

Number Average Level
BONUS: premium< 100% 66.242 0,64
MALUS: premium> 100% 37.774 1,63

Table 5: Bonuses and maluses in the segmentation system

We can see that the old legal system assigns at portfolio level more bonuses than maluses. Also,
with the segmentation system, the number of bonuses is larger than the number of maluses, but
the difference between both is much smaller. The average bonus level is also smaller in the system
with segmentation, while the average maluslevel is higher. This fact together with the information
of the average premium level teaches us that the old legal system does not accomplish the goal of a
financial balance, in contradiction to the system with segmentation, where, after a while a financial
balance is obtained.

 

  ____: Segmentationsystem 
   
 ------: Old legal system 

Figure 2: Variation on the premium

By the a posteriori corrections on the premium, the payments of the insured will be different
from year to year according to their claim history. The variation of the premium was simulated for
both systems. Figure 2 gives us the variation on the premium, an insured with a claim frequency
of 10% would pay, during 60 years. We see that the variation of the premium in the system with
segmentation is much bigger than in the old legal system, where the insured has reached the lowest
class and causes now and then an accident. The variation in the system with segmentation is high,
although there is a slight decrease noticeable.

7. CONCLUSION

To determine the premium of an insurance risk, the risk should first be evaluated. When the risk
is wrong evaluated, it can have consequences for the insured but also for the insurance company.
That is why it is important that the insured pays a premium that corresponds exactly with the
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risk he brings for the company. With the a priori segmentation we can already judge the risk
from the subscription. By the a posteriori corrections the insured pays, after a while, a premium
corresponding with his own claim frequency, expressed by the average premium level that is equal
to 100%.

By comparing the number of bonuses and maluses in the old legal system and in the segmenta-
tion model, we notice that the old legal system assigns a lot of bonuses and little maluses. Although
the goal of a bonus-malussystem is the distinction of the good and the bad risks. We can conclude
that the old legal system is less effective than the model with segmentation. The old legal system
distincts only the real bad and the less bad risks, but we cannot detect the good risks. In the model
with segmentation on the contrary, the malus is that high that we know immediately which ones
are the good risks and which ones the bad.

Despite the being more correct of the segmentation system, there are a few disadvantages on
the segmentation model. There is a lot of variation on the premium, so the insured needs a lot of
time to reach his old premium level again after an accident.
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De Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten coördineert 
jaarlijks tot 25 wetenschappelijke bijeenkomsten, ook contactfora genoemd, in de domeinen 
van de natuurwetenschappen (inclusief de biomedische wetenschappen), menswetenschappen 
en kunsten. De contactfora hebben tot doel Vlaamse wetenschappers of kunstenaars te 
verenigen rond specifieke thema’s. 
 
De handelingen van deze contactfora vormen een aparte publicatiereeks van de Academie. 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
Contactforum “2nd Actuarial and Financial Mathematics Day” (6 februari 2004, Prof. 
M. Vanmaele) 
 
 
De “2nd Actuarial and Financial Mathematics Day” was net als de vorige editie een groot succes. Dankzij dit 
jaarlijks evenement worden de contacten tussen de verschillende onderzoekers en onderzoeksgroepen van de 
Vlaamse universiteiten KULeuven, UA, UGent en VUB in deze domeinen verder aangehaald. Daarnaast biedt 
het contactforum een mogelijkheid om de resultaten van het uitgevoerde onderzoek aan de praktijkmensen uit 
banken en verzekeringen – die in ruime getale aanwezig waren – voor te stellen. Naast twee uitgenodigde 
sprekers kwamen doctoraatsstudenten, postdocs evenals een spreker uit de praktijk aan het woord. 
In deze publicatie vindt u een neerslag van de voorgestelde onderwerpen zoals het prijzen van samengestelde 
opties en Aziatische opties, interestmarktmodellen, afgeleide producten in de energiemarkt, benadering van de 
distributie van annuïteiten in het geval van stochastische rentevoeten, evenals een benadering voor het probleem 
van een optimale portefeuilleselectie, analyse van het risico van kredietportefeuilles, een aanpak voor gecorre-
leerde risico’s in actuariële problemen en segmentatie in bonus-malussystemen. 
 


