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PREFACE 
 
The Contactforum "Actuarial and Financial Mathematics Day" has come to its third edition, 
and it definitely turns into an annual meeting between academics and practitioners. The large 
attendance at the symposium confirms the interest for strengthening the ties between the 
different research groups in actuarial and financial mathematics of the Flemish/Belgian 
universities on the one side, and professionals of the banking and insurance business on the 
other side.  A contactforum like this seems to be a good formula for exchanging results and 
problems in this fascinating research field. 
 
These transactions include two types of presentations. First, we have two invited papers of the 
guest speakers; this year, we could welcome Prof. dr. Rob Kaas from the University of 
Amsterdam, and Dr. Lutz Schloegl from Lehman Brothers International UK. Next, there are 8 
contributions, presented by PhD students, postdocs, and practitioners. 
 
We thank all our speakers, without whose effort the organization of the contactforum 
wouldn't be possible. We are also extremely grateful to our sponsors: the Royal Flemish 
Academy of Belgium for Science and Arts, and Scientific Research Network “Fundamental 
Methods and Techniques in Mathematics” of the Fund for Scientific Research - Flanders. 
They made it possible to spend the day in a very agreeable and inspiring environment. 
 
The success of the meeting encourages us to continue with this yearly initiative. We are 
convinced that it provides a great opportunity to facilitate the exchange of ideas; it certainly 
stimulates the research in actuarial and financial mathematics in Flanders. 
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COMPOUND POISSON DISTRIBUTIONS AND GLM’S —
TWEEDIE’S DISTRIBUTION

Rob Kaas

Department of Quantitative Economics, Universiteit van Amsterdam, Roetersstraat 11,
1018 WB Amsterdam, The Netherlands
Email: R.Kaas@UvA.NL

Abstract

Generalized Linear Models are especially useful for actuarial applications, since they allow one
to estimate multiplicative models, and also allow forms of heteroscedasticity such as they are
found frequently in actuarial problems, of Poisson-type, of gamma-type with a fixed coefficient
of variation, and in-between (Tweedie’s class of Compound Poisson–gamma distributions).

1. INTRODUCTION

At the moment, many actuarial education programs do not contain any material on Generalized
Linear Models (GLMs). And in fact, the textbook Modern Actuarial Risk Theory by Kaas et al.
(2001) is only the first actuarial textbook devoting space to this subject. A new textbook on actu-
arial science and GLMs, however, is in preparation, in close cooperation between the KU Leuven
and the University of Amsterdam.

One reason for advocating the use and study of GLMs for actuaries is that the generalizations
that GLMs provide with respect to ordinary linear models are especially important for actuarial
applications. Also, there are quite interesting connections with actuarial risk theory. Moreover,
some renowned actuarial techniques are actually special cases of GLMs, like Bailey-Simon’s rating
method as well as the celebrated Chain Ladder method.

The importance of GLMs for actuarial practice is gaining recognition. For instance, a meeting
of the Casualty Actuarial Society in 2004 was devoted entirely to GLMs. Also, GLMs are used
as the standard method for all premium rating for personal lines in the UK, for graduation, and
so on. A good review paper about this, aimed at an audience of statisticians, is Haberman and
Renshaw (1996). In this paper it is demonstrated how GLMs can be used for a variety of actuarial
statistical problems like survival modeling, graduation, multiple-state models, loss distributions,
risk classification, premium rating and claims reserving in non-life-insurance.
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In Section 2 we present the case for using GLMs and describe how they work. The quasi-
likelihood described in Section 3 may be used to extend the class of distributions considered some-
what. Tweedie’s class of distributions is the topic of Section 4, and we give an application in IBNR
estimation in Section 5.

2. GENERALIZED LINEAR MODELS

An important problem a non-life actuary faces in his daily practice is the following: given data
on a portfolio of risks classified by several characteristics, construct or analyze a rating system
for this portfolio. Econometricians would resort to multiple linear regression to identify and cal-
ibrate the underlying data-generating mechanism. To apply linear regression properly, the effects
of the covariates must be additive, the errors must be normally distributed, hence symmetric, and
their variance must not depend on the mean (homoscedasticity). But in insurance applications
(tariffs), the models used are generally multiplicative, hence linear only on the log-scale. Claim
numbers are generally Poisson, with a variance equal to the mean, or Poisson-like with ‘overdis-
persion’ (variance/mean is a constant larger than 1). These distributions are not symmetric and
heteroscedastic. Many softwares can perform Poisson regression. Claim amounts generally have
a density shaped like the gamma density. So there is no left-hand tail and a significant right-hand
tail, hence asymmetry. Often, rather than a constant variance, they exhibit a constant coefficient of
variation σ/µ. Claim totals can often be thought of as generated by a compound Poisson process,
with claim amounts as above. This means that they are neither continuous nor discrete. Then the
variance, as a function of the mean, might be modeled as proportional to µp for some p ∈ (1, 2).

Transformations of observations are frequently used in econometrics to try to make the data
better suited to the technique used. While this is OK in many situations, in insurance there is a
natural and fixed dimension to the problem: one needs the actual amount of the premium to be
asked or reserve to be held. And upon inverse transformation, desirable properties are often lost,
for instance, one must be careful to remove the resulting bias. Sometimes even consistency is
lost. Also, transformations do not solve everything. For instance if Y ∼ Poisson, then Y 1/2 has a
more or less constant variance, Y 1/3 has more or less skewness zero, but log Y has additive effects
instead of multiplicative. Actuaries tend to concentrate on predicting future values and on point
estimates of parameters (for the tariff), and often do not care so much if a model is statistically
valid.

A good way to overcome the problems mentioned is using the Generalized Linear Models
introduced by Nelder and Wedderburn (1972). GLMs are flexible enough to encompass a large
class of models applicable in actuarial statistics, yet their formulation is tight enough to allow the
existence of one algorithm for the maximum likelihood estimation of all of them. GLMs are more
helpful in actuarial statistics than ordinary multiple regression, since apart from normal distribu-
tions, GLMs explicitly allow Poisson, binomial, gamma and some other useful error distributions.
Also, GLMs allow linearity on other scales than the identity scale (logarithmic, logit, probit, re-
ciprocal and others). Note that in GLMs, not, e.g., E[log Yi] is taken linear on the covariate vector
xi, but log E[Yi].
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A GLM has the following three components:

1. A random component:
Independent observations Y1, . . . , Yn are available with a density from the exponential fam-
ily, parameterized by µi, i = 1, . . . , n (denoting the mean) and ψi (called the dispersion
parameter). Primary examples are:

• Normal(µi, ψi), with variance ψi(µi)0

• Poisson(µi, ψi), denoting multiples ψi times a Poisson(µi/ψi) random variable, with
variance ψi(µi)1

• compound Poisson r.v.’s with gamma claim severities, with for some 1 < p < 2,
variance ψi(µi)p

(Tweedie’s distributions; intensity and scale vary, the shape is fixed)

• gamma( 1
ψi
, 1
ψiµi

) distributions, having variance ψi(µi)2

• inverse Gaussian( 1
ψiµi

, 1
ψiµ2

i
) distributions, having variance ψi(µi)3

• binomial, and negative binomial, with varying p-parameter

2. A systematic component:
There is a linear predictor ηi =

∑
j xijβj for each observation i = 1, . . . , n; here, the matrix

X = ((xij)) is the design matrix with covariates; (β1, β2, . . . )
T is the parameter vector.

3. Random and systematic component of a GLM are connected through a smooth and invertible
link function: ηi = g(µi).

In matrix notation we simply have g(µ) = η = Xβ. In case of a logarithmic link function
η = logµ, or equivalently an exponential mean function µ = exp(η), we have linearity on the
log-scale, so a multiplicative model. A standard Linear Model has normal errors and an identity
link.

In fact, the observations in a GLM are assumed to be independent r.v.’s from an exponential
dispersion family, consisting of densities of the form

fY (y; θ, ψ) = exp

(
yθ − b(θ)

ψ
+ c(y;ψ)

)
, y ∈ Rψ. (1)

The range Rψ of the random variable may vary with ψ. The log-density having a term yθ/ψ
makes θ the ‘natural’ parameter. It only affects the mean: using the cumulant generating function
κ(t) = (b(θ + tψ) − b(θ)) /ψ with these densities, see for instance Kaas et al. (2001), Corollary
8.6.3, it is easily shown that µ = b

′
(θ) ∀ψ and σ2 = ψV (µ), with V (µ) = b

′′
(θ(µ)) the so-called

variance function. It can also be shown that when the functions b(.) and c(.; .) as well asψ are fixed,
the subfamily arising by taking different θ consists of elements that are all Esscher-transforms of
each other. A family with b, c and θ fixed and varying ψ can be generated by the operation of
taking sample means. See Kaas et al. (2001), Section 8.6.

It is generally assumed that the precision of the ith observation varies in a known way, as
when it is the mean of wi i.i.d. observations. The number wi is the natural weight, or exposure, or
credibility for observation i = 1, . . . , n. We take ψi = φ/wi, where the parameter φmay be known
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or unknown, but not a function of β1, β2, . . . ; it is a ‘nuisance parameter’, and ML-estimations of
µi will never depend on the value chosen for φ.

The fit criterion used in GLM theory for statistical inference is the loglikelihood ratio. In
case of normality, this is equal to the least squares distance to a ‘full’ model with a parameter for
every observation i. In case of Poisson, gamma and other distributions, it is equal to other suitable
distances between observations and fitted values. Analysis of residuals is performed by looking
at the contribution of individual observations to this or some other distance. Analysis of deviance
employs the scaled deviance −2 log Λ. Here Λ is the likelihood ratio: the likelihood of the current
model, divided by the one of a saturated model. Every test (Student, F and so on) that can be used
in ordinary linear models can be used asymptotically in GLMs.

Constructing a model involves determining covariates, link function and error type (variance
function). For choosing covariates, goodness of fit must be weighed against manageability. One
has the null model, in which all variation is random, the covariates have no influence; the only
parameter is the overall mean µ, and the number of parameters equals 1. On the other end of the
scale, there is the saturated or full model, ascribing all variation to the covariates; each observation
has its own parameter. Both are in general unsatisfactory, and one will have to find a suitable model
in-between.

The possible ‘fitted values’/‘predictions’ µ1, . . . , µn = g−1(η1), . . . , g
−1(ηn) are the image

under g−1 in R
n of a linear subspace with as dimension the number of parameters; we have η = Xβ

and µ = g−1(η).

3. QUASI-LIKELIHOOD

Consider the densities (1) for independent observations y1, y2, . . . , yn. Assume that there are pa-
rameters β1, β2, . . . leading to means µi and associated θi through the relations µ = g−1(Xβ) and
µ(θ) = b

′
(θ). Let ψ be of the form ψi = φ/wi for some fixed dispersion parameter φ and known

weights wi; the ith observation is an average of wi r.v.’s with mean µi and dispersion parameter φ.
Using the relations µ(θ) = b

′
(θ), therefore θ(µ) = (b

′
)−1(µ), as well as V (µ) = b

′′
(θ) = ∂µ/∂θ,

we see that for the loglikelihood 	 with a single observation of (1) we have:

∂	

∂µ
=
∂	

∂θ

∂θ

∂µ
=
y − b

′
(θ)

φ/w

/
b
′′
(θ) =

y − µ

φV (µ)/w
, y ∈ Rφ/w.

From this we see directly that for this observation, the maximum of 	 obtains when µ = y. The like-
lihood ratio Λ is the ratio of the maximized likelihood under a model resulting in means µ1, . . . , µn
(depending on parameters β1, β2, . . . ), divided by the one maximized without imposing any restric-
tions on the means, i.e., under the ‘full’ model, and therefore

log Λ = 	(µ1, . . . , µn) − 	(y1, . . . , yn) =
1

φ

n∑
i=1

wi

∫ µi

yi

yi − µ

V (µ)
dµ. (2)

The scaled deviance is just −2 log Λ, while D = −2φ log Λ is called the deviance.
Note that in formula (2) for the deviance, from the specific form of the density (1) only the

mean-variance relationship V (.) has remained. Tweedie (1984) has shown that there are expo-
nential families having V (µ) = µp for every p /∈ (0, 1). Performing the integration in (2) for a
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fixed variance function V (µ) = µp and dispersion parameter φ, we get expressions for the corre-
sponding deviance. For the case p = 0 we get the least-squares distance, corresponding to normal
distributions with a fixed variance:

D0 =

n∑
1

wi(yi − µi)
2.

For p = 1, we have the Poisson distributions. For the Poisson distribution proper, mean and
variance are equal (for w = 1), so φ = 1 should hold. But if we extend the class of r.v.’s studied
to multiples of φ times a Poisson(µ/φ) r.v., we still have a subclass of the exponential family, with
arbitrary µ, φ combinations. The resulting deviance for this case is (with the expression in brackets
equal to µi if yi = 0):

D1 = 2

n∑
1

wi

(
yi log

(
yi
µi

)
− (yi − µi)

)
.

For p = 2, the gamma case with a fixed coefficient of variation, we get

D2 = 2
n∑
1

wi

(
yi
µi

− log

(
yi
µi

)
− 1

)
.

For all p /∈ {1, 2}, we get the following general expression for the (quasi-)deviance:

Dp = 2

n∑
1

wi

(
y2−p
i − (2 − p)yiµ

1−p
i + (1 − p)µ2−p

i

(1 − p)(2 − p)

)
. (3)

Note that for p = 0 and in the limit for p→ 1 and p→ 2, Dp in (3) reduces to D0, D1 and D2. For
p = 3, the deviance D3 is the one associated with inverse Gaussian distributions.

Maximizing the likelihood with respect to β for the distributions corresponding to V (µ) = µp

is tantamount to maximizing these expressions Dp. Note that in the actual likelihood, an indicator
function appears, to reflect that y ∈ Rφ/w. When estimation is done maximizing (2) instead of
(1) (possibly also without the range constraints), one speaks of quasi-likelihood estimation. This
leads to ‘more’ distributions than before if multiples of discrete random variables are allowed,
such as in the case of so-called overdispersed Poisson random variables with a variance σ2 > µ
(underdispersion is a much less common phenomenon), but also if a mean-variance relationship
V (.) is used that does not occur in the exponential family. One example is V (µ) = µ2(1−µ)2, 0 <
µ < 1, for which the quasi-likelihood can be computed, but for which there is not an exponential
family distribution having this log-likelihood ratio. The quasi-likelihood can be shown to have
enough in common with ordinary log-likelihood ratios to allow many asymptotic results to still
remain valid. See for instance McCullagh and Nelder (1989), Chapter 9.

The scaled deviance can be regarded as a distance in R
n between the vector of predictions and

the vector of observed values. It is a sum of contributions for each observation taking into account
its size, the contribution getting reduced if the observation is large (the larger the observation, the
less precise, the less ‘credible’ it is).

Note that the deviance is measured in terms of the dispersion parameter φ. Also, the vari-
ance function determines the units of measurement for the deviance, so simply differencing these
discrepancy measures across variance functions is not feasible. To compare different variance
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functions V (µ) = µp it is necessary to widen the definition of quasi-likelihood. Following Nelder
and Pregibon (1987), we look at the extended quasi-likelihood, for this case defined as

Q+
p (µ1, . . . , µn, φ; y1, . . . , yn) = −1

2

n∑
i=1

log (2πφypi ) −
1

2
Dp(y1, . . . , yn;µ1, . . . , µn)/φ, (4)

where Dp is as defined above, and φ is the dispersion parameter; exp(Q+
p ) is in fact the unnormal-

ized saddlepoint approximation to the density for exponential families, see Barndorff-Nielsen and
Cox (1979).

Note that the estimates for the parameters β obtained by maximizing Q+
p as in (4) coincide

with the ML-estimates. The estimate of φ obtained by setting zero the partial derivative of Q+
p

with respect to φ is the mean deviance.
It is easy to show that, apart from a linear transformation with coefficients not depending on µ,

hence β1, β2, . . . , the extended quasi-likelihoodQ+
p in (4) is exactly equal to the likelihood in case

p = 0 or p = 3 holds. For p = 1 and p = 2, this is approximately the case; the approximation is
that in the likelihood, any factorial k! = Γ(k + 1) is replaced by Stirling’s approximation

Γ(y + 1) ≈ (2πy)1/2 yy e−y.

Sometimes, at the boundary with y = 0 it is preferable to replace Stirling’s approximation by

Γ(y + 1) ≈
(

2π

(
y +

1

6

))1/2

yy e−y.

See Nelder and Pregibon (1987), Section 4 for details.

4. TWEEDIE’S CLASS OF DISTRIBUTIONS

A subclass of the exponential family of distributions, named Tweedie’s class in view of Tweedie
(1984), with fixed b(·) and c(·; ·) functions and variable θ and ψ in (1) exists such that the variance
function is of the form V (µ) = µp for some exponent p ∈ (1, 2). It consists of compound distribu-
tions. Assume specifically that Y ∼ compound Poisson(λ) with gamma(α, β) claim sizes. To get
a family of distributions having mean λα/β = µ and variance λα(α + 1)/β2 = ψµp with µ > 0
and ψ > 0, it suffices that the parameters satisfy:

λ =
µ2−p

ψ(2 − p)
; α =

2 − p

p− 1
;

1

β
= ψ(p− 1)µp−1. (5)

Note that all claim sizes have common α, hence the same shape, dictated by the value of p; the
mean claim numbers and the scale vary to generate possible (µ, ψ) combinations. Clearly, it is
possible to make other choices leading to the same mean-variance relation, but only this one leads
to an exponential family subclass as desired.

We will demonstrate that for this particular choice of parameters (5), the mixed continu-
ous/discrete density of Y can be written as in (1), both for y = 0 and for y > 0. Of course



Compound Poisson distributions and GLMs 9

we have Pr[Y = 0] = e−λ, as well as

fY (y) = e−βy e−λ
∞∑
n=1

βnα

Γ(nα)
ynα−1 λ

n

n!
, y > 0. (6)

Now because of the choice in (5), λβα does not depend on µ, only on the parameter ψ and the
constant p. Therefore the sum in (6) depends on ψ and y, but not on µ. To establish the result that
(6) is of the form (1) with ‘natural’ parameterization, we define c(y, ψ) as the logarithm of that
sum, with c(0, ψ) = 1, and find θ by equating −β = θ/ψ as well as λ = b(θ)/ψ. This gives

θ = −βψ =
−1

(p− 1)µp−1
, so µ(θ) = (−θ(p− 1))−1/(p−1) , and b(θ) = λψ =

µ2−p

2 − p
.

Note that the cases of a Poisson multiple (p = 1) and a gamma variate (p = 2) can be obtained
as limits of this class. This fact may be verified by taking limits of the mgfs, or understood as
follows. If p ↓ 1, in the limit we get Poisson(µ/ψ) many claims that are degenerate on ψ. If
p ↑ 2, for the number of claims N we have E[N ] = λ → ∞, as well as α ↓ 0 in such a
way that λα → 1/ψ. Replacing Nα by λα, we see that the resulting limit distribution is the
gamma(1/ψ, 1/(ψµ)) distribution.

Actual distributions in the exponential dispersion family with a variance function V (µ) = µp

exist for all values p /∈ (0, 1). But for p ∈ (0, 1), still the quasi-likelihood can be maximized to
obtain parameter estimates.

Many situations in actuarial statistics lead to observations that can be modeled well by a
compound Poisson distribution, with a variance function ‘between’ V (µ) = µ (Poisson) and
V (µ) = µ2 (gamma). The negative binomial(r, p) distribution (r fixed) also has a variance func-
tion with that property, since here we have V (µ) = µ + µ2/r. This is a linear combination on the
identity scale; for Tweedie, it is on the log-scale.

5. EXAMPLE: AN IBNR PROBLEM

To illustrate the actuarial use of Tweedie’s class of distributions, we generated an IBNR-triangle
consisting of Tweedie distributed random outcomes. For this, we needed a way to generate gamma
pseudo-random deviates. A fast and simple way of doing this is Algorithm GS, to be found in
Ahrens and Dieter (1974). It works as follows. To draw from a gamma(ε, 1) density

f(x) =
1

Γ(ε)
xε−1e−x, x > 0,

with 0 < ε < 1, it employs a rejection method, using as a majorant

q(x) =
e

e + ε
εxε−1I(0,1](x) +

ε

e + ε
e−(x−1)I(0,∞)(x− 1).

It is easy to generate drawings from this mixture of densities. It can be achieved using the same
random drawing to decide if the r.v. is < 1 or > 1, as well as its actual outcome. Outcome x from
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j = 1 2 3 4 5 6 7 8 9 10

i = 1 4290 3094 1146 1388 294 189 42 11 4 12
2 3053 2789 682 1476 253 101 79 15 8
3 4389 2709 688 2050 353 266 109 48
4 4144 2046 1642 1311 549 160 70
5 2913 4079 1652 2501 395 221
6 5757 5201 1178 2486 580
7 4594 3928 1236 2730
8 3695 3688 1301
9 3967 4241

10 4933

Table 1: An IBNR triangle with Tweedie claim totals

q(·) is accepted as a drawing from f(·) with probability f(x)/Mq(x) ∈ [0, 1], where

M =
e + ε

eεΓ(ε)
.

To generate a gamma(k + ε, 1) drawing, we simply add k independent exponential(1) r.v.’s to the
result of the above procedure, and a gamma(k + ε, β) drawing of course results by dividing by β.
This may not be the fastest way to generate gamma deviates, but it is readily available to everyone,
and does not require too much programming effort.

To simulate an IBNR-problem, we used this method to generate drawings from Yij, i, j =
1, . . . , 10, i + j ≤ 11, having Tweedie distributions with mean µij = µricjγ

i−1δj−1 and variance
V (µ) = µpij . The parameter values chosen were p = 1.5, ψ = 2, µ = 1, γ = 1.03, δ = 0.9. The ri
were known relative exposures for each row, the cj given development factors (also in %) for each
column in the IBNR-triangle. In fact,

r = (100, 110, 115, 120, 130, 135, 130, 140, 130, 120);

c = (30, 30, 10, 20, 5, 3, 1, 0.5, 0.3, 0.2).

The resulting IBNR-triangle is given in Table 1. To estimate the parameters γ, δ and µ we used
Stata, with a log-link and with a user-written power variance function V (µ) = µp, generating a
deviance Dp as given in (3). Note that this triangle looks convincingly like an incremental IBNR-
triangle for total claims such as they occur in practice, except for the fact that it does not exhibit
the bothersome negative numbers that most IBNR-models preclude but practice tends to generate
anyway. In Table 2, we find the estimation results with some values of p. We list the estimated
dispersion coefficient and the value ofQ+

p , computed through (4). Also, we computed the resulting
estimate for the IBNR-reserve to be held, which is equal to the sum over i, j = 1, . . . , 10, i+j > 11
of all predicted values µ̂ij = µ̂ricjγ̂

i−1δ̂j−1, hence for the lower right triangle in Table 1. Note that
the value of φ̂ varies very strongly with p, being about right only for p close to the actual value 1.5.
The extended QL is maximal for p ≈ 1.8, but the actual value p = 1.5 leads to an acceptable value
as well. The reserve to be held is not overly sensitive to the value of p, just as, it turns out, are the
parameter estimates γ̂, δ̂ and µ̂. Observe that the required reserve increases with the exponent p.
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p φ̂ Q+
p Reserve

1.0 78. −399 17287
1.1 36. −393 17290
1.2 17. −388 17295
1.3 8.0 −383 17307
1.4 3.8 −379 17329
1.5 1.9 −375 17369
1.6 .94 −372 17434
1.7 .49 −370 17535
1.8 .26 −369 17689
1.9 .15 −370 17912
2.0 .09 −373 18232

Table 2: Estimation results for the data in Table 1

The maximum extended quasi-likelihood estimate of the reserve equals 17689. The ML-
estimate will be close to this value, but to compute it, values of (6) would have to be evaluated.
While this is certainly doable, we point out that for our computations, we only needed to pro-
vide the standard software Stata with a subroutine to compute the quasi-deviance (3) for a power
variance function V (µ) = µp, and do the calculations for a few selected values of p.
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Abstract

Credit derivatives are an important meeting ground for actuarial and financial mathematics.
This article is a brief introduction to the pricing of portfolio credit derivatives. We survey
some of the stochastic methods currently used. These are illustrated with several of the main
applications in portfolio credit derivatives such as the pricing of CDO and CDO2 tranches.

1. CREDIT AT THE INTERSECTION BETWEEN DERIVATIVES AND INSURANCE

Credit derivatives occupy a unique position at the intersection between derivatives and insurance.
The most liquid and basic credit derivative, the default swap, is an insurance contract between two
counterparties on the credit risk of a reference entity. The protection buyer pays a regular premium
until default or maturity of the trade, which is known as the default swap spread and is quoted on
an annualized basis in basis points, i.e. hundredths of a percent of the trade notional. In return, the
protection seller protects the buyer against the economic loss on the reference entity’s bonds in the
event of a default. At default, the contract is either subject to cash or physical settlement. In the
case of physical settlement, the protection buyer delivers defaulted bonds to the seller and receives
their par value in return. In the case of cash settlement, the protection seller pays the difference
between par and the bonds’ observed recovery rate, i.e. post-default price to the buyer. This is a
typical insurance contract. In return for a (relatively) small premium, the protection buyer insures
against a rare, but potentially large loss.

The digital nature of credit payouts highlights risks that are not so central to other derivative con-
tracts, this has caused the market to evolve. Maturity mismatches are an important source of risk,
and the market has evolved mitigation mechanisms against this. Protection on a new default swap
contract commences at T + 1 calendar days after the trade date T . This is in contrast to other
markets where settlement periods are usually expressed in business days to facilitate clearing and
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other back-office operations. This is particularly important, as credit relevant information is fairly
often revealed when markets are closed. Similarly, default swaps are traded to fixed maturity dates.
The so-called “IMM” dates are the 20th of March, June, September and December. This reduces
maturity mismatches between different long and short positions and significantly facilitates the
management of a default swap book.

Default swaps derive their importance not only from their role as insurance contracts, they are also
the basic hedging tool for more complex credit derivatives. The exposures stemming from syn-
thetic CDO tranches, CDO2 trades, default swaptions, etc are all dynamically managed by credit
derivative dealers using default swaps. In the context of a trading book, positions are continually
marked to market. This means that sensitivities to spread movements are particularly important,
more so as a derivative position can mutate from asset to liability and vice versa as the market
moves. The nature of counterparty risk also becomes very different: contracts do not just cancel if
the premium is no longer paid. Rather, the contract is marked to market and needs to be unwound.
If the non-defaulting party is in the money, the market value of the contract becomes an unsecured
claim on the defaulting counterparty. In particular, the seller of protection is also exposed to coun-
terparty risk if the market tightens.

The standard approach to bootstrapping credit curves is to take a completely reduced-form view
of the default event. The default time τ is a random variable with a distribution modelled via the
hazard rate λ by specifying the conditional default probability as

P [τ ≤ t+ ∆t| τ > t] = λ(t)∆t. (1)

The hazard rate λ is closely related to the credit spread. In the simple approach, it is treated
as a deterministic function. More sophisticated models specify λ as a stochastic process. The
unconditional survival probability Q(0, t) to time T is obtained by integrating equation (1):

Q(0, T ) = P [τ > T ] = exp

(
−
∫ T

0

λ(s)ds

)
.

On default, we assume that the loss is 1 − R, where R is a fixed recovery of par. The hazard rate
is calibrated to default swap spreads, which are the actual market observables. Because spreads
aggregate loss likelihood and severity, we need to disentangle these two aspects. The protection
leg is priced by integrating

Prot = (1 − R)

∫ T

0

B(0, t)Q(0, t)λ(t)dt. (2)

Ignoring the issue of coupon accrual, the premium leg is the price of a risky annuity, also known as
the risky PV01 (present value of a basis point). It is obtained by summing over the risky discount
factors for the coupon dates T1, . . . , Tn. Denoting the accrual factor for each coupon period by αi,
we have

Prem =

n∑
i=1

αiB(0, Ti)Q(0, Ti). (3)
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The protection and premium leg values are not uniquely determined by the breakeven market
spread because

s =
Prot
Prem

≈ (1 − R)
∑M

m=1B(0, tm) (Q(0, tm−1) −Q(0, tm))∑n
i=1 αiB(0, Ti)Q(0, Ti)

.

In particular, different hazard rate curves can give the same default swap spread. Default probabil-
ities are model-dependent quantities that depend quite strongly on the recovery rate assumptions
that are used, and to a lesser extent on the interpolation methodology. Nevertheless, no-arbitrage
links spreads, recovery rates, and default probabilities. A very useful approximation, the so-called
credit triangle, can be derived by assuming a constant hazard rate and a continuously paid spread:

s ≈ λ(1 −R).

For example, a spread of 90bp and a recovery rate of 40% imply an annual default probability of
approximately λ = 1.5%. Using the credit triangle, one can compute the market value of protection
bought at a spread of s0:

MTM = (s− s0)
n∑
i=1

αiB(0, Ti)e
− sTi

1−R .

The recovery sensitivity of this MTM is quite low, particularly if the current market default swap
spread s has not moved far away from s0. This is good news if one is worried about marking a
default swap book correctly. On the other hand, it implies that default swaps do not actually help
us in disentangling default and recovery rate risk. The most certain thing about recovery rates is
their uncertainty. The best data sources are the rating agencies or perhaps internal ratings, from
a credit derivatives perspective one usually has to make fairly broad assumptions, for example a
recovery rate of 40% for senior unsecured debt of investment grade companies.

After default swaps, synthetic CDO tranches are the most broadly traded credit derivatives. The
insurance character is similar, the protection seller takes exposure to a band of losses to a given
reference portfolio. The band is defined by a lower and an upper strike, K1 and K2, which are
expressed as a percentage of the total portfolio notional. If LT is the cumulative percentage loss to
the portfolio, the percentage loss to the tranche is

LtrT =
[LT −K1]

+ − [LT −K2]
+

K2 −K1

. (4)

The protection seller receives a spread s on the outstanding notional of the tranche. Once the
portfolio losses exceed K1, the seller makes a protection payment every time there is a loss, the
notional of the tranche is reduced, and the tranche spread is only paid out on this reduced notional
going forward. An important concept for CDO tranche pricing is the so-called tranche “survival
probability” Qtr(0, T ), which is the expected outstanding notional of the tranche

Qtr(0, T ) = 1 − E
[
[LT −K1]

+]−E
[
[LT −K2]

+]
K2 −K1

. (5)
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With this, the protection and premium legs of the tranche swap become analogous to a single-name
default swap, see equations (2) and (3):

Prot = −
∫ T

0

B(0, t)dQ(0, t)

Prem = s
n∑
i=1

αiB(0, Ti)Q
tr(0, Ti).

Equation (5) shows that tranche survival probabilities are effectively call spreads on the cumula-
tive portfolio loss. This non-linearity explains why CDO tranches are correlation instruments, they
depend not only on the overall risk in the portfolio (determined by E [LT ]), but also critically on
the tendency of different credits to default (and survive) together. Hence, the main effort when de-
veloping portfolio credit models for tranche pricing is directed towards modelling the dependence
structure between the different reference credits.

2. STOCHASTIC MODELLING TECHNIQUES

Equation (5) also implies that we need to concentrate on modelling cumulative portfolio loss dis-
tributions. We fix a time horizon T , each credit j defaults with probability pj . One modelling
framework is the so-called latent variable approach. With each credit j, we associate a random
variable Aj, such that the credit defaults if Aj falls below a threshold Kj . The value of Kj is
calibrated to the marginal default probability pj :

P [Aj ≤ Kj ] = pj . (6)

The marginal distribution of Aj is only used to calibrate the threshold, default dependence is gen-
erated by the dependence structure of A1, . . . , AM . Given this very general framework, there are
still many ways to model the dependence between credits, of which we mention a few. A very pop-
ular approach is so-called times-to-default (TtD) modelling. For each credit, the basic modelling
object is the random default time τj . It is generated by transforming the latent variable Aj via the
marginal distribution function Fj . The famous Gaussian copula variant of this model, introduced
by Li (2000), is obtained by choosing A1, . . . , AM as multivariate normal and setting

τj = F−1
j (Φ(Aj)) .

This specification immediately fits into the framework of equation (6) with Kj = Φ−1(pj). The
TtD approach with a Gaussian copula is very tractable, but it also has fairly severe flaws. The de-
pendence structure between credits is highly time-inhomogeneous, and the model does not produce
realistic spread dynamics. It needs to be adjusted to match observed CDO tranche prices, i.e. fit to
the “correlation smile”. Nevertheless, it has become a de facto market standard. A more dynamic
approach is achieved by defining a credit index process Xj for each credit j: default occurs at the
first time Xj hits a time dependent barrier. This was originally proposed by Black and Cox (1976)
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and has more recently been revived by Hull and White (2001). A somewhat different approach
uses the Cox process framework. Defaults are generated by jumps of point processes which are
given as time changes of independent Poisson processes via dependent stochastic hazard rates.
However, to produce realistic CDO tranche spreads, one needs to introduce jumps in the hazard
rates or other feedback effects, because correlated diffusions do not generate sufficient levels of
default dependence.

Despite the existence of a multitude of modelling approaches, several mathematical ideas have
proven themselves very powerful in dealing with the high dimensionality inherent to credit portfo-
lio analysis: conditional independence, asymptotic methods and semi-asymptotic sensitivity cal-
culations.

2.1. Conditional Independence

Conditional independence is the idea that, conditional on some mixing variable η the credits in the
portfolio are independent. The simplest example of this is the one-factor Gaussian copula, where
each credit’s N (0, 1) distributed latent variable Aj is given by

Aj = βj ZMkt +
√

1 − β2
j Zj, (7)

and the variables ZMkt, Z1, . . . , ZM are i.i.d N (0, 1). Conditional on the market factor ZMkt, all
the credits are independent. In general, the conditional loss distribution is binomial and the uncon-
ditional loss distribution is obtained by integrating over η. Particularly in the one-factor framework,
this is a straightforward numerical integration. A lot of research effort has been put into finding
methods of computing the conditional loss distributions efficiently. Popular techniques include
Fourier transforms, recursion techniques, as well as saddlepoint and other analytical approxima-
tions. The recursion method is particularly intuitive: for simplicity, we assume that each credit
generates the same loss at default, so that the loss distribution can be expressed in integer multi-
ples of an underlying loss unit. Denote the conditional default probability of credit j by p j. For
each n ∈ {0, 1, . . . ,M}, L(n) is the conditional portfolio loss after n credits have been added to
the portfolio, and p(n)

k = P
[
L(n) = k

]
. The start of the recursion is clear, because p(0)

0 = 1 and

p
(0)
k = 0 for k > 0. The recursion step is

p
(n)
k+1 = p

(n−1)
k+1 (1 − pn) + p

(n−1)
k pn, (8)

with p(n)
0 = p

(n−1)
0 (1 − pn). Note that each credit makes a “default” and a “survival” contribution.

When pricing a tranche, we can pick out the slice of the loss distribution we are interested in,
depending on the strikes of the tranche. To compute sensitivities, we can use equation (8) to
quickly unwind a step of the recursion. Because conditional default probabilities can be very
small, numerical stability is key. Hence one needs to anchor the recursion either at a zero loss or
the maximum loss.
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2.2. The LHP Approximation and Semi-Asymptotic Extensions

Another important stochastic tool for the analysis of credit portfolios is the so-called Large Ho-
mogeneous Portfolio (LHP) approximation. This was introduced in a Gaussian context by Vasicek
(1987), see also Vasicek (2002). In the conditional independence framework, one assumes the
portfolio consists of equally-weighted homogeneous assets with default probability p(η). As the
number M of credits tends to infinity, the fraction of credits defaulting converges to p(η) by the
Law of Large Numbers. For simplicity, assume that recovery rates are zero, then the fractional loss
of the portfolio also converges to p(η). In the LHP approximation, we assume that the conditional
loss is actually p(η). We are replacing the conditional loss distribution with its conditional expec-
tation, i.e. matching the first moment of the conditional loss distribution with a point mass. The
great advantage of the LHP approximation is that it often gives analytical formulae and is therefore
very useful in developing intuition for a given dependence structure. Since the original work Va-
sicek (1987), Schönbucher (2004) has applied the LHP approximation to some of the Archimedean
copula family, Schloegl and O’Kane (2005) have analyzed the Student-t copula. In the Gaussian
case, we start from equation (7). The default probability p and the correlation parameter β are
common across all credits, the default threshold C is given by C = Φ−1(p). Assuming β > 0, we
can compute the unconditional loss distribution to be

P [L ≤ θ] = Φ

(√
1 − β2 Φ−1(θ) − Φ−1(p)

β

)
.

Because the LHP approximation assumes that the portfolio is homogeneous, it is not well suited
to computing sensitivities to changes in individual issuer characteristics. A way to deal with this is
via so-called semi-asymptotic methods. In a given portfolio, we model the credit we are interested
in exactly, while treating the rest of the portfolio asymptotically. Emmer and Tasche (2003) use
this approach to compute risk capital contributions. Lehman Brothers has utilized this method for
computing sensitivities in a model we call LHP plus one asset, or LH+ for short, cf. Greenberg
et al. (2004). To compute a stop-loss transform E [[L−K]+] for a given strike K, it is possible
to identify thresholds A < B for the market factor which determine whether the single credit is
relevant for crossing the strike or not. Extending the LHP analysis then gives a formula in terms
of bi- and trivariate normal distributions.

E
[
[L−K]+

]
= KΦ2,β0(C0, A) + (N0 −K)Φ2,β0(C0, B)

+N [Φ2,β(C,A) + Φ3,Σ(C0, C, B) − Φ3,Σ(C0, C, A)] . (9)

Computing the spread delta effectively entails differentiating equation (9) with respect to the indi-
vidual credit’s default threshold C0. This reduces the trivariate normal distribution to a bivariate
one, giving a very tractable formula for the spread sensitivity. Further computational enhance-
ments can be achieved by modelling the conditional loss distribution more exactly. One would
immediately think of a Central Limit Theorem argument, i.e. matching the first two moments of
the conditional loss distribution by fitting a normal distribution, as has been proposed by Finger
(1999). However, the Central Limit Theorem can easily be a false friend in credit modelling, as
we are dealing with rare events and are often concerned with the tail of the distribution. In fact, we
have found that fitting a simple two-point distribution to the conditional loss by matching moments
gives better results than a Gaussian approximation in the LH+ context.
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2.3. CDO2 Pricing

An interesting application of the modelling techniques we have discussed is the pricing of CDO2

structures. The fundamental underlying to such a structure is a large pool of credits, the main
constraint here is number of entities liquidly traded in the CDS market. The individual credits
are assigned to different miniportfolios. The miniportfolios do overlap and the weighting of a
particular credit is specific to each miniportfolio. A bespoke CDO tranche is chosen for each mini-
portfolio, and these minitranches form the reference set of a new structure, the synthetic CDO2.
Finally, a bespoke supertranche is selected from the squared structure. Of course, losses to the su-
pertranche depend on losses affecting the minitranches, which in turn depend on the joint default
behaviour of the individual credits. The seller of supertranche protection covers the losses affecting
the supertranche, just as in a standard CDO tranche. Similarly, the contractual spread paid to the
seller is based on the outstanding notional of the supertranche. The loss Ltri to the ith minitranche
is a function of the loss to the ith miniportfolio as shown in equation (4). The percentage loss Lsp

to the superportfolio is given as

Lsp =

∑N
i=1N

(i)Ltri
Ntot

.

Finally, the supertranche loss is given by

Lst =
[Lsp −Kst]

+ − [Lsp − (Kst + wst)]
+

wst
. (10)

Equation (10) shows that the supertranche loss is a compound option on the joint distribution of all
the miniportfolio losses L1, . . . , LN . This poses two challenges. Even if the individual credits are
independent, L1, . . . , LN are not because of the overlap of the miniportfolios. Also, even if one has
a very tractable model for the joint distribution of L1, . . . , LN , one still needs to price a compound
option. Naively treating the minitranches as effective CDS with some correlation is doomed to
failure, as it is unclear which correlation to use. This is because tranches are highly non-linear
payouts and some of the dependence stems from contagion between credits (this is captured by a
factor model), whereas another part stems from the overlap between miniportfolios. Finally, the
effective correlation is a function of the minitranche subordination. Senior tranches are more ex-
posed to systemic risk, hence behave in a more correlated fashion.

One method to price CDO2 tranches is to extend the recursion technique to higher dimensions,
as shown in Baheti et al. (2005). Let us assume for simplicity that we are in the two-dimensional
case, i.e. the superportfolio contains two minitranches. The conditional probability of joint losses
after n credits is denoted by pnk1,k2 . We add credits recursively with default probability πj and loss
weights of λji . Each credit makes a survival and a default contribution. We have both if k1 ≥ λn+1

1

and k2 ≥ λn+1
2 . In this case the recursion is

pn+1
k1,k2

= (1 − πn+1) p
n
k1,k2 + πn+1 p

n
k1−λn+1

1 ,k2−λn+1
2
.

Other points of the joint loss distribution only have a survival contribution

pn+1
k1,k2

= (1 − πn+1) p
n
k1,k2

.
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The main limitation of this approach is the fact that the probability space, and hence memory
requirements, grow exponentially with the number of miniportfolios. The method is useful for
relatively medium scale structures (around 7 minitranches), and also for many different similar
products. For dealing with higher dimensional cases, other methods are needed. One approach is
to condition on the market factor, simulate the joint loss distribution of L1, . . . , LN , and evaluate
the compound option via Monte Carlo. The moments of the conditional distribution are easy to
calculate, because the individual credits are independent.

E [Li|Z] =
M∑
k=1

(1 −Rk)wi,k pk(Z) (11)

cov (Li, Lj |Z) =

M∑
k=1

(1 −Rk)
2wi,k wj,k pk(Z) (1 − pk(Z)) . (12)

One way of accelerating the conditional Monte Carlo simulation is to use equation (11) and (12)
to fit a multivariate normal distribution to the conditional losses. However, as mentioned before,
one has to be wary of the Central Limit Theorem as a false friend in this type of application.

3. A BRIEF OUTLOOK

In the previous section we have detailed some of the stochastic techniques currently useful in credit
derivatives pricing and have illustrated some of their applications. We have not discussed the very
important topic of the correlation smile, i.e. the deviation between the market pricing of tranches
and the simple Gaussian copula. Practitioners are very much searching for models which fit the
observed market prices in the best possible manner. Also, in terms of modelling, one really needs
to move beyond the simple times-to-default framework. It is too static, induces counterintuitive
time-inhomogeneities and hence produces unrealistic spread dynamics. In fact, the challenge to all
researchers in the credit derivatives field is to think more dynamically about modelling credit risk
and portfolio credit derivatives. This will allow us to develop models which produce more realistic
spread dynamics.
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Abstract

This work present a structural model for credit derivatives pricing. The firm asset value is
assumed to follow the exponential of a L´evy process and default is triggered by the crossing of
a predetermined barrier. This approach thus includes asymmetries, fat tails and instantaneous
default.

In the case of the variance gamma L´evy process, we show how to price Credit Default
Swaps (CDS) par spreads. The pricing is based on the numerical solution of a partial integral
differential equation. The model is calibrated to different market CDS term structures.

1. INTRODUCTION

Equity pricing techniques have been used to assess credit risk since the development of structural
models by Merton (1974) and by Black and Cox (1976). Merton defines an event of default to
occur when the value of equity drops to zero. In contrast, Black and Cox’s model default through
an exogenous default barrier. With the Merton approach corporate bonds are treated as American
style derivatives; in the Black and Cox approach corporate bonds are barrier style products. In the
later, refer to as the Gaussian case, the asset value is modeled by a geometric Brownian Motion.
Numerous extensions or modifications of both types of models have been developed. An example
is given by CreditGradesTM (RiskMetrics (2002)), which also assumes the asset price to follow a
geometric Brownian motion. Default is defined here to occur if the asset value hits a low barrier,
which is made stochastic to allow for higher default probabilities. The assumption of Brownian
motion does not describe properly the distributions typically observed on the market, which are
asymmetric and leptokurtic. Moreover the stochasticity of the barrier leads to the fact that one can
have default even before one has started and leads to a unrealistic spread curve for the short-term.

This work presents a structural model where the asset price process is described by an expo-
nential of a pure jumps L´evy process. Default is triggered by the crossing of a predetermined low
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barrier. Our model takes into account asymmetries and fat-tail behaviors and incorporates instan-
taneous default through jumps. L´evy based models have already proven their capabilities in equity
models (Schoutens (2003)) and fixed income models (Eberlein and Raible (1999)). Other models
that add jumps in the dynamics of the firm value are by Zhou (2001), Zhou (1997) and Hilberink
and Rogers (2002). The rest of the paper is organized as follows. In the next section, we present
Lévy processes, focussing on the VG process. In Section 3, we present our L´evy default model
and relate CDS spreads to the prices of binary barrier options. Section 4 reports on numerical
experiments, focussing on computational issues, on the sensitivity of the model to its parameters
and on the model calibration. The last section concludes.

2. LÉVY SETTINGS

2.1. Lévy processes

Supposeφ(z) is the characteristic function of a distribution. If for every positive integern, φ(z) is
also thenth power of a characteristic function, we say that the distribution is infinitely divisible.
One can define for every such an infinitely divisible distribution a stochastic process,X = {Xt, t ≥
0}, called Lévy process, which starts at zero, has independent and stationary increments and such
that the distribution of an increment over[s, s + t], s, t ≥ 0, i.e. Xt+s − Xs, has(φ(z))t as
characteristic function.

The functionψ(z) = log φ(z) is called thecharacteristic exponent and it satisfies theLévy-
Khintchine formula Bertoin (1990):

ψ(z) = iγz − ς2

2
z2 +

∫ +∞

−∞
(exp(izx) − 1 − izx1{|x|<1})ν(dx),

whereγ ∈ R, ς2 ≥ 0 andν is a measure onR\{0} with
∫ +∞
−∞ (1 ∧ x2)ν(dx) < ∞. We say that

our infinitely divisible distribution has a triplet of L´evy characteristics[γ, ς 2, ν(dx)]. The measure
ν(dx) is called theLévy measure of X.

From the Lévy-Khintchine formula, one sees that a L´evy process consists of three independent
parts: a linear deterministic part, a Brownian part, and a pure jump part. The L´evy measureν(dx)
dictates how the jumps occur. Jumps of sizes in the setA occur according to a Poisson process
with parameter

∫
A
ν(dx).

2.2. The VG Process

The characteristic function of the VG law with parametersσ, ν, θ is given by

φV G(u; σ, ν, θ) = (1 − iuθν + σ2νu2/2)−1/ν

The corresponding L´evy measureνV G of the VG(σ, ν, θ) law is given by:

νV G(dx) =

{
C exp(Gx)|x|−1dx x < 0
C exp(−Mx)x−1dx x > 0

,
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where

C = 1/ν > 0

G =

(√
θ2ν2

4
+
σ2ν

2
− θν

2

)−1

> 0

M =

(√
θ2ν2

4
+
σ2ν

2
+
θν

2

)−1

> 0.

The VG processX (V G) = {X(V G)
t , t ≥ 0} is a Lévy process where the incrementX (V G)

s+t −
X

(V G)
s over the time interval[s, t+ s] follows a VG(σ, ν/t, tθ) law:

E[exp(iuX (V G)
t )] = φV G(u; σ

√
t, ν/t, tθ)

= (φV G(u; σ, ν, θ))t

= (1 − iuθν + σ2νu2/2)−t/ν .

A VG-process has no Brownian component and its L´evy triplet is given by[γ, 0, νV G(dx)],
where

γ =
−C(G(exp(−M) − 1) −M(exp(−G) − 1))

MG
.

Whenθ = 0 thenG = M and the distribution is symmetric. Negative values ofθ lead to the
case whereG < M , resulting in negatively skewness. Similarly, the parameterν = 1/C primarily
controls the kurtosis.

3. CDS PRICING UNDER VG SETTING

We assume we have to our disposal a risk-free bondB = {Bt, t ≥ 0} with price process

B = {Bt = exp(rt), t ≥ 0}.
Furthermore, we model the firm value,S = {St, t ≥ 0}, by an exponential of a VG process.

More precisely, we assume the following dynamics

St = S0 exp((r − q)t+Xt + ωt),

whereS0 > 0 is the initial asset value,r is the constant continuously compounded interest rate,q
is the asset continuous dividend yield andX = {Xt, t ≥ 0} is a VG process. The risk-neutral drift
rate for the asset isr − q and thus, to haveE[St] = S0 exp((r − q)t), we have to set

ω = ν−1 log

(
1 − 1

2
σ2ν − θν

)
.

For pricing of equity options under this model see e.g. Madan et al. (1998) or Schoutens (2003)
for the European case; the pricing of equity options of an American nature is developped by Hirsa
and Madan (2003).
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We define a default event to occur the first time the asset valueSt crosses a deterministic barrier
H which corresponds to the recovery valueR of the firm’s debt (cfr. Black and Cox (1976), Leland
(1994), Longstaff and Schwartz (1995) and the CreditGradesTM model (2002)).

The risk-neutral probability of no-default between0 andt, P (t), is given by:

P (t) = PQ (Ss > H, for all 0 ≤ s ≤ t) ;

= PQ

(
min
0≤s≤t

Ss > H

)
;

= EQ

[
1

(
min
0≤s≤t

Ss > H

)]

where1(A) is equal to1 if the eventA is true and0 otherwise; the subindexQ refers to the fact
that we are working in a risk-neutral setting.

CDS provide an insurance against the defaulting of a company. The buyer of this protection
pays a continuous spread,c, to the seller until the maturityT , unless default occurs. In this case,
the buyer delivers a bond on the underlying defaulting asset in exchange for its face value. The
price of a CDS is given by:

CDS = (1 −R)

(
−
∫ T

0

exp(−rs)dP (s)

)
− c

∫ T

0

exp(−rs)P (s)ds,

The par spreadc∗ that makes the CDS price equal to zero is:

c∗ =
(1 −R)

(
− ∫ T

0
exp(−rs)dP (s)

)
∫ T
0

exp(−rs)P (s)ds

=
(1 −R)

(
1 − exp(−rT )P (T ) − r

∫ T
0

exp(−rs)P (s)ds
)

∫ T
0

exp(−rs)P (s)ds

Let us denote by

BDOB(T, L) = exp(−rT )EQ

[
1

(
min

0≤s≤T
Ss > L

)]
,

the price of a binarydown-and-out barrier option with maturityT and barrier levelL; its payout
is 1 if S remains above the barrier during the lifetime,0 otherwise. Since

BDOB(T, L) = exp(−rT )P (t),

the par spreadc∗ can be rewritten in terms of the BDOB prices as:

c∗ =
(1 − R)

(
1 −BDOB(T, L) − r

∫ T
0
BDOB(s, L)ds

)
∫ T
0
BDOB(s, L)ds

.

In Cariboni and Schoutens (2004) it is shown that the price of the BDOB option can be estimated
either via Monte Carlo (MC) simulation of the VG process (Schoutens (2003)) or via numerical
solution of a partial integral differential equation (PDIE) based on the work of Hirsa and Madan
(2003).
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Figure 1: Comparison between MC and PDIE spreads for different values of the barrier.

4. NUMERICAL EXPERIMENTS

We price a BDOB and a CDS spread with time to maturity ofT = 1 year. We setS0 = 100,
H = 50, r = 0.0421, andq = 0. The VG-parameters used are:

σ = 0.20722, ν = 0.50215, θ = −0.22898.

For the CDS we assume a recovery rateR = 0.5.

Model M N c∗ (in bp) BDIB cpu (in sec)
PDIE VG 100 100 129 0.0245 0.69
PDIE VG 150 150 131 0.0249 1.56
PDIE VG 200 200 132 0.0251 2.94
PDIE VG 250 250 132 0.0252 4.91
PDIE VG 500 250 132 0.0253 9.59
PDIE VG 250 500 132 0.0253 13.37
Model iterations N c∗ (in bp) BDIB cpu (in sec)
MC VG 10000 250 122 0.0233 268
MC VG 100000 250 132 0.0252 2198
MC VG 500000 250 132 0.0251 11040
MC VG 1000000 250 132 0.0253 22059

Table 1:c∗ and BDIB prices.

In Table 1 we compare PDIE results with the ones obtained via MC simulation. In the PDIE
approachN denotes the number of time steps taken (per year);M denotes the number of points
in the log-strike dimension. Taking the MC price obtained by a million iterations as a very good
proxy of the true price, meshes sizes greater thanN = 200 andM = 200 for the PDIE algorithm
give very accurate results in acceptable cpu times. Figure 1 shows the comparison between MC
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Figure 2: Kurtosis and skewness sensitivity: default probabilities and cds spreads.
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Figure 3: Calibrations for Allstate. The o-signs are the market quotes, the solid bold line is the
best fit for the PDIE, the solid is the Gaussian case and the dotted and dashed ones refer to the
CreditGradesTM calibration respectively on(β, γ = 0.3) and on(β, γ).

and PDIE spreads for a different set of parameters (σ = 0.08, θ = −0.15 andν = 1.5) and four
different values for the barrier (namelyH = 30, 40, 50, 60). Higher curves correspond to higher
values of the barrier. Solid lines are obtained through the PDIE approach, dotted ones by using
MC simulation. The maximum relative difference between MC and PDIE spreads is lower than
1% for all time horizons and all barrier values.

We investigate the sensitivity of the model to the VG parameters by varying the kurtosis param-
eterν (Figure 2, top plots) and the skewness parameterθ (Figure 2, bottom plots). Higher kurtosis
(i.e. higherν’s) and more negative skewness (i.e. smallerθ’s) result in higher default probabilities
and higher par spreads.

The model capabilities are finally tested by a calibration exercise to a series of CDS term
structures, taken from the market as of the 26th of October 2004 (source Goldman Sachs). The
Lévy model (VG), the Gaussian and the CreditGradesTM have been calibrated, as follows:

• Calibration of the VG model (using PDIE) on theσ, θ andν VG parameters. Table 2 gives
the optimal VG-parameters obtained through the calibration.

• Calibration of CreditGradesTM on the asset volatilityβ, which is the only parameter free to
vary in the original model. The barrier volatility in set toγ = 30%.

• Calibration of CreditGradesTM model onβ and the barrier volatilityγ.

• Calibration of the Gaussian model, this corresponds to the CreditGradesTM model with free
β andγ = 0.

In all cases we use the Nelder-Mead simplex (direct search) method to minimize the difference
between market CDS prices in the least-squares sense, i.e. we minimize the root mean square error
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Company σ ν θ rmse ape
Mbna Insurance 0.1141 2.2507 -0.0517 2.33 2.10 %
Wells Fargo 0.0182 2.2513 -0.0609 3.76 7.81 %
Wal-Mart 0.0465 0.4199 -0.1697 2.13 5.08 %
Merrill Lynch 0.1446 2.9404 -0.0008 2.15 2.44 %
Allstate 0.0645 2.0886 -0.0665 1.68 1.96 %
Amgen 0.1528 3.1698 0.0018 1.80 2.40 %
Ford Credit Co. 0.2041 0.9644 -0.0851 2.67 0.58 %
Wyeth 0.0111 0.7712 -0.1716 7.22 3.94 %
Autozone 0.2080 1.0109 0.0060 3.92 1.65 %
Bombardier 0.3553 2.8132 -0.0824 10.62 1.00 %

Table 2: Optimal VG parameters from the calibration on market CDS term structure.

(rmse). Results are given in Table 3, which lists the market CDS spreads and the optimal values
obtained from the calibrations. We also compute theape, an overall measure of the fit quality:

ape =
1

mean CDS spread

∑
spreads

|Market spread− Model spread|
number of spreads

VG fits are almost always better than CreditGradesTM fits, especially for short time periods. It
is also clear that the calibration of the Gaussian case is completely missing the market feature.
Finally the CreditGradesTM calibration on two parameters (β andγ) typically results in better fits,
but is problematic for very short maturities. Figure 3 plots the results of the calibrations for the
Allstate insurance company. The market quotes are represented by the o-signs, the bold line is the
VG best fit while the other lines show the CreditGradesTM calibrations. Specifically the solid line
refers to the calibration in the gaussian case while the dotted and dashed lines refer respectively to
the calibration onβ and the calibration onβ andγ.

5. CONCLUSIONS

In this work we have proposed a new structural model to price credit derivatives. We have assumed
the asset price to follow the exponential of a pure-jump L´evy process and defined an event of
credit default as the first crossing of the firm value of a preset barrier. The underlying distribution
in Lévy models can be asymmetric and leptokurtic, matching typically observed empirical asset
distributions. Moreover, the presence of jumps allows for unexpected default, which is instead
introduced artificially, e.g. via a stochastic barrier, in continuous path models. Under this structural
model, we have calculated the survival probability for the firm by relating it to the price of a binary
down-and-out barrier option. For the variance gamma process we have tested the capabilities of
our model by pricing credit default swaps. Compared to Monte Carlo, PDIE is also accurate and
computationally much cheaper. The model has been calibrated to a series of market credit default
structures, resulting in good matches of observed structure curves.
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Company Moody 1y 3y 5y 7y 10y
Mbna Insurance Aaa Market 21 36 46 51 61

VG (PDIE) 21 35 46 53 60
CG Model(β) 7 23 40 54 70
CG Model(β, γ) 23 32 43 53 63
Gaussian 0 6 29 52 77

Wells Fargo Aa1 Market 3 10 20 23 32
VG (PDIE) 5 10 17 24 33
CG Model(β) 4 9 17 24 33
CG Model(β, γ) 5 10 17 24 32
Gaussian 0 1 8 21 39

Wal-Mart Aa2 Market 1 9 17 22 32
VG (PDIE) 1 8 17 24 31
CG Model(β) 1 9 17 24 33
CG Model(β, γ) 1 10 17 24 33
Gaussian 0 1 7 27 37

Merrill Lynch Aa3 Market 11 20 31 36 47
VG (PDIE) 11 20 30 37 47
CG Model(β) 5 15 27 38 50
CG Model(β, γ) 12 19 29 37 47
Gaussian 0 3 17 35 57

Allstate A1 Market 12 22 32 37 47
VG (PDIE) 12 22 31 38 47
CG Model(β) 6 16 28 39 51
CG Model(β, γ) 14 21 30 38 48
Gaussian 0 3 17 36 58

Amgen A2 Market 14 20 29 34 39
VG (PDIE) 13 21 28 34 39
CG Model(β) 5 13 24 34 46
CG Model(β, γ) 15 19 26 33 41
Gaussian 0 2 14 30 51

Ford Credit Co. A3 Market 75 154 203 225 238
VG (PDIE) 75 155 201 225 239
CG Model(β) 49 151 204 223 245
CG Model(β, γ) 73 158 202 224 237
Gaussian 4 120 202 240 262

Wyeth Baa1 Market 15 47 75 85 95
VG (PDIE) 18 47 70 85 99
CG Model(β) 12 41 67 86 104
CG Model(β, γ) 19 45 68 85 100
Gaussian 0 18 58 89 117

Autozone Baa2 Market 25 65 102 117 127
VG (PDIE) 24 67 99 117 127
CG Model(β) 18 61 95 118 136
CG Model(β, γ) 27 66 96 116 133
Gaussian 0 34 88 123 151

Bombardier Baa3 Market 320 405 425 425 425
VG (PDIE) 322 398 426 432 422
CG Model(β) 183 400 455 467 465
CG Model(β, γ) 321 400 425 429 425
Gaussian 74 384 466 485 485

Table 3: VG (PDIE), Gaussian and CreditGradesTM (CG) best fits on market CDS term structures.
Source: Goldman Sachs.
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Abstract

The purpose of this work is to derive expressions for thes-convex extrema in moment spaces
when the support is discrete. As thes-convex maxima and minima are known up tos = 4 and
s = 3 respectively, the aim is more precisely to derive the4-convex minimum and the extrema
for s > 4.
As an application, we use these extremal distributions to bound several quantities of interest in
actuarial science, like the eventual probability of ruin in the compound binomial process.

1. INTRODUCTION

It is well established that the theory of stochastic orderings has a considerable interest in probability
for theoretical and practical purposes (see, e.g., Oluyede (2004) and Shaked and Shanthikumar
(1994)). For instance, it can be used to compare complex models with more tractable ones which
are “riskier”, leading thus to more conservative decisions.

In many situations, stochastic order relations are used to comparereal random variables. Quite
recently, variousdiscretestochastic orderings have been introduced to compare random variables
that arediscreteby nature as counts for instance (see, e.g., Fishburn and Lavalle (1995), Lef`evre
and Picard (1993) and Lef`evre and Utev (1996)). A remarkable class investigated by Denuit and
Lefèvre (1997) is the class of thediscretes-convex orderingsamong arithmetic random variables
valued in some setNn = {0, 1, 2, . . . , n}, n ∈ N. Heres is any nonnegative integer smaller or
equal ton.

Discretes-convex orderings have been defined in Denuit and Lef`evre (1997) in the following
way. Let∆ be the first order forward difference operator (with unitary increment) defined for each
functionu : Nn → R by ∆u(i) = u(i + 1) − u(i) for all i ∈ Nn−1. Let ∆k, k ∈ Nn, be the
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k-th order forward difference operator defined recursively by∆ku(i) = ∆k−1u(i+ 1)−∆k−1u(i)
for all i ∈ Nn−k (by convention,∆1u ≡ ∆u and ∆0u ≡ u). If X andY are two random
variables valued inNn, X is said to be smaller thanY with respect to the discretes-convex order
if E [u(X)] ≤ E [u(Y )] for all u ∈ UNn

s−cx = {u : Nn → R : ∆su(i) ≥ 0, ∀ i ∈ Nn−s}. In such a
case, we writeX�Nn

s−cxY .
Since the power functionsx �→ xk andx �→ −xk both belong toUNn

s−cx for k = 1, 2, . . . , s− 1,
we immediately get the necessary condition

X�Nn
s−cxY ⇒ EXk = EY k for k = 1, 2, . . . , s− 1.

In other words, ifX�Nn
s−cxY then thes − 1 first moments ofX andY necessarily match. Con-

sequently, the ordering relation�Nn
s−cx can only be used to compare the random variables with the

same firsts−1 moments. This motivates to introduce themoment spaceDs (Nn;µ1, µ2, . . . , µs−1)
which contains all random variables valued onNn such that the firsts − 1 moments are fixed to
EXk = µk, k = 1, . . . , s−1, wheres is a prescribed nonnegative integer. One remarkable property
of s-convex orderings is the following: Provided that the moment space satisfies some reasonable
conditions (in particular this space is not void), the moment space contains a minimum random
variableX(s)

min and a maximum random variableX (s)
max with respect to�Nn

s−cx.
However, the proof of this existence result is implicit in the sense that a formula forX

(s)
min and

X
(s)
max cannot be found easily, except in the simplest cases that we recall now.

If s = 3, the extremaX(3)
min andX(3)

max have been derived in Denuit and Lef`evre (1997). Letξ1
andξ2 be the integers inNn−1 such thatξ1 < µ2/µ1 ≤ ξ1 + 1 andξ2 < (n− µ1)

−1(nµ1 − µ2) ≤
ξ2 + 1. Then the discrete3-convex extremal distributions are given by

X
(3)
min =




0 with probabilityp1 = 1 − p2 − p3,

ξ1 with probabilityp2 = (ξ1+1)µ1−µ2

ξ1
,

ξ1 + 1 with probabilityp3 = µ2−ξ1µ1

1+ξ1
,

(1)

and

X(3)
max =




ξ2 with probabilityq1 = (1+ξ2)(n−µ1)+µ2−nµ1

n−ξ2 ,

ξ2 + 1 with probabilityq2 = (n+ξ2)µ1−µ2−nξ2
n−1−ξ2 ,

n with probabilityq3 = 1 − q1 − q2.

(2)

The proof of this result can be found in Denuit and Lef`evre (1997) and uses the theory of discrete
Tchebycheff systems (see, e.g. Karlin and Studden (1966)).

If s = 4, the same argument is used in Denuit et al. (1999b) to derive the explicit formula for
X

(4)
max. Let ζ be the integers in[0, n− 2] such thatζ < (nµ1 − µ2)

−1(nµ2 − µ3) ≤ ζ + 1. Then,

X(4)
max =




0 with probabilityv1 = 1 − v2 − v3 − v4,

ζ with probabilityv2 = nµ1(ζ+1)−µ2(ζ+1+n)+µ3

ζ(n−ζ) ,

ζ + 1 with probabilityv3 = µ2(ζ+n)−nµ1ζ−µ3

(ζ+1)(n−ζ−1)
,

n with probabilityv4 = µ3−µ2(2ζ+1)+µ1ζ(ζ+1)
n(n−ζ)(n−ζ−1)

.

(3)
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Surprisingly, no explicit formula forX (4)
min is available in the literature. The point is that the

argument based on the non-negativity of particular moment matrices is no longer valid for that
case. The same phenomenon appears for the derivation ofX

(s)
min orX(s)

max with s ≥ 5. In that sense
the theory of discretes-convex extremal distribution is limited to the cases ≤ 3 and is partially
solved fors = 4.

The present paper aims to go beyond this limitation and proposes new arguments, based on
the so-called “majorant-minorant method” and the “cut-criterion”, that allows to derive the explicit
extremal distributions for alls. However these cases are far more complicated to deal with because
a subtle discussion about the points of support of the extremal distribution is needed.

To illustrate that point, it is interesting to notice the close connection between the extrema (1)–
(3) and the correspondingcontinuousextrema, for which a parallel theory is developed when the
support of the random variable is the interval[0, n]. For instance, let us consider the case ofX

(3)
min.

It can be shown (see Denuit et al. (1999a)) that the continuous3-convex minimal distribution is
given by

X
cont.(3)
min =

{
0 with probability1 − p,
µ2/µ1 with probabilityp = µ2

1/µ2.
(4)

A comparison between (1) and (4) leads to the conclusion that the discrete extremal distribution can
be easily obtained from the corresponding continuous extremal distributions since the probability
massp = µ2

1/µ2 of the continuous distribution is spread onξ, ξ + 1 ∈ Nn such thatξ < µ2/µ1 ≤
ξ + 1. This phenomenon also arises if we compare the discrete extremal distributions (2), (3)
with their corresponding continuous extremal distribution. It is then tempting to conjecture that all
discrete extrema can be obtained from their continuous extrema. This would be a right strategy to
solve our problem since an explicit formula for continuous extremal distributions can be written
for all s.

Surprisingly, this conjecture is wrong, as we can show with a simple example. Consider for in-
stance the moment space fixed by the moments(µ0, µ1, µ2, µ3) = (1, 6.625, 44.8525, 313.78825).
One can see that the corresponding continuous4-convex minimum is given by

X cont. =

{
6.4 with probability0.95,
10.9 with probability0.05.

Using the theory that we develop in the present article, one can show that the discrete4-convex
minimum onNn is given by

Xdisc. =




6 with probability0.490875,
7 with probability0.487025,
12 with probability0.016725,
13 with probability0.005375.

In other words, the support of the discrete distribution does not appear as the neighbourhood inNn

of the supports of the continuous distribution. Moreover, if we discretize the continuous extremal
distribution on the neighbouring support{6, 7, 10, 11} one can see that the “probability mass” at
10 would be negative (−0.0794).

This example shows that it is challenging to find the form of the support of the discrete extremal
distribution. This question is addressed in Section 2 of the article. In Subsection 2.1 we focus on
the so-called “majorant/minorant method” to find thes-convex extrema. This section contains key
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results that characterize the discrete moment space. Then Subsection 2.2 recalls the cut-criterion
Denuit and Lefèvre (1997). Subsection 2.3 derives the support of the4-convex minimum.

Section 3 deals with an application of this theory. We compute lower and upper bounds for the
probability of extinction in a Galton-Watson branching process and for the Lundberg’s coefficient
in the classical insurance risk model with discrete claim amounts.

Finally, Section 4 gives some conclusions as well as the generalization of the method developed
in the paper to find thes-convex extrema fors ≥ 4.

2. DERIVATION OF THE 4-CONVEX MINIMUM

2.1. S-convex extrema in moment spaces

As announced, random variables are assumed to take values on the state spaceNn = {0, 1, 2, . . . , n}
for some non-negative integern. We denote byDs (Nn;µ1, µ2, . . . , µs−1) the moment space of
all the random variables valued inNn and with prescribed firsts − 1 momentsµk = EXk,
k = 1, . . . , s − 1. Henceforth, the moment sequence(µ1, µ2, . . . , µs−1) is supposed to be such
thatDs (Nn;µ1, µ2, . . . , µs−1) is non void (for conditions, see De Vylder (1996)).

We aim to derive random variablesX (s)
min andX(s)

max belonging toDs (Nn;µ1, µ2, . . . , µs−1) and
such that

X
(s)
min�Nn

s−cxX�Nn
s−cxX

(s)
max for all X ∈ Ds (Nn;µ1, µ2, . . . , µs−1) . (5)

The determination ofX (s)
min andX(s)

max involved in (5) has been discussed in Denuit and Lef`evre
(1997)-Denuit et al. (1999b): using the cut-criterion on distribution functions (see Proposition 2.3
below), the extrema fors = 1, 2, 3 and the maximum fors = 4 were obtained explicitly. In this
paper, using a method that we call theMajorant/Minorant Method(inspired from the so-called
method of admissible measuresin Kemperman (1987)), we find the form of the support of the
4-convex minimum.

Instead of solving (5) directly, we first look for the random variables that achieve the bounds

max
X∈Ds(Nn;µ1,µ2,...,µs−1)

E [Xs] and min
X∈Ds(Nn;µ1,µ2,...,µs−1)

E [Xs] . (6)

The extremaX(s)
min andX(s)

max necessarily achieve the bounds in (6).
Let us consider the problem of finding the random variables that realize the bounds in (6). We

have the following result.

Property 2.1

(i) A random variableX ∈ Ds (Nn;µ1, µ2, . . . , µs−1) achieves the maximum (6) if and only if
X is sup-admissible, that isX is concentrated on the set

{
i ∈ Nn : is = c0 + c1 · i+ c2 · i2 + · · ·+ cs−1 · is−1

}
where theci’s are real constants such that

is ≤ c0 + c1 · i+ c2 · i2 + · · ·+ cs−1 · is−1, for all i ∈ Nn.
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(ii) A random variableX ∈ Ds (Nn;µ1, µ2, . . . , µs−1) achieves the minimum (6) if and only if
X is sub-admissible, that isX is concentrated on the set

{
i ∈ Nn : is = c0 + c1 · i+ c2 · i2 + · · ·+ cs−1 · is−1

}

where theci’s are real constants such that

is ≥ c0 + c1 · i+ c2 · i2 + · · ·+ cs−1 · is−1, for all i ∈ Nn.

Proof. We only prove(i); the proof for(ii) is similar.
Sufficient condition.Henceforth, we adopt the convention that00 = 1. Let X be a random

variable inDs (Nn;µ1, µ2, . . . , µs−1), i.e.
∑n

i=0 P [X = i] ik = µk , k = 0, 1, . . . , s− 1; which
is concentrated on the set

{
i ∈ Nn : is =

∑s−1
k=0 cki

k
}
, where theci’s are real constants such that

is ≤∑s−1
k=0 cki

k for all i ∈ Nn. Let alsoZ be some random variable inDs (Nn;µ1, µ2, . . . , µs−1),
i.e.
∑n

i=0 P [Z = i] ik = µk , k = 0, 1, . . . , s− 1. We have

E [Xs] =

n∑
i=0

P [X = i] is =

n∑
i=0

P [X = i]

s−1∑
k=0

cki
k =

s−1∑
k=0

ck

n∑
i=0

P [X = i] ik

=

s−1∑
k=0

ckµk =

s−1∑
k=0

ck

n∑
i=0

P [Z = i] ik =

n∑
i=0

P [Z = i]

s−1∑
k=0

cki
k

≥
n∑
i=0

P [Z = i] is = E [Zs]

for all Z ∈ Ds (Nn;µ1, µ2, . . . , µs−1). So,X = arg maxZ∈Ds(Nn;µ1,µ2,...,µs−1) E [Zs].
Necessary condition.Let X = arg maxZ∈Ds(Nn;µ1,µ2,...,µs−1) E [Zs] and let us suppose thatX

is thes-convex maximum, i.e.Z�Nn
s−cxX for all Z ∈ Ds (Nn;µ1, µ2, . . . , µs−1). If X is not sup-

admissible, by Kemperman (1987) there exists a sup-admissible random variableY 
=d X such that
Y = arg maxZ∈Ds(Nn;µ1,µ2,...,µs−1) E [Zs], which is impossible by Proposition 3.3 of Denuit et al.
(1999b). Let us now prove by absurd thatX is thes-convex maximum. If not, there exists some
random variableY ∈ Ds (Nn;µ1, µ2, . . . , µs−1), Y 
=d X, such thatX�Nn

s−cxY . By Proposition
3.1 of Denuit and Lef`evre (1997), it comes particularly thatE [X s] ≤ E [Y s], which is impossible
and ends the proof. �

We even have the following result that enables us to identify thes-convex extrema with the
random variables realizing the bounds (6). The discretes-convex extrema are thus easily identified
using Property 2.1.

Proposition 2.2 LetX be some random variable inDs (Nn;µ1, µ2, . . . , µs−1). ThenX is thes-
convex maximum (resp. minimum) if and only ifX = arg maxZ∈Ds(Nn;µ1,µ2,...,µs−1) E [Zs] (resp.
X = arg minZ∈Ds(Nn;µ1,µ2,...,µs−1) E [Zs]).

Proof. The necessary condition has already been proved in the the proof of the necessary part of
Property 2.1 and the sufficient condition is obvious using Proposition 3.1 of Denuit and Lef`evre
(1997). �
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2.2. Cut-criterion

We now recall the cut-criterion on the distribution functions of Denuit and Lef`evre (1997) that
allows us to compare two random variables in thes-convex sense.

Let u be any real-valued function defined on a subsetS of R. We introduce the operatorS−

which, when applied tou, counts the number of sign changes ofu over its domainS. More
precisely,S−(u) = supS− [u(x1), u(x2), . . . , u(xn)] where the supremum is extended over all
x1 < x2 < . . . < xn ∈ S, n is arbitrary but finite andS− [y1, y2, . . . , yn] denotes the number of
sign changes of the indicated sequence{y1, y2, . . . , yn}, zero terms being discarded. The functions
u1 andu2 are said to cross each otherk times (k = 0, 1, 2, . . .) if S− (u1 − u2) = k. Moreover, if
X andY are random variables valued inNn with respective distribution functionsFX andFY , we
say thatFX ≥ FY nearn if FX(k) ≥ FY (k) for all k ≥ k0, with k0 ≤ n− 1.

Proposition 2.3 (Denuit and Lef̀evre (1997)) Let X andY be two random variables valued in
Nn, such thatE

[
Xk
]

= E
[
Y k
]

for k = 1, . . . , s− 1. Then,S−(FX − FY ) ≤ s− 1 together with
FX ≥ FY nearn⇒ X�Nn

s−cxY .

2.3. Support of the4-convex minimum

Using the cut-criterion, it can be verified that the possible structure of the supports of the4-convex
discrete extrema takes the form{ξ, ξ + 1, η, η + 1} or {0, ζ, ζ + 1, n}. It is interesting to note
that those supports are identical to the ones that could be obtained calling upon the theory of the
discrete Tchebycheff systems (see Karlin and Studden (1966)). The Majorant/Minorant Method
is then used to derive the conditions on the support pointsξ, η and ζ so that the random vari-
able corresponding to such support has momentsµ1, µ2, . . . , µs−1. This is done by computing the
probabilities associated to the support points as solutions to some Vandermonde system and by
checking that the resulting probabilities are positive.

Property 2.4 Consider a moment spaceD4 (Nn;µ1, µ2, µ3) with a given sequence of moments
µ1, µ2, µ3. If ξ, η ∈ Nn are such that0 ≤ ξ < ξ + 1 < η < η + 1 ≤ n and define

α1 := −µ3 + µ2 (2η + ξ + 2) − µ1 [(ξ + 1) η + (ξ + 1) (η + 1) + η (η + 1)] + (ξ + 1) η (η + 1)

α2 := µ3 − µ2 (ξ + 2η + 1) + µ1 [ξη + ξ (η + 1) + η (η + 1)] − ξη (η + 1)

α3 := −µ3 + µ2 (2ξ + 2 + η) − µ1 [ξ (ξ + 1) + ξ (η + 1) + (ξ + 1) (η + 1)] + ξ (ξ + 1) (η + 1)

α4 := µ3 − µ2 (2ξ + 1 + η) + µ1 [ξ (ξ + 1) + ξη + η (ξ + 1)] − ξ (ξ + 1) η

that are positive, then the discrete 4-convex minimal distribution ofD4(Nn;µ1, µ2, µ3) is given by

X
(4)
min =




ξ with probabilityw1 = α1/ (η − ξ) (η + 1 − ξ),

ξ + 1 with probabilityw2 = α2/ (η − ξ − 1) (η − ξ),

η with probabilityw3 = α3/ (η − ξ) (η − ξ − 1),

η + 1 with probabilityw4 = α4/ (η + 1 − ξ) (η − ξ).
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Proof. The proof gives the minimal together with the maximal distribution (3). Using the majo-
rant/minorant method, we find out the respective supports of the4-convex extremaX (4)

max andX(4)
min.

To that end, we just compute the polynomialsp(i) = c0 + c1i+ c2i
2 + c3i

3 of degree3 (i.e. c0, c1,
c2 andc3 ∈ R) such thatX (4)

max ∈ D4 (Nn;µ1, µ2, µ3) (resp.X (4)
min) is concentrated on the set{

i ∈ Nn : i4 = c0 + c1i+ c2i
2 + c3i

3
}

= {0, ζ, ζ + 1, n} (1 ≤ ζ ≤ n− 2)

( resp. {ξ, ξ + 1, η, η + 1} (0 ≤ ξ < ξ + 1 < η < η + 1 ≤ n))

andi3 ≤ c0 + c1i+ c2i
2 for all i ∈ Nn (resp.≥).

The only polynomial of degree3 that fulfills the conditions

0 = c0

ζ4 = c0 + c1ζ + c2ζ
2 + c3ζ

3

(ζ + 1)4 = c0 + c1 (ζ + 1) + c2 (ζ + 1)2 + c3 (ζ + 1)3

n4 = c0 + c1n+ c2n
2 + c3n

3

is p(i) = ζ (ζ + 1)ni − [n (ζ + 1) + ζ (ζ + 1) + nζ] i2 + (ζ + ζ + 1 + n) i3. The zeros of the
polynomialx4 − p(x) are of course0, ζ , ζ + 1 andn andx4 − p(x) is always negative onNn.
So, as we have checked thati4 ≤ p(i) on Nn, the random variable with support{0, ζ, ζ + 1, n}
(1 ≤ ζ ≤ n− 2) has to beX (4)

max.
The only polynomial of degree3 that fulfills the conditions

ξ4 = c0 + c1ξ + c2ξ
2 + c3ξ

3

(ξ + 1)4 = c0 + c1 (ξ + 1) + c2 (ξ + 1)2 + c3 (ξ + 1)3

η4 = c0 + c1η + c2η
2 + c3η

3

(η + 1)4 = c0 + c1 (η + 1) + c2 (η + 1)2 + c3 (η + 1)3

is

p(i) = −ξ (ξ + 1) η (η + 1)

+ [(ξ + ξ + 1) η (η + 1) + ξ (ξ + 1) (η + η + 1)] i

− [η (η + 1) + (ξ + 1) (η + 1) + (ξ + 1) η + ξ (η + 1) + ξη + ξ (ξ + 1)] i2

+ (ξ + ξ + 1 + η + η + 1) i3

The zeros of the polynomialx4 − p(x) are of courseξ, ξ + 1, η andη + 1 andx4 − p(x) is always
positive onNn. So, as we have checked thati4 ≥ p(i) onNn, the random variable with support
{ξ, ξ + 1, η, η + 1} (0 ≤ ξ < ξ + 1 < η < η + 1 ≤ n) has to beX (4)

min.
Finally, we have to fix conditions on the support points to assure the non-negativity of their

associated probabilities. The conditions on the support points ofX
(4)
max are

0 < ζ < ζ + 1 < n

µ3 ≤ −ζnµ1 + (ζ + n)µ2

µ3 ≤ ζ (ζ + 1)n− [ζ (ζ + 1) + n (ζ + 1) + nζ]µ1 + (ζ + ζ + 1 + n)µ2

µ3 ≥ −ζ (ζ + 1)µ1 + (ζ + ζ + 1)µ2

µ3 ≥ − (ζ + 1)nµ1 + (ζ + 1 + n)µ2
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and because we haveζ (ζ + 1)n− [ζ (ζ + 1) + n (ζ + 1) + nζ ] i+(ζ + ζ + 1 + n) i2 ≥ i3 (cfr. 3-
convex maximum) onNn and−ζ (ζ + 1) i+ (ζ + ζ + 1) i2 ≤ i3 onNn (cfr. 3-convex minimum),
the second and the third condition are respectively always verified and the system of conditions
reduces to

0 < ζ < ζ + 1 < n andζ <
nµ2 − µ3

nµ1 − µ2
≤ ζ + 1.

Henceforth, we refind the4-convex maximum (3). The conditions on the support points ofX
(4)
min

are given by

α1 ≥ 0, α2 ≥ 0, α3 ≥ 0 andα4 ≥ 0. (7)

�

The solution(ξ, η) of (7) cannot be obtained explicitly. Nevertheless, it is easily obtained by
testing each admissible pair(ξ, η) of Nn.

3. APPLICATIONS

3.1. Theorical background

Given a random variableN valued inNn, n being a positive integer, a classical problem consists
in solving the equation

φN(z) = Pk(z), (8)

in the unknownz, whereφN(z) = E
[
ezN
]

is the moment generating function ofN , and where
Pk (·) is a given non-decreasing polynomial function of degreek (usually,k ≤ 2). When all that is
known aboutN is that it belongs toDs (Nn;µ1, µ2, . . . , µs−1), then (8) cannot be solved explicitly.
The aim of this subsection is to show that thes-convex extrema described previously allow accurate
approximations for the solution of (8). The method using the continuouss-convex extrema could
of course be applied here. Nevertheless, we get better bounds if we take into account the fact that
N is now valued in the arithmetic gridNn rather than in the interval[0, n] (see Tables 1 and 2).
The idea is to construct two functionsφ(s)

min (·) andφ(s)
max (·) such that

φ
(s)
min(z) ≤ φN(z) ≤ φ(s)

max(z).

The sequence
[
ekz, k ∈ N

]
being absolutely monotonic, we get from Denuit and Lef`evre (1997)

that,φ(s)
min(t) ≤ φ

(s)
N (t) ≤ φ

(s)
max(t) with φ

(s)
min(t) = φ

N
(s)
min

(t) andφ(s)
max(t) = φ

N
(s)
max

(t), where the

N
(s)
min andN (s)

min are the stochastic extrema inDs (Nn;µ1, µ2, . . . , µs−1) with respect to the discrete
versions of thes-convex stochastic orderings. These provide bounds on the root of the equation
φN(z) = Pk(z), wherePk is a monotone polynomial function. Solving the equationφ

(s)
min(z) =

Pk(z) yields the rootz(s)
1 , say, and solvingφ(s)

max(z) = Pk(z) yields the rootz(s)
2 , say. The solution

z̃, say, ofφ(s)
N (z) = Pk(z) then satisfiesz(s)

2 ≤ z̃ ≤ z
(s)
1 .
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3.2. Lundberg’s coefficient

In the classical discrete risk model, the discrete claim amountsX1, X2, . . . recorded by an insur-
ance company are assumed to be independent and identically distributed with common distribution
functionF having finites − 1 moments, such thatF (0) = 0. The number of claims in the time
interval[0, t] is assumed to be independent of the individual claim amounts and to form a Poisson
process{N(t), t ≥ 0} with constant rateλ. Let the premium ratec > 0 be such that the inequality
c > λE [X1] holds. Further, letψ(z) be the ultimate ruin probability with an initial capitalz; that
is, the probability that the processZ(t) = κ + ct−∑N(t)

i=1 Xi, t ≥ 0, describing the wealth of the
insurance company, ever falls below zero. If the moment generating function ofX exists, Lund-
berg’s inequality provides an exponential upper bound onψ, namelyψ(κ) ≤ e−zκ, wherez is the
Lundberg’s adjustment coefficient satisfying the integral equationφX(z) = 1 + cz

λ
.

As an illustration, letn = 5, c = 12, λ = 10 andµ1 = 1. First, considerz(s)
min andz(s)

max as
functions ofµ2. When then get the numerical values depicted in Table 1. Second, let us fixµ2 = 3

and considerz(s)
min andz(s)

max as functions ofµ3 (see Table 2). It is seen that the bounds are quite
accurate, and are particularly so whenµ2 is large.

µ2 1.5 2 2.5 3

z
(3)
min, continuous 0.2104138 0.1596485 0.1305692 0.1111426
z

(3)
max, continuous 0.2361328 0.1771006 0.1416797 0.1180644
z

(3)
min, discrete 0.2144848 0.1624468 0.1324108 0.1123238
z

(3)
max, discrete 0.2330329 0.1771006 0.1409982 0.1180644

µ2 3.5 4 4.5

z
(3)
min, continuous 0.09705668 0.08630042 0.07777624
z

(3)
max, continuous 0.1011998 0.08855031 0.07871084
z

(3)
min, discrete 0.09778207 0.08670383 0.07794723
z

(3)
max, discrete 0.1009502 0.08855031 0.07859318

Table 1: Bounds on the Lundberg’s coefficientz whenµ1 = 1, n = 5, c = 12 andλ = 10.

The graph depicted in Figure 1 shows the exponential upper bounds onψ(κ) using the con-
tinuous and discrete4-convex extrema and takingn = 5, c = 12, λ = 10, µ1 = 1, µ2 = 3 and
µ3 = 10.

4. CONCLUDING REMARKS AND EXTENSION TO S ≥ 4

Quite surprisingly, the discretes-convex extrema cannot be obtained by discretizing the continuous
ones (contrarily to the cases treated in Denuit and Lef`evre (1997)-Denuit et al. (1999b)). Using
the Majorant/Minorant Method, we proved that the support of the discrete4-convex minimum has
to be of the form{ξ, ξ + 1, η, η + 1} (0 ≤ ξ < ξ + 1 < η < η + 1 ≤ n), whenξ andη are the
solutions of (7).
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µ3 9.5 10 10.5 11

z
(4)
min, continuous 0.1172383 0.1164471 0.1156892 0.1149623
z

(4)
max, continuous 0.1173398 0.1166221 0.1159113 0.1152081
z

(4)
min, discrete 0.1172558 0.1164697 0.1157054 0.1149623
z

(4)
max, discrete 0.117302 0.1165591 0.1158351 0.1151295

µ3 11.5 12 12.5

z
(4)
min, continuous 0.1142642 0.1135929 0.1129466
z

(4)
max, continuous 0.1145123 0.1138239 0.1131428
z

(4)
min, discrete 0.1142785 0.1136114 0.11296
z

(4)
max, discrete 0.1144 0.1136898 0.1129981

Table 2: Bounds on the Lundberg’s coefficientz whenµ1 = 1, µ2 = 3, n = 5, c = 12 andλ = 10.
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Figure 1:Upper bound onψ(κ) takingn = 5, c = 12, λ = 10, µ1 = 1, µ2 = 3 andµ3 = 10.
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It is also interesting to note that the method proposed in this paper can be extended to anys ≥ 4.
It is done in the following way. Using the cut-criterion and Property 2.1, it can be seen that the
most general form for the supports of thes-convex extrema, denoted bySupp

X
(s)
min

andSupp
X

(s)
max

,

are given as follows: fors = 2m, we haveSupp
X

(s)
min

= {ξ1, ξ1 + 1, . . . , ξm, ξm + 1} (0 ≤ ξ1 <

ξ1 + 1 < . . . < ξm < ξm + 1 ≤ n) and Supp
X

(s)
max

= {0, ζ1, ζ1 + 1, . . . , ζm−1, ζm−1 + 1, n}
(0 < ζ1 < ζ1 + 1 < . . . < ζm−1 < ζm−1 + 1 < n) while for s = 2m + 1, we haveSupp

X
(s)
min

=

{0, ξ1, ξ1 + 1, . . . , ξm, ξm + 1} (0 < ξ1 < ξ1 + 1 < . . . < ξm < ξm + 1 ≤ n) andSupp
X

(s)
max

=

{ζ1, ζ1 + 1, . . . , ζm, ζm + 1, n} (0 ≤ ζ1 < ζ1 + 1 < . . . < ζm−1 < ζm−1 + 1 < n).
Then, to express the conditions on the support points so thatX

(s)
min andX(s)

max have the required
momentsµ1, µ2, . . . , µs−1, we just have to compute the probabilities associated to the support
points and to check that they are positive. We get the resulting probabilities using that

X ∈ Ds (Nn;µ1, µ2, . . . , µs−1) with SuppX = {a0, a1, . . . , ak}

⇒ P [X = ai] =
E

[∏
j �=i (X − aj)

]
∏

j �=i (ai − aj)
(i = 0, 1, . . . , k).

The solution
(
ξ1, . . . , ξs/2, ζ1, . . . , ζ(s/2)−1

)
(s even) (resp.

(
ξ1, . . . , ξ(s−1)/2, ζ1, . . . , ζ(s−1)/2

)
(s

odd)) cannot be obtained explicitly. Nevertheless, it is easily obtained just by testing each admis-
sible sequence

(
ξ1, . . . , ξs/2, ζ1, . . . , ζ(s/2)−1

)
(resp.

(
ξ1, . . . , ξ(s−1)/2, ζ1, . . . , ζ(s−1)/2

)
) of Nn.
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Abstract

We analyze an actuarial approach for the pricing and reserving of a guaranteed minimum death
benefit (GMDB) in unit-linked life insurance. We explain two possible strategies to deal with
such type of multi-period capital allocation problems. The first one uses no future information
whereas the second one does. We explain how a cash-flow model can be used to perform the
actuarial pricing and summarize a simulation strategy which can be used to derive approximate
distribution functions for the future reserves, capitals and total solvency levels in the approach
where future information is used. We test the simulation strategy and obtain useful information
about the risk of a GMDB within the actuarial reserving strategy.

1. INTRODUCTION

When pricing and reserving for guarantees in unit-linked life insurance, one traditionally makes a
distinction between the so-called financial (see e.g. Brennan and Schwartz (1976)) and actuarial
approach. Under the actuarial approach, one does not apply a financial hedging strategy. Instead,
capital is allocated to ensure for the necessary security. In the financial approach, pricing is done
in the Black-Scholes-Merton framework. As mentioned in Hardy (2003), three types of potential
costs are not incorporated in the risk-neutral price: transaction costs, hedging errors arising from
discrete hedging intervals and additional hedging costs arising from the fact that log-returns are not
normally distributed with fixed µ and σ. Based upon a cash-flow model, in the actuarial approach,
the price is equal to the discounted average costs in the real world plus a loading for the capital.

Since a GMDB typically creates liabilities for multiple years, it is possible to review reserves
and capitals when new information about the underlying asset and the mortality becomes available.
We refer to IAA (2004), where it is advised to take future information into account on a regular
basis of e.g. one year when assessing the solvency of long-term risks.
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We describe two reserving and capital allocation strategies. The first takes no future informa-
tion into account. Hence, at time 0, the reserves and the capitals which will be kept in the future
are fixed. This strategy has some computational advantages but does not seem very rational. By
taking the initial capital sufficiently large, a lot of security can be foreseen, but from the results
for the second strategy, we will see it is very likely we will maintain an amount of capital which
is too large in the future when applying the first strategy. Hence, in the cash-flow model, one will
end up with a premium which is unnecessarily high. The second strategy takes future information
into account on a yearly basis. Such a strategy seems more rational but is quite cumbersome to
calculate. We briefly explain and verify an approximate simulation method to make the calculation
of this strategy possible. Our approach allows us to estimate distribution functions for the future
reserves and total solvency levels. This provides a lot of information about the risk which is borne
by the (re)insurer reserving in an actuarial way.

Instead of working with a log-normal model for the underlying asset, as in Frantz et al. (2003),
we use a more realistic regime-switching log-normal model with two regimes as described in
Hardy (2001).

The remainder of this paper is organized as follows. In section 2, we show how one can deal
with mono-period capital allocation problems using risk measures. We then suggest two multi-
period capital allocation strategies in section 3. Section 4 explains how actuarial pricing can be
performed using a cash-flow model. In section 5, we discuss how we modelled the unit-linked
contract with GMDB and we briefly explain a simulation strategy for using future information.
Finally, we compare the two multi-period strategies for the GMDB in section 6, where we also
analyze the approximated distribution functions of the total solvency levels and the reserves in the
approach using future information. We conclude in section 7.

2. MONO-PERIOD CAPITAL ALLOCATION

Assume we are exposed to a random loss X . For the moment we assume X is an insurance loss
to which one is exposed for only one period and we do not take into account discounting. We
define the pure premium PP as the average E[X] of X and assume this pure premium is held as a
reserve. For risky business, the pure premium itself will of course not guarantee that at the end of
the period, there is enough security to withstand the losses which may occur. Therefore, companies
exposed to risks need to hold capital as a safety margin against possible bad outcomes. We denote
the capital as K. We define the total solvency level TSLas the sum of the reserve and the capital.
This TSLshould be sufficiently large such that future losses can be paid with a high probability.

Both in theory and in practice, risk measures are gaining more and more interest for assessing
total solvency levels. We first define some well-known risk measures:

Definition 2.1 (Value-at-Risk) For anyp ∈ (0, 1), the VaR at levelp is defined and denoted by

Qp[X] = inf{x ∈ R|FX(x) ≥ p},

whereFX(x) denotes the distribution function ofX.

The VaRat level p of a risk X can be interpreted as the value at which there is only 1 − p %
probability that the risk will have an outcome larger than that value.
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Definition 2.2 (Tail Value-at-Risk) For anyp ∈ (0, 1), the TVaR at levelp is defined and denoted
by

TVaRp[X] =
1

1 − p

∫ 1

p

Qq[X]dq.

Definition 2.3 (Conditional Tail Expectation) For anyp ∈ (0, 1), the CTE at levelp is defined
and denoted by

CTE p[X] = E[X|X > Qp[X]]. (1)

The CTE at level p of a loss X can be interpreted as the average of all possible outcomes of X
which are above Qp[X]. It is well-known that the TVaRand the CTEare the same for all p-levels
if the distribution function of X is continuous.

Some interesting references on risk measures and their properties and uses are Dhaene et al.
(2003), Dhaene et al. (2004a), Dhaene et al. (2004b) and Goovaerts et al. (2004).

3. MULTI-PERIOD CAPITAL ALLOCATION

We first introduce some notation. We denote 0 as the time at which the insurance is written and T
as the time at which the last liabilities are possible. Suppose we are exposed to a risk

X = (X1, . . . , XT ),

where Xi is the outcome for the risk at the end of year t, for t ∈ {1, . . . , T}. Denote the risk-free
return for year t as Yt. We define

Z = (Z0 = X1e
−Y1, . . . , ZT−1 = XT e

−∑T
t=1 Yt).

Z is the vector of all future yearly losses, discounted to the start of the first year. Furthermore, we
introduce

D = (D0 =

T−1∑
t=0

Zt, D1 =

T−1∑
t=1

Zte
Y1, . . . , DT−1 = ZT−1e

∑T−1
t=1 Yt),

the vector of the discounted future costs at the start of the different years t ∈ {1, . . . , T}.
As time passes, important information may become available. In the context of a GMDB, this

information consists of the value of the underlying asset, the number of survivors and the return on
the investments. Suppose the information is described by a filtration F = (Ft)t∈[0,T ]. We assume a
time period of one year after which reserves and capitals may change.

For the ease of later computations (see section 4), we assume all payments are made at the end
of the year in which the costs occur.

3.1. Approach Not Using Future Information

At time 0, we hold the pure premium

PP = E[D0|F0] = R0,
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as a reserve. In addition, we could decide to hold a capital

K0 = ρ[D0 − R0|F0],

where ρ is a risk measure. When not using future information, we define the future reserves as:

Rt = E[Dt|F0], t ∈ {1, . . . , T − 1},
so the reserve at the start of year t is equal to the average discounted future costs at time t − 1,
given the information at time 0. Using the same risk measure as at time 0, and not incorporating
future information, we can define

Kt = ρ[Dt − Rt|F0], t ∈ {1, . . . , T − 1}.
The total solvency level at t is then defined and denoted as

TSLt = Rt +Kt, t ∈ {1, . . . , T − 1}.
It is very unlikely this approach will in reality be applied for reserving and capital allocation
purposes. An insurer having future information available will normally take this into account. The
use of this strategy should be seen as a possible fast computational approximation in the cash-flow
model of the strategy described in section 3.2 (see section 4 for more details).

3.2. Approach Using Future Information

At time 0, we apply the same strategy as in section 3.1. At time t ∈ {1, . . . , T − 1}, we define the
reserve as

Rt = E[Dt|Ft],

where Ft denotes the information available at the start of year t. For the capital, we take

Kt = ρ[Dt −Rt|Ft], t ∈ {1, . . . , T − 1}.
As seen from time 0, Rt and Kt are random variables, since Ft is still unknown. At t however,
Rt and Kt can be determined using the same methods as those which are used to determine pure
premium and the capital at time 0. The total solvency level at t is again defined and denoted as

TSLt = Rt +Kt, t ∈ {1, . . . , T − 1}.
The advantage of this approach is that the reserve and the capital are regularly adapted to new
information. This also means that when the new information is bad, more reserves and capital than
actually being available may need to be allocated. In other words, if the safety margin is not high
enough given the new information, it is enlarged with new capital. Of course, this is subject to the
assumption that one is able to allocate new capital if necessary. Three questions are very pertinent
in this context:

1. Is it probable that, at a given moment in the future, new capital will need to be allocated in
order to obtain a total solvency level which is sufficiently high?

2. Given that new capital needs to be allocated, how large can this amount be?
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3. Can a company if necessary allocate additional capital to a risk?

In general, when new capital needs to be allocated, we may face problems of ruin. One can indeed
question if one will find shareholders willing to invest in a product which is performing bad and
leading to losses on the capital with a substantial probability. Therefore, a situation where it is
probable that high amounts of capital need to be reinjected in the business is not preferable. For
an answer to the first two questions in the context of a GMDB, we refer to section 6.2.

The answer to the third question depends upon a number of factors. If a company would only
be exposed to risks of the same nature which are very correlated, then it may be very difficult to
find additional capital if it is required. For a company with a more diversified portfolio of risks,
this may however be possible.

4. ACTUARIAL PRICING USING A CASH-FLOW MODEL

In a cash-flow model, one models the average in-and outflows, taking the point of view of the
shareholders. Assume the risk-free rate r is constant and equal to the rate of return on the bonds.
Assume the tax rate is equal to γ and the return on the stocks, after taxation, is equal to δ.

We then have the following average outflows:

1. Net mean claim payments: cs(1 − γ), where s ∈ {1/12, 2/12, . . . , T}. Hence, costs can
arise at the end of every month. For the ease of later computations, we assume claims which
occur in a certain year are only paid at the end of that year. Hence, at the end of year t, the
(re)insurer has to pay ct(1 − γ), where

ct =
12∑
s=1

e
(12−s)r

12 ct−1+s/12, t ∈ {1, . . . , T}.

2. Net mean change in the technical provisions: ∆pt(1 − γ), where t ∈ {0, . . . , T}

3. Mean change in the allocated capital: ∆kt, where t ∈ {0, . . . , T}

We have the following inflows:

1. Net mean return on the provisions: Rt(p)(1 − γ), where

Rt(p) = pt−1(e
r − 1), t ∈ {1, . . . , T}.

2. Net mean return on the capital: Rt(k), where

Rt(k) = kt−1(e
δ − 1) and t ∈ {1, . . . , T}.

3. Net premium income: TFP(1 − γ), where TFP denotes the technico-financial premium
which has to be determined.
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It is at this point that we can understand the possible usefulness of the strategy described in section
3.1. To calculate the average in-and outflows, we need to determine the average reserves pt and
the average capitals kt for all t ∈ {0, . . . , T}. For the reserves, due to the iterativity property of the
expectation, we have

pt = E[Rt] = E[E[Dt|Ft]] = E[Dt|F0], for all t ∈ {0, . . . , T}.
Hence, with respect to the reserves, there is no difference in the cash-flow model between the
approach described in section 3.1 and section 3.2. Assume the capitals are calculated using the
conditional tail expectation. For all t ∈ {1, . . . , T}, we then have

kt = E[Kt] = E[CTE p[Dt −Rt|Ft]] �= CTE p[Dt −Rt|F0].

We could use CTE p[Dt|F0] as an approximation of kt but we certainly need to verify whether this
approximation is good.

Once the average future cash-flows are known, we discount all of them with the cost of capital,
which we assume to be known and constant. The technico-financial premium is defined as the
value which makes the sum of the discounted inflows equal to the sum of the discounted outflows.
Hence, the technico-financial premium is the value which solves the following equation:

T∑
t=0

e−tCOC

[
∆pt −Rt(p) +

12∑
s=1

e
(12−s)r

12 ct−1+s/12

]
(1 − γ)

=
T∑
t=0

e−tCOC [Rt(k) − ∆kt] + TFP(1 − γ), (2)

with the convention that R0(p) = R0(k) = 0 and cs = 0 for all s ≤ 0, and where COCstands for
the cost of capital. Now suppose the average reserves are equal to the future mean claim payments,
discounted at the risk free rate, i.e.

pt =

12(T−t)∑
s=1

e−rs/12ct+s/12. (3)

Using (3) it can be verified that the term ∆pt − Rt(p) +
∑12

s=1 e
(12−s)r

12 ct−1+s/12 in (2) is equal to

R0 if t = 0, (4)

0 if t ∈ {1, . . . , T}. (5)

The assumption that costs are only paid at the end of the year was taken in order to obtain (5).
Using (4) and (5), we can write the technico-financial premium as

TFP = R0 +

∑T
t=0 e

−tCOC [∆kt − Rt(k)]

1 − γ
. (6)

This means the technico-financial premium consists of two parts:

1. The reserve R0 taken at time 0.

2. A loading for the average amounts of capital kt which are allocated at the start of each year
t ∈ {1, . . . , T}.
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5. SIMULATION STRATEGY

5.1. Modelling a GMDB

We suppose there is a group of NI = 1000 insured aged x = 50 which all invest C = 1 into a
risky asset (St)t≥0. The (re)insurer provides a guarantee of K = 1 in case the insured dies before
retirement. Hence, in case an insured dies at time t, the (re)insurer will pay (K − St)+ for the
guarantee. Note that (K−St)+ is equal to the payoff function of a European put option with strike
price K and maturity date t on the underlying asset (Si)i∈[0,t]. We suppose there is no surrender
and there is an age of retirement xR = 65 after which no payments are made. At retirement, no
guarantee is given.

We use the regime-switching log-normal (RSLN) model with 2 regimes as described in Hardy
(2001). This model provides us with monthly log-returns for the underlying asset. We denote the
regime applying to the interval [s, s + 1) as κs. Hence κs ∈ {1, 2}. In a certain regime κs we
assume the return Ys satisfies:

Ys = log(
Ss+1

Ss
|κs) ∼ N(µκs, σκs).

Furthermore, the transitions between the regimes are assumed to follow a Markov Process charac-
terized by the matrix P of transition probabilities

pij = Pr[κs+1 = j|κs = i], for i, j ∈ {1, 2}.
As parameters, we use the parameters estimated using the maximum log-likelihood techniques ex-
plained in Hardy (2001). We use the S&P 500 data (total returns) from January 1960 to December
2003. The estimated parameters are summarized in table 3.

To model mortalities, we use a Gompertz-Makeham approach. The survival probability of a
person aged x is then described as

tpx = exp

(
−αt− βeγx(eγt − 1)

γ

)
,

for some α > 0, β > 0 and γ. We use the first set of Gompertz-Makeham parameters in table 3
up to age 65 and the second set for ages higher than 65. As for the underlying asset, we model
mortalities on a monthly basis, generating from a binomial distributions.

5.2. Using Future Information

First we describe a naive simulation strategy which could be used to incorporate future information
(see figure 1). At time 0 we make NS simulations going from 0 to T and we use these to determine
the distribution function of D0. At time 1, we then obtain NS values for the underlying asset and
NS values for the number of people who are still alive. This leads to N = N 2

S combinations. From
each of these combinations, we should then make new simulations from 1 to T to determine N
distribution functions from which reserves and capitals can be calculated. p1 and k1 are determined
as the averages of these N reserves and capitals respectively. For t ∈ {2, . . . , T}, pt and kt could
be determined using a similar strategy.
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Figure 1: Tree simulations to obtain pt and kt.

It can easily be understood that this approach will require a huge amount of computation time.
Therefore, we turn to an approximation strategy. This strategy is described in detail in Desmedt
et al. (2004). We here only describe intuitively the simplifications which are made to the strategy
described above.

• Instead of using all future values for the underlying asset and for the mortality to estimate the
required reserve and capital, we limit ourselves to a only NA values for the underlying asset
and NO classes for the mortality. Since the influence of the position of the underlying asset
on the estimated costs is a lot more important than that of the mortality, we take NO < NA.

• Both for the underlying asset and for the mortality, we avoid resimulating at future points in
time.

5.3. Verification

5.3.1. PUT OPTION

In Hardy (2001), theoretical formulas for the VaRand CTEof a European put option with payoff
function X = (G − Sn)+ on a risky asset (Ss)s∈[0,n] are derived under the log-normal model. As
pointed out by Hardy, when p < Pr[Sn > G], the definition of the CTEgiven by (1) does not give
suitable results. Therefore, she redefines the CTEas

CTE p[X] =
(1 − β ′)E[X|X > Qp[X]] + (β ′ − p)Qp[X]

1 − p
, (7)

where β′ = max{β | Qp[X] = Qβ[X]}. In what follows, we will use definition (7) for the
CTE. When calculating the CTE from simulations, we take CTE p[X] equal to the average of the
(1 − p)% worst outcomes. If Sn ∼ LN(nµ,

√
nσ), then for p ≥ Pr[Sn > G]

CTE p[X] = G− S0
enµ+nσ2/2

1 − p
Φ(−Φ−1(p) −√

nσ).
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On the other hand, if p < Pr[Sn > G], one can verify the CTE is given by

CTE p[X] =
1 − Pr[Sn > G]

1 − p
CTEPr[Sn>G][X].

To test the simulation strategy for the underlying asset, we wish to calculate

E[CTE p[(G− Sn)+|Sy]], where y ∈ {1, . . . , T}, (8)

the expectation of the CTEof the European put option, given the value of the underlying asset at
y ∈ {1, . . . , T}, both theoretically and using the simulation strategy.

First we calculate the theoretical value of (8), as if p ≥ Pr[Sn > G|Sy] were valid for all
possible values Sy as a (sometimes rough) approximation of E[CTEp[(G− Sn)+|Sy]]. Hence we
can write

E[CTE p[(G− Sn)+|Sy]] ≈
∫ ∞

0

[G− x
e(µ+σ2/2)(n−y)

1 − p
Φ(−Φ−1(p) −√

n− y)]fSy(x)dx (9)

= G− e(µ+σ2/2)(n−y)

1 − p
Φ(−Φ−1(p) −√

n− y)

∫ ∞

0

xfSy(x)dx

= G− e(µ+σ2/2)n

1 − p
Φ(−Φ−1(p) −√

n− y).

The approximation made in (9) will improve for high values of p but even for very high p-values
it will still need to be corrected to get a good approximation, if we go into the future. In Desmedt
et al. (2004), it is described in detail how this correction can be made.

In table 1, we summarize the results of this test for the CTE at level p = 0.99 for a maturity
guarantee of G = 1 = S0 after 10 years. Given the information we have at 0, we wish to compare
the average simulated (AS) and theoretical (AT ) CTE at level 0.99 of the maturity guarantee at
the start of every year, taking into account the information about the underlying asset we have at
that moment. We made 15000 simulations for the underlying asset for 10 years where the returns
are log-normally distributed with parameters µ = 0.085 and σ = 0.20. In column 1, we specify
the year at the start of which the average CTE’s at level 0.99 are compared. In the fourth column,
we calculate the difference between AS and AT , relative to AT . In column 5, we calculate the
difference between AS and AT , relative to the level of the guarantee.

Year AT AS
|AS−AT |

AT
|AS − AT |

1 0.557 0.568 2.0% 1.1%
2 0.508 0.512 0.8% 0.4%
3 0.453 0.450 0.7% 0.3%
4 0.397 0.399 0.5% 0.2%
5 0.339 0.345 1.8% 0.6%
6 0.286 0.297 3.8% 1.1%
7 0.234 0.246 5.1% 1.2%
8 0.183 0.183 0.0% 0.0%
9 0.132 0.138 4.5% 0.6%

10 0.082 0.088 7.3% 0.6%

Table 1: Test average CTEat level 0.99 of a put option.

We see that for all compared years, the theoretical and average CTEare fairly close.
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5.3.2. ITERATIVITY PROPERTY OF THE EXPECTATION

In figure 2, we compare the average reserves for the parameters as specified in table 3. For all
t ∈ {0, . . . , T}, the dashed line represents the approximation of E[E[Dt|St, Nt]]. The full line
represents E[Dt|S0, N0].We see that the two lines fit very well onto each other. This means that
under these conditions, our approximation strategy passes the test of the iterativity property of
the expectation. By taking NA smaller under the same conditions, we would see the iterativity
property is less well satisfied. The investigation of some other conditions learned that when costs
are more likely (e.g. when K > S0), less values can be taken for the underlying asset to satisfy
the iterativity property in the same way. On the other hand, when costs are less likely (e.g. when
K < S0), NA needs to be larger to obtain results of the same quality as of those in figure 2.

6. RESULTS

6.1. Average Capitals and Technico-Financial Premium

In figure 3, we see that the capitals start at the same value in the two multi-period strategies. At the
start of the second year, the strategy using future information requires on average less capital than
the one not using future information. The differences increase if we move further into the future.
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Figure 2: Comparison of the average reserves.
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Figure 3: Comparison of the average capitals.

As we see in table 2, the differences between the average capitals in the two strategies have an
important influence on the technico-financial premium.

Approach section 3.1 Approach section 3.2

PP 0.79 0.79
K0 21.97 21.97

TFP 14.05 6.50

Table 2: Comparison technico-financial premium.

The technico-financial premium in the approach not using future information is more than twice
as large as in the approach in which future information is taken into account.
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6.2. Distribution Functions of Future Total Solvency Levels

In figure 4, we show the approximated distribution functions of the future total solvency levels,
when they are adapted to the information at the start of year t ∈ {1, . . . , T}, which are obtained
using the simulation strategy. The vertical line is the total solvency level at time 0. To characterize
the other lines, we can use the following rule: the higher the line is at the left, the further in time
the situation which is represented.
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Figure 4: Approximate distribution functions for the total solvency levels at the start of each year
when using future information.

We see that in about 30% of the cases, the total solvency level at the start of the second year should
be larger than the initial total solvency level. The largest estimations for the required total solvency
level at the start of the second year are about twice as large as the initial total solvency level. On
the other hand, the lowest estimations are about one third of the initial total solvency level. Hence,
already after one year, the differences in mainly the underlying asset can be such that we obtain
a very wide range in possible required total solvency levels. At the start of the third year, the
largest estimations become even larger but the probability that the total solvency level should be
larger than the initial total solvency level decreases to about 25%. Then for a few years, the largest
estimations remain at a comparable level. We also see that the probabilities that the total solvency
levels should be larger than the initial total solvency level continue decreasing. At about half the
lifetime of the risk, the largest estimations start to decrease too. From the start of year five on,
there are estimations for the required total solvency level of 0.

7. CONCLUSION

In this paper, we suggested a multi-period capital allocation strategy which incorporates future
information. We explained how this strategy can be used within a cash-flow model to price a
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multi-period risk. An interesting example of such a risk is a GMDB in unit-linked life insurance,
especially when pricing and reserving is done in an actuarial way. After explaining and verifying
a simulation strategy for the approach using future information, we compare it with an approach
not using future information. For the average reserves, we see both strategies lead to the same
results, due to the iterativity property of the expectation. For the average capitals however, we
observe important differences between the two methods. As a consequence, the technico-financial
premium for the method not using future information is more than twice as large as in the approach
using future information. Our simulation strategy also provides approximations for the distribution
functions for the future reserves and capitals. From these, interesting information about possible
variations of reserves and capitals can be withdrawn.

8. USED PARAMETERS AND NOTATIONS: SUMMARY

Simulations
Number of simulations NS 15000

Number of values for underlying asset NA 500

Number of classes for mortality NO 5

Contractual Parameters
Portfolio composition {NI , x, C} {1000, 50, 1}

Initial value underlying asset S0 1
Guarantee at death K 1

Age of retirement xR 65

Mortality Parameters

Gompertz-
Makeham
parameters

α 0.000591068646661458
β0−65 0.00000737593571037331

γ0−65 0.11807173977857
β65−99 0.000619125291109306

γ65−99 0.0532009916754107

Parameters Cash Flow model
Risk free rate r 0.0425

Tax rate γ 0.4

Average return on investments in shares δ 0.0505
Cost of capital COC 0.085

Parameters RSLN model
Average log-return in regime 1 µ1 0.0135
Average log-return in regime 2 µ2 −0.0109

Volatility in regime 1 σ1 0.0344
Volatility in regime 2 σ2 0.0645

Probability to move from regime 1 to 1 p11 0.0483

Probability to move from regime 2 to 1 p21 0.1985

Table 3: Used parameters and notations: summary.
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Abstract

This paper deals with the evolution of the reserves of an insurance company with K ≥ 1
lines of business facing dependent risks. We consider risk measures based on the behavior of
the multivariate risk process from an academic point of view. To deal with multivariate risk
processes, we propose a multi-risks model. We then explain how to determine the optimal
reserve allocation of the global reserve to the lines of business in order to minimize those risk
measures. The impact of dependence on the risk perception and on the optimal allocation is
studied and used to test the consistency of the risk measures. This paper is mainly based on
the two following papers Loisel (2004 2005a).

1. INTRODUCTION

This paper describes the work I presented at the 3rd AFM Day conference. It is based on the two
following papers Loisel (2004 2005a), which the interested reader is encouraged to consult for
further details.

We consider here the case of an insurance company with K ≥ 1 lines of business. Some au-
thors, like Cossette and Marceau (2000), and many others, considered multi-risk models. However,
in most cases, they focus on the unidimensional risk process representing the total wealth of the
company.
From now on, we consider a fixed accounting time horizon T, which may be infinite, and study
the evolution of the wealths of the lines of business of the company between times 0 and T. With
three lines of business (three kinds of activities), for example liability, disablement and driving
insurance, it is not the same situation to have (1M, 2M,−2.8M) (id est1 million euros for the first
branch, 2 million euros for the second one and to be short of 2.8 million euros for the last branch ),
or to have (0, 0.1M, 0.1M). Considering only the total wealth (0.2 million euros) does not reflect
the situation of the company very well. A few years ago, a holding company mainly had two large
airlines companies. The first one was doing well, say its wealth was 10M dollars. The second one
was undergoing a bad period, with a debt of, say, 2M dollars. Even if the subcompanies were col-
lateralized, the holding company was estimated 4M dollars, instead of 8M dollars, by the market.
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The reason was that analysts expected the healthy line of business to be penalized by the other one,
which was in the red. To be able to detect such penalties, and to compute probabilities of such
unfavorable events, the multi-dimensional process has to be studied as an additional indicator.

The solvency II project is an additional motivation for these considerations. For an international
insurance group, the required capital, formerly determined at the group level, which took into
account possible mutualization of risks supported by the different subcompanies, will possibly be
determined additionally subcompany by subcompany. This would breed for all subcompanies a
need for a much higher capital.

We consider in section 2 risk measures based on the behavior of the multivariate risk process
from an academic point of view. To deal with multivariate risk processes, we propose in section 3
a multi-risks model. We then explain in section 4 how to determine the optimal reserve allocation
of the global reserve to the lines of business in order to minimize those risk measures. The impact
of dependence on the risk perception and on the optimal allocation is studied and used to test the
consistency of the risk measures in section 5.

2. RISK MEASURES WITH K LINES OF BUSINESS

For a unidimensional risk process, one classical goal is to determine the minimal initial reserve u ε
needed for the probability of ruin to be less than ε.
In a multidimensional framework, modelling the evolution of the different lines of business of an
insurance company by a multirisk process (u1 +X1

t , . . . , uK +XK
t ) (Rk = uk +Xk

t corresponds
to the wealth of the kth line of business at time t), one could look for the global initial reserve u
which ensures that the probability of ruin ψ satisfies

ψ(u1, . . . , uK) ≤ ε

for the optimal allocation (u1, . . . , uK) such that

ψ(u1, . . . , uK) = inf
v1+···+vK=u

ψ(v1, . . . , vK).

There exist different ruin concepts for multivariate processes. Most of them may be represented
by the multivariate, time-aggregated claim process to enter some domain of R

K , called insolvency
region (see Picard et al. (2003), Loisel (2004)). Considering insolvency regions of the kind

{x ∈ R
K , x1 + · · ·+ xK > u+ ct},

corresponds to the classical unidimensional ruin problem for the global company. However, one
could consider that ruin occurs when at least one line of business gets ruined :

ψ(u1, . . . , uK) = P (∃k ∈ [1, K], ∃t > 0, uk +Xk
t < 0).

To measure the severity of ruin, one may consider penalty functions which quantify the penalty
undergone by the company due to insolvency of some of its lines of business.
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Instead of the probability of crossing some barriers, it may thus be more interesting to mini-
mize the sum of the expected cost of the ruin for each line of business until time T, which may be
represented by the expectation of the sum of integrals over time of the negative part of the process.
In both cases, finding the global reserve needed requires determination of the optimal allocation.

The multidimensional risk measure A, which does not depend on the structure of dependence
between lines of business, is one example of what can be considered :

A(u1, . . . , uK) =
K∑
i=k

EIkT

where

EIkT = E

[∫ T

0

|Rk
t |1{Rk

t<0}dt
]

with Rk
t = uk +Xk

t under the constraint u1 + · · ·+ uK = u.
Another possibility would be to minimize the sum

B =
K∑
k=1

Eτ ′k(u1, . . . , uK)

where

Eτ ′k(u1, . . . , uK) = E

(∫ T

0

1{Rk
t<0}1{∑K

j=1R
j
t>0}dt

)
.

To determine the total initial reserve u needed to have an acceptable risk level requires to
find the optimal allocation. Before tackling this problem in section 4, we propose a dependence
structure in section 3 to be able to work on risk measures like B or ψ which take dependence into
account.

3. A MULTIDIMENSIONAL RISK MODEL

We consider the process modelling the wealth of the K lines of business of an insurance com-
pany. Typical lines of business are driving insurance, house insurance, health, incapacity, death,
liability,... Two main kinds of phenomena may generate dependence between the aggregated claim
amounts of these lines.

• Firstly, in some cases, claims for different lines of business may come from a common event:
for example, a car accident may cause a claim for driving insurance, liability and disablement
insurance. Hurricanes might cause losses in different countries. This should correspond to
simultaneous jumps for the multivariate process. The most common tool to take this into
account is the Poisson common shock model.

• Secondly, there exist other sources of dependence, for example the influence of the weather
on health insurance and on agriculture insurance. In this case, claims seem to outcome
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Figure 1: Sample path for three lines of business: The grey one does not depend on the state of
the environment. The two dark lines of business have identical parameters, and are independent
conditionally on the environmental state. Occupation periods for environment states are given by
horizontal lines.

independently for each branch, depending on the weather. This seems to correspond rather
to models with modulation by a Markov process which describes the evolution of the state
of the environment.

Common Poisson shock models are quite easy to understand. To illustrate the other notion,
figure 1 shows a sample path of the surpluses of the 3 lines of business of the insurance company,
under a Markovian environment (horizontal curves correspond to occupation times), but without
common shock. The set of states of the environment has cardinality three. State 3 (highest horizon-
tal level on the graph) is the most favorable for the company, almost no claim occurs for lines 1 and
2 (dark curves) in this state. State 1 is the least favorable state for the company, claim frequencies
and severities are higher for lines 1 and 2. Events for the third line of business (grey curves) are in-
dependent from the state of the environment. One can see the strong positive dependence between
lines 1 and 2 (dark curves), but also their independence conditionally to the environment state. At
some moment, the two dark curves separate each other because of this conditional independence.

Let us define more precisely the model we propose, which takes into account these two different
sources of dependence: the Markov-modulated, Common Shock, Multivariate Compound Poisson
Process model ((MM,CS)-MCPP),
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Conditionally on the state of the environment, the multivariate claim process is modelled by a
Compound Poisson Process with Common Shocks. The intensity, the claim size distribution and
even the common shock parameters may vary in function of the state of the environment, which is
modelled by a Markov process.

The environment state process, denoted by J(t), is a Markov process with state space S =
{1, . . . , N}, initial distribution µ and intensity matrix A.
For example, state 1 might correspond to periods of frequent heavy rains, or very hot weather, to
hurricane seasons. It might also indicate frequent speed controls, law modifications,. . .

There arem ≥ 1 different types of shock. If J(t) = i, then shocks of type e (1 ≤ e ≤ m) occur
according to a Poisson process with intensity λe,i. These shock counting processes are independent
conditionally on J(.).
For example, a shock may be a big car accident, a particular hurricane, an explosion, a medical
mistake with consequences in a hospital,. . .

If J(t) = i, at the rth occurrence of type e (1 ≤ e ≤ m), the Bernoulli vector Ie,ri =
(Ie,r1,i , . . . , I

e,r
Ki) indicates whether a loss occurs for branch k ∈ [1, K], and the potential losses

are represented by Xe,r
i = (Xe,r

1,i , . . . , X
e,r
K,i).

For example, a car accident may cause claims in driving insurance, liability, incapacity, death.
For a fixed state i and fixed shock type e, the successive Ie,ri are i.i.d., the successive Xe,r

i are
i.i.d.

Besides, the Ie,ri are independent from theXe,r
i . However, for a fixed event i, e, r, the loss trig-

gers (Ie,r1,i , . . . , I
e,r
K,i) and the potential losses generated by this event X e,r

i = (Xe,r
1,i , . . . , X

e,r
K,,i) may

be dependent. In most real-world cases, the by-claims amounts seem to be positively correlated.
This is the reason why we allow this kind of dependence. Between time 0 and time t, denote by
N e
i (t) the number of shocks of type e that occurred while J was in state i. Then the aggregate

claim amount vector up to time t is S(t) = (S1(t), . . . , SK(t)) where for a branch k ∈ [1, K],

Sk(t) =
N∑
i=1

m∑
e=1

Ne
i (t)∑
r=1

Ie,rk,i .X
e,r
k,i

In case of no common shock, Sk(t) (the aggregate claim amount vector up to time t for branch
k) is a compound Cox process with intensity λk,J(t) and claim size distribution Fk,J(t).

(S(t), J(t)) is a Markov process (and of course S(t) is not!). This has an impact on computa-
tion times, because we have to keep track of the environment state during the computations.

In this model, the use of Monte Carlo methods is necessary if the number of states of the envi-
ronment or the number of lines of business is too large.

For small values of these parameters, we explain in Loisel (2004) how to compute finite-time
ruin probabilities using an algorithm generalizing the algorithm of Picard et al. (2003). In case of
financial interactions between some lines of business, we can also use martingale methods based on
results of Asmussen and Kella (2000) and Frostig (2004) to provide a theoretical way to compute
the expected time to ruin of the main line of business, and the impact of the other lines on the
time to ruin and on the dividends paid to the shareholders until ruin of the main line (see Loisel
(2005b)).

We will only recall here results from Loisel (2004) on the impact of dependence on multidi-
mensional, finite-time ruin probabilities in section 5.
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4. OPTIMAL RESERVE ALLOCATION

Using differentiation theorems from Loisel (2005a), it is possible to determine a very intuitive
optimal reserve allocation strategy to minimize the functional A defined in section 2. The problem
is to minimze

A(u1, . . . , uK) =
K∑
i=k

EIkT

where

EIkT = E

[∫ T

0

|Rk
t |1{Rk

t<0}dt
]

with Rk
t = uk + Xk

t under the constraint u1 + · · · + uK = u. This does not depend on the
dependence structure between the lines of business because of the linearity of the expectation. Un-
der hypothesis that make it possible to consider finite expectations and to differentiate (see Loisel
(2005a)), denote vk(uk) the differentiate of EIkT with respect to uk. Using Lagrange multipliers
implies that if (u1, . . . , uK) minimizes A, then vk(uk) = v1(u1) for all 1 ≤ k ≤ K. Compute
vk(uk):

vk(uk) =

(
E

[∫ T

0

|Rk
t |1{Rk

t<0}dt
])′

= −Eτk = −
∫ T

0

P
[{Rk

t < 0}] dt
where τk represents the time spent in the red between 0 and T for line of business k.
The sum of the average times spent under 0 is a decreasing function of the uk. So A is strictly
convex. On the compact space

S = {(u1, . . . , uK) ∈ (R+)K , u1 + · · · + uK = u},

A admits a unique minimum.

Theorem 4.1 The optimal allocation is thus the following: there is a subsetJ ⊂ [1, K] such that
for k /∈ J , uk = 0, and fork, j ∈ J ,Eτk = Eτj .

The interpretation is quite intuitive: the safest lines of business do not require any reserve, and
the other ones share the global reserve in order to get equal average times in the red for those lines
of business.

Relaxing nonnegativity, on {u1 + · · · + uK = u}, if (u1, . . . , uK) is an extremum point for A,
then for the K lines of business, the average times spent under 0 are equal to one another. If it
is a minimum for the sum of the times spent below 0 for each line of business, then the average
number of visits is proportional to the marginal premium income rates ck, and in infinite time the
ruin probabilities are in fixed proportions. However the existence of a minimum is not guaranteed,
because (u1, . . . , uK) is no longer compact. The problem would be more tractable with the average
time in the red or with minimization on the ck, because some factors penalize very negative uk in
these cases.
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The multidimensional risk measure A, which does not depend on the structure of dependence
between lines of business, is one example of what can be considered. Another possibility was to
minimize the sum

B =
K∑
k=1

Eτ ′k(u1, . . . , uK)

where

Eτ ′k(u1, . . . , uK) = E

(∫ T

0

1{Rk
t<0}1{∑K

j=1R
j
t>0}dt

)
.

Here B takes dependence into account, and the following proposition shows what can be done:

Proposition 4.2 Assume that for each linek, X k
t = ckt − Skt , with all ck > 0 and where

the Skt satisfy some technical hypotheses (see Loisel (2005a)). DefineB by B(u1, . . . , uK) =∑K
k=1E(τ ′k(u1, . . . , uK)) for u ∈ R

K . B is differentiable on(R+
∗ )K , and foru1, . . . , uK > 0,

∂B

∂uk
= − 1

ck
EN0

k (u, T ),

whereN0
k (u, T ) = Card

(
{t ∈ [0, T ],

(
Rk
t = 0

) ∩ (∑K
j=1R

j
t > 0

)
}
)

.

All these results are drawn from Loisel (2005a). The proofs and some examples may be found
there.

5. IMPACT OF DEPENDENCE

The fact that the optimal reserve allocation strategy for the functional A does not depend on the
dependence structure between risks makes it a good benchmark to compare with other risk mea-
sures, for example the probability that at least one line of business gets ruined, which we call from
now on multidimensional ruin probability (m.r.p.).

Suppose that your lines of business face dependent risks, with fixed marginals. An incon-
testable fact is that any actuary would prefer negative dependence between risks, in order to profit
from their mutualization. This is in agreement with the univariate risk model, in which positive
dependence between risks increases the probability of ruin for the global company. However, this
is in total contradiction with the results obtained in Loisel (2004) for the m.r.p.. It is shown that
positive dependence between risks decrease the probability that at least one line of business gets
ruined. This is quite intuitive since for m.r.p. you do not care if only one or all your lines are
ruined.
In particular we have the following result. Assume that the transition rate matrix of the environ-
ment process is stochastically monotone, and that one can order the states from the least to the
most favorable state for the company for all lines of business at the same time. Then, the m.r.p. in
the multidimensional model in which all lines of business are impacted by the same environment
is less than the m.r.p. in the similar model in which the K lines of business are impacted by inde-
pendent copies of the environment process. Picard et al. (2003) had also proved for processes with
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independent increments, if the risks were PUOD, then the times to ruin were PLOD.

This shows that the m.p.r. is interesting as a complementary information about the solvency of
the lines of business, and may be used with other criteria to determine the reserve allocation once
the risks have been selected, but that to select risks and to determine the capital requirements, one
should use as before risk measures on the aggregated process first. Using only m.r.p. would be a
poor idea.

6. CONCLUSION

We proposed and studied risk measures and models for multidimensional risk models. The impact
of dependence on the risk perception and on the optimal reserve allocation strategy gives an idea
on how to use them. Interesting problems to consider are the problems of parameter estimation and
the link with credit risk theory. It would also be interesting to consider more general risk processes
to take investment into account.
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Abstract

One can find approaches galore in the literature for the valuation of Asian basket options.
When the number of underlyings is large one has to resort to bounds or approximations to
value these options. In this respect, Curran (1994) and Rogers and Shi (1995) very success-
fully applied a conditioning approach. Recently, Lord (2005) combined their approach with
the traditional ad-hoc moment matching approaches, to obtain an approximation which is ex-
tremely accurate and has an analytical bound on its error. Here we review this approach and
extend the results to multiple conditioning variables, along the lines of Vanmaele et al. (2004).

1. INTRODUCTION

This paper deals with the pricing of European options on arithmetic averages. If the average is a
time average of a single underlying asset, these options are referred to as Asian options. Another
possibility is that the average is taken over several assets at the same time instant; these options are
referred to as basket options. Of course, mixtures of Asian and basket options exist in the market.
For instance, the average could be taken over time and over several assets, creating what we will
refer to as an Asian basket option.

The reason for the existence of such options is clear. As far as basket options are concerned,
large companies may want to buy some downside protection on their investments. One possibility
to achieve this would be to buy an option on a basket that is representative for the investments of
the firm. What about Asian options, i.e. options on a time average of a single underlying? A pure
European option on this asset would exhibit a large dependence on the final value of the underlying
asset, and as such the option is quite sensitive to large shocks or price manipulation. To avoid such
issues, many financial contracts often contain a so-called ’Asian tail’, which means that the final
payoff is based on the average price of the underlying over a time interval before the expiry date.
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Recently Schrager and Pelsser (2004) have shown that unit-linked guarantees contain rate of return
guarantees, which closely resemble Asian options. Given the fact that fair value calculations are
currently the talk of the town, it is highly important to be able to value these types of contracts.

In the Black-Scholes model it is already not straightforward to price these types of contracts,
the main reason for this being that no closed-form probability law exists for the sum of corre-
lated lognormal random variables. As the valuation of these options is already mathematically
interesting in the Black-Scholes model, many papers, including ours, are based in this lognormal
setting. Within this model many an approach has been used to value or approximate these options.
Broadly speaking we can divide these methods into five classes: approaches based on Monte Carlo
simulation, the numerical solution of partial differential equations (PDEs), integral transforms, an-
alytical approximations or analytical bounds. We will not attempt to give an overview of all these
approaches here, we refer the interested reader to Lord (2005) and references therein.

In principle, the most flexible approach when considering multiple underlyings is probably a
Monte Carlo simulation. Aside from the fact that it is very easy to implement, a large advantage is
that we can easily allow for more realistic dynamics in the model. However, even though excellent
control variates exist within the Black-Scholes model, the method can still be somewhat compu-
tationally intensive, not to mention the additional problem of computing sensitivities with respect
to model and market parameters. Nowadays however, many structured products with a basket as
their underlying, use caps and floors on the performance of individual underlyings, so that Monte
Carlo simulation or the PDE approach is the only method that can be used. Here we ignore these
additional features, and consider a simple European arithmetic Asian basket option.

Since financial institutions demand quick and accurate answers for the value of a derivative
and its Greeks, large parts of the literature have focused on analytical approximations and bounds.
Probably one of the most widely known and used approximations is that of Levy (1992), who
approximates the arithmetic average with a lognormal random variable, such that the first two
moments coincide with that of the true distribution. A problem that this approximation shares with
other ad-hoc moment matching approaches, is that the size of their error is not known analytically.
Furthermore, most of these approximations only tend to work well for low to moderate volatility
environments. The first shortcoming has certainly motivated researchers to come up with sharp
lower and upper bounds on the value of these options. A seminal paper in this area is that of
Rogers and Shi (1995). In the context of Asian options, they derived a sharp lower bound and
an upper bound on the value of an Asian option. The technique used to derive the lower bound
is remarkably simple, but very effective — they condition on a variable that is highly correlated
with the basket, and then apply Jensens inequality to find a very sharp lower bound. Curran (1994)
arrived at the same lower bound, and was the first to observe that the payoff of Asian basket options
can be split into two parts: one that can be calculated exactly, and one that has to be approximated.
This approach yielded Currans so-called ’sophisticated’ approximation. Recently, Lord (2005)
showed that this approximation of Curran actually diverges when the strike price tends to infinity.
Combining the ideas of Rogers and Shi and Curran, he introduces the class of partially exact and
bounded (PEB) approximations, which are guaranteed to lie between Rogers and Shis lower bound,
and a sharpened version of Rogers and Shis upper bound (due to Nielsen and Sandmann (2003)
and Vanmaele et al. (2005)).

In this paper we will, in the next section, first review the conditioning approaches of Rogers and
Shi and Curran. In Vanmaele et al. (2004) it is shown how to extend the lower bound of Rogers
and Shi so that we can condition on two random variables. Here we trivially extend this lower
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bound, as well as the sharpened upper bound of Rogers and Shi, to allow for an arbitrary number
of conditioning variables. In the third section we review the results of Lord (2005), which provide
a clear motivation for conditional moment matching. Building on the results of the second section,
we can extend the PEB approximations to allow for multiple conditioning variables. Finally, we
show that a recent bounded approximation of Vanmaele et al. (2004), which also matches the
first two conditional moments, satisfies all requirements of a PEB approximation. We end the
paper with a brief numerical illustration and some conclusions and recommendations. The focus
throughout the paper will not be on exact expressions required to calculate the various bounds and
approximations, but on the rationale behind the approaches.

Before starting the next section, we will first introduce some notation. As mentioned, we will
base ourselves in the Black-Scholes framework. For notational convenience we will work with
a constant parameter Black-Scholes model, although all results still hold when these parameters
are deterministic functions of time, and the growth and spot rate are Gaussian. We assume the
underlying assets Si, i = 1, . . . , N and the money market account M evolve according to the
following stochastic differential equation (SDE):

dSi(t)

Si(t)
= µidt+ σidWi(t)

dM(t)

M(t)
= rdt

where all Brownian motions are correlated with instantaneous correlation matrix R. Throughout
the document we will assume, without loss of generality, that the current date is 0. The underlyings
of all options we consider in this paper will be an Asian basket, which at the maturity date T will
be defined as B(T ) in:

B(T ) =
∑N

i=1
wiAi(T )

Ai(T ) =

∫ T

0

Si(t)ρi(t)dt.

Here, the weights wi are positive and sum to 1, and similarly all ρi are non-negative functions,
integrating to 1 over (0, T ). We will only consider newly issued, non-forward-starting call options
on this Asian basket. This is no loss of generality. Put options can be priced via the Asian put-call
parity, whereas running average options can be treated as newly issued ones, with a correction
to the strike price. Finally, forward-starting options pose no problems when interest rates are
deterministic or Gaussian. For ease of exposure we will mostly deal with forward prices in our
analysis. The forward price of the Asian basket call option is equal to its expected value under the
risk-neutral probability measure E

Q
0 , conditional upon all information known at time 0:

cB(T,K) = E
Q
0 [(B(T ) −K)+]

In the remainder we will leave out the superscript indicating the measure and the subscript indicat-
ing at which time the expectation is evaluated, unless any confusion can arise. Having introduced
the notations we will use, we are now ready to turn to the next section.
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2. THE CONDITIONING APPROACHES

The most successful approximations and bounds all rely heavily on results first derived by Rogers
and Shi (1995) and Curran (1994). We briefly review their approaches here, whereafter we extend
them to allow for multiple conditioning variables, something which was done for two conditioning
variables by Vanmaele et al. (2004). We will here use Currans idea of decomposing the Asian
option into two parts: one that can be calculated exactly, and one that has to be approximated.
Suppose that we have a normally distributed random variable Λ with the convenient property that
Λ ≥ λ(K) implies that B(T ) ≥ K. Examples of such random variables will be given shortly.
Following Curran, we can then write:

cB(T,K) = E[(B(T ) −K)+ 1[Λ<λ(K)] + (B(T ) −K)+ 1[Λ≥λ(K)]]

= E[(B(T ) −K)+ 1[Λ<λ(K)] + (B(T ) −K) 1[Λ≥λ(K)]]

≡ c1(T,K,Λ) + c2(T,K,Λ)

As is shown in Curran (1994), it is quite straightforward to calculate the c2-part, using the con-
venient property that normally distributed random variables are still normally distributed upon
conditioning on a correlated normal random variable. We will therefore refrain from reproducing
the exact formulae here. This leaves us with the calculation of the c1-part, which we can bound or
approximate. Let us first however consider several possible random variables Λ, which have the
above property. A very natural candidate for such a Λ is the logarithm of the geometric average,
which for the Asian basket will be defined as:

G(T ) =
∏N

i=1
Gi(T )wi

Gi(T ) = exp

(∫ T

0

lnSi(t)ρi(t)dt

)

An application of the weighted Jensens inequality shows thatB(T ) ≥ G(T ), with equality attained
if and only if all components of the average are equal. Defining ΛGA = lnG(T ), it is then obvious
that when ΛGA ≥ lnK, we indeed have B(T ) ≥ K. Other possible conditioning variables, see
e.g. Vanmaele et al. (2004), arise from a first order approximation of the Asian basket B(T ) in its
driving Brownian motions. In the setting of an Asian basket option, we then obtain the following
conditioning variables and their corresponding thresholds:

ΛFA1 =
∑N

i=1
wi

∫ T

0

Si(0) exp

(
(µi − 1

2
σ2
i )t

)
· (1 + σiWi(t)) ρi(t)dt

ΛFA2 =
∑N

i=1
wi

∫ T

0

Si(0) ·
(

1 + (µi − 1

2
σ2
i )t+ σiWi(t)

)
ρi(t)dt (1)

The corresponding thresholds are in both cases equal to λFA1(K) = λFA2(K) = K. We note that
the higher the correlation of Λ with B(T ) is, the larger the relative contribution of c2 to the option
price will be. In practice, any of the above conditioning variables is quite highly correlated with
B(T ), provided that the volatilities of the underlying assets are not too high. This is one of the
key points as to why these conditioning approaches work so well - c2 constitutes a large part of the
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option price, so that any approximation we make in c1 will not have a large impact. The larger the
volatilities and maturities are, the more important it becomes to approximate c1 accurately.

We now turn to the approximating part c1. Both Rogers and Shi and Curran used Jensens
inequality to find a lower bound on the value of these options. A lower bound on c1 simply follows
from:

c1(T,K,Λ) = E
[
(B(T ) −K)+ 1[Λ<λ(K)]

]
= E[E[(B(T ) −K)+ 1[Λ<λ(K)] | Λ]]

≥ E[E[(B(T ) −K) 1[Λ<λ(K)] | Λ]+]

so that then the lower bound becomes the sum of this lower bound and c2:

LB(T,K,Λ) = E[(B(T ) −K)+ 1[Λ<λ(K)]] + c2(T,K,Λ)

= E
[
(E[B(T ) | Λ] −K)+] (2)

This lower bound can in principle be applied using an arbitrary conditioning variable, not only
conditioning variables for which we have the aforementioned property. In Lord (2005) it is shown
how to calculate (2) in closed-form for an arbitrary conditioning variable, and an arbitrary correla-
tion structure between the various underlyings. This greatly facilitates the computations required
for the lower bound, as otherwise we would have to resort to a numerical integration over a dis-
continuous integrand.

Another approach to approximate c1 will be pursued in the following section. We will now ex-
tend the lower bound so that we can condition on multiple random variables. For two conditioning
variables this idea was first pursued in Vanmaele et al. (2004), so this is merely a trivial extension
of their results. Suppose that we have a conditioning variable Λ and a set of conditioning variables
Z , such that for any realisation of the random variables in Z , Λ ≥ λ(K) implies that B(T ) ≥ K.
The lower bound on c1 then becomes:

c1(T,K,Λ) = E[(B(T ) −K)+ 1[Λ<λ(K)]]

= E
[
E[(B(T ) −K)+ 1[Λ<λ(K)] | Λ,Z]

]
≥ E

[
E[(B(T ) −K) | Λ,Z]+ · 1[Λ<λ(K)]

]

so that the resulting lower bound is:

LB(T,K,Λ,Z) = E
[
E[(B(T ) −K) | Λ,Z]+ · 1[Λ<λ(K)]

]
+ c2(T,K,Λ) (3)

Note that the first part in (3) will typically have to be calculated via a multivariate numerical
integration, whereas the second part is the same as before, and can hence be done in closed-form.
Let us now turn to an analysis of the error made by approximating the value of the Asian basket
option by the lower bound in (3). This upper bound, based on the lower bound, was first derived
by Rogers and Shi (1995). It is based on the following inequality:

0 ≤ E[X+] − E[X]+ =
1

2
(E [|X|] − |E[X]|)

≤ 1

2
E [|X − E[X]|] ≤ 1

2

√
V ar(X)
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More recently, Nielsen and Sandmann (2003) and Vanmaele et al. (2005) sharpened this upper
bound considerably. We here extend their sharpened version to allow for multiple conditioning
variables. Proceeding as above, we find:

0 ≤ cB(T,K) − LB(T,K,Λ,Z)

= E
[
E[(B(T ) −K)+ 1[Λ<λ(K)] | Λ,Z] − E[(B(T ) −K) 1[Λ<λ(K)] | Λ,Z]+

]
≤ 1

2
E

[
V ar

(
B(T )1[Λ<λ(K)] | Λ,Z)1/2]

≡ ε1(T,K,Λ,Z) (4)

This yields an upper bound which again has to be calculated via a multivariate numerical integra-
tion. Nielsen and Sandmann and Vanmaele et al., using only one conditioning variable, go one
step further to derive a slightly larger upper bound, that can be calculated in closed-form. Here it
is equal to:

ε1(T,K,Λ,Z) =
1

2
E[V ar

(
B(T )1[Λ<λ(K)] | Λ,Z)1/2]

≤ 1

2

√
E[V ar (B(T ) | Λ,Z) · 1[Λ<λ(K)]] · E[1[Λ<λ(K)]]

≡ ε2(T,K,Λ,Z) (5)

Both error estimates yield an upper bound which is equal toUBi(T,K,Λ,Z) = LB(T,K,Λ,Z)+
εi(T,K,Λ,Z), for i = 1, 2. It can be calculated in closed-form because we can write:

E[V ar (B(T ) | Λ,Z) · 1[Λ<λ(K)]] = E
[
E [V ar (B(T ) | Λ,Z) | Λ] · 1[Λ<λ(K)]

]
As shown in Nielsen and Sandmann and Vanmaele et al., this expression can be calculated in
closed-form. We do not reproduce the formulae here, as it only distracts from the rest of the text
and the calculations are exactly the same as in the aforementioned articles. Note that the variance
of B(T ) given Λ and Z is zero if the set {Λ,Z} contains all random variables within B(T ). Then
the results above imply that the lower bound exactly coincides with the true value of the Asian
basket option. Finally, we mention that Rogers and Shis upper bound corresponds to the limit of
UB1 for K tending to infinity.

3. THE BENEFITS OF CONDITIONAL MOMENT MATCHING

As mentioned in the introduction, many original approximations merely substitute the arithmetic
average by a tractable random variable, which has the same first couple of unconditional moments.
An example of this is Levy (1992) approximation, which fits a lognormal random variable to the
arithmetic average. These types of approximations typically only work well when volatilities and
maturities are low. Furthermore, the size of the error made can not easily be estimated. Here we
show that conditional moment matching does yield an analytical error estimate. The proposed
approximation follows from:

c̃B(T,K,Λ,Z) = E[
(
B̃(T ) −K

)+

1[Λ<λ(K)] + (B(T ) −K) 1[Λ≥λ(K)]]

≡ c̃1(T,K,Λ) + c2(T,K,Λ) (6)
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i.e. it again exists of an approximating part and an exact part. For Λ ≥ λ(K) we can take our
approximating random variable B̃(T ) to be equal toB(T ), yielding the exact c2-part. For λ smaller
than λ(K), we have to make an approximation. Given certain criteria that B̃(T ) must fulfill, which
follow in the next theorem, we can find an analytical error estimate as derived in Lord (2005). Here
we extend this result to allow for multiple conditioning variables.

Theorem 3.1 If we impose the following two conditions on the approximating random variable
B̃(T ):

E[B̃(T ) | Λ = λ,Z = z] = E[B(T ) | Λ = λ,Z = z]

V ar[B̃(T ) | Λ = λ,Z = z] ≤ V ar[B(T ) | Λ = λ,Z = z] (7)

for λ ∈ (− inf, λ(K)), the resulting approximation in (6) lies between LB(T,K,Λ,Z) and
UBi(T,K,Λ,Z).

Proof:
The proof follows along the same lines as (4)-(5):

0 ≤ c̃B(T,K,Λ) − LB(T,K,Λ,Z)

= E

[
E[
(
B̃(T ) −K

)+

1[Λ<λ(K)] | Λ,Z] − E[
(
B̃(T ) −K

)
1[Λ<λ(K)] | Λ,Z]+

]

≤ 1

2
E

[
V ar

(
B̃(T )1[Λ<λ(K)] | Λ,Z

)1/2
]
≤ ε1(T,K,Λ,Z)

It is clear that the first equality holds, due to the construction in (6) and the fact that the conditional
moments are equal for Λ ≤ λ(K). The rest of the derivation is similar to (4)-(5). It immediately
follows that:

LB(T,K,Λ,Z) ≤ c̃B(T,K,Λ,Z) ≤ UB1(T,K,Λ,Z)

which concludes the proof of the theorem. �

This theorem directly motivates why it is good to match conditional moments. Intuitively
we can indeed expect to obtain better results than by just matching unconditional moments. The
above theorem gives a rigorous (and typically sharp) error bound for this. Note that the moments
do not have to be exactly matched - the conditional variance may actually be smaller. Approxi-
mations satisfying (6) and (7) are dubbed partially exact and bounded (PEB) approximations. The
lower bound LB(T,K,Λ,Z) is a special case hereof. In Vanmaele et al. (2004) another route
is attempted. Without delving into details, they construct an approximation via a (conditionally)
convex combination of the lower bound and the partially exact and comonotonic upper bound
(PECUB), the so-called LBPECUB approximation. The conditional weights are chosen by ensur-
ing that the first two conditional moments are matched exactly. As such, it satisfies the criteria for
it to be a PEB approximation, and hence it is bounded above by the UB1 as well as of course by
the PECUB upper bound.

We note that in practice the approximating part in (6) will have to be calculated via a numerical
integration. From a computational point of view one would therefore not like to use too many
conditioning variables. Typically one conditioning variable may already be more than enough, as
has been shown in Lord (2005) for a pure Asian option, and as we will demonstrate for a pure
basket option in the next and final section.
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4. NUMERICAL ILLUSTRATION AND CONCLUSIONS

To illustrate the effectivity of conditional moment matching we will here provide a numerical ex-
ample for a pure basket option. The example has been taken from Milevsky and Posner (1998), and
also features in Vanmaele et al. (2004). The basket underlying the option is the weighted average
of the normalized G-7 stock indices. Weights, volatilities, dividend yields and correlations can be
found in the tables below.

Country Index Weight Volatility Dividend yield
Canada TSE 100 10% 11.55% 1.69%
Germany DAX 15% 14.53% 1.36%
France CAC 40 15% 20.68% 2.39%
U.K. FTSE 100 10% 14.62% 3.62%
Italy MIB 300 5% 17.99% 1.92%
Japan Nikkei 225 20% 15.59% 0.81%
U.S. S&P 500 25% 15.68% 1.66%

Table 1: Weights, volatilities and dividend yields of the basket

Canada Germany France U.K. Italy Japan U.S.
Canada 1.00 0.35 0.10 0.27 0.04 0.17 0.71
Germany 1.00 0.39 0.27 0.50 −0.08 0.15
France 1.00 0.53 0.70 −0.23 0.09
U.K. 1.00 0.45 −0.22 0.32
Italy 1.00 −0.29 0.13
Japan 1.00 −0.03
U.S. 1.00

Table 2: Upper triangular part of the instantaneous correlation matrix

As we use the normalized values of the indices, this effectively means we assume the initial spot
value equals 1 for each index. In the following table we compare the lower and upper bounds using
one or two conditioning variables to the ’true’ value obtained from a Monte Carlo simulation with
5 000 000 paths, using antithetic variables and using the geometric basket as the control variate.
Results are only shown for the most extreme example in Vanmaele et al., namely for a maturity
of 10 years. Vanmaele et al. only considered three strike prices, 0.95, 1 and 1.05. However,
the forward price of the basket (the mean of its unconditional distribution) can be calculated as
1.578288, so that we found it important to include higher strike prices in the table as well. The
choices for conditioning variables are the same as in this article, the first conditioning variable is
FA1 (cf. (1)), the second is similar to FA2, apart from the fact that the sign of the one but last
Brownian motion is reversed.
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Strike MC (StdErr) LBFA1 UBFA1 LBFA1,FA2∗ UBFA1,FA2∗
0.95 33.6590 (0.0036) 33.6221 33.8765 33.6461 33.7814
1 31.1333 (0.0037) 31.0758 31.3974 31.1103 31.2849
1.05 28.6603 (0.0038) 28.5870 28.9879 28.6335 28.8553
1.25 19.6748 (0.0042) 19.5002 20.3444 19.6046 20.1044
1.5 11.1785 (0.0045) 10.8999 12.5203 11.0481 12.0654
1.578288 9.1918 (0.0044) 8.8975 10.7762 9.0927 10.2872

Table 3: Upper and lower bounds based on one or two conditioning variables

The upper bounds are the UB2 upper bounds, see equation (5). Indeed, conditioning on more
random variables sharpens the lower and upper bounds considerably, as was already demonstrated
in Vanmaele et al., but is now also apparent from the new upper bound.

To show that conditional moment matching actually works remarkably well, we compare var-
ious conditional moment matching approximations to the true value of the option. As mentioned
earlier, the LBPECUB approximations considered in Vanmaele et al. (2004) are convex combi-
nations of the lower bound and the PECUB upper bound. Results in their paper were shown for
using the geometric average as the conditioning variable. Two distinctions can be made on the
choice of the weights for each bound: z(λ) indicates that the first two conditional moments are
matched exactly (yielding a PEB approximation as noted in section 3), whereas zu indicates that
the lower bound and the PECUB upper bound are weighted using a global weight stemming from
another approximation in Vyncke et al. (2004). The latter is not a conditional moment matching
approximation, but it works rather well.

The Curran2M+ and Curran3M+ approximations are PEB approximations considered in Lord
(2005) that fit a shifted lognormal random variable to the basket. The 2M+ approximation consid-
ered here uses a shift equal to the conditioning variable ΛFA1; the remaining two parameters are
chosen such that the first two conditional moments are matched exactly. The 3M+ approximation
is a slight take on this: the shift is now also considered as a parameter, so that the first three condi-
tional moments can be fit exactly. In both approximations we condition on ΛFA1.

Strike MC (StdErr) LBPECUBGA 2M+ 3M+
z(λ) zu

0.95 33.6590 (0.0036) 33.6379 33.6543 33.6682 33.6612
1.00 31.1333 (0.0037) 31.0971 31.1239 31.1389 31.1318
1.05 28.6603 (0.0038) 28.6149 28.6554 28.6693 28.6631
1.25 19.6748 (0.0042) — — 19.6704 19.6769
1.50 11.1785 (0.0045) — — 11.1606 11.1768
1.578288 9.1918 (0.0044) — — 9.1791 9.1919

Table 4: Several approximations for the value of a basket option

We did not get round to implementing the LBPECUBGA approximation ourselves, so that
we here only reproduce the values given in Vanmaele et al. They only considered strike values
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up to 1.05; as the forward price of the basket is 1.578288 for a 10-year contract, we also found
it important to consider slightly higher strike prices. As can be seen from the table, the 3M+
approximation seems to give results that are very close to the true values and this has only been
achieved by using one conditioning variable. The conditional moment matching approximation
of Vanmaele et al., using z(λ), seems to yield too low values. However, their approximation
which uses zu is a clear contender, yielding results which are comparable to those of the 2M+
approximation. Considering the computational effort, which has been investigated in Lord (2005),
we have a slight overall preference for the 2M+ approximation, although this is of course subject
to discussion.

Concluding, in this paper we reviewed the conditioning approaches of Rogers and Shi (1995)
and Curran (1994). Rogers and Shis lower and (sharpened) upper bounds, as well as the PEB
approximations of Lord (2005), have been extended along the lines of Vanmaele et al. (2004) to
allow for multiple conditioning variables. Finally, we have shown that the LBPECUB convex
combination of the lower bound and the PECUB upper bound, considered in Vanmaele et al., is
indeed a PEB approximation, and as such is bounded from above by the (sharpened) Rogers and
Shi upper bound. In a numerical example the effectivity of conditional moment matching has been
demonstrated.
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Abstract

As other European countries, transition economies face the reform of the social security sys-
tem. As one of the first, Poland has introduced a pension reform in 1999, which changed a
standard pay-as-you-go system into one constructed of three pillars and based on addressed
contributions. The five years since the reform allow us to take a first look at the reform, both in
terms of assessing the legal implementation as well as the realization of main assumptions and
aims. In this paper we consider the effectiveness of the reform. We find that in many aspects
this reform should not be considered successful.

1. INTRODUCTION

To a probably larger extent than in Western European countries, transition economies face the ne-
cessity to reform their social security systems. Movement towards market-based economic setting
accompanied by demographic changes, imposes an intense time constraint on their governments to
design and implement a new system. However, the particular characteristics of the new solutions
as well as the very foundations of the new system are not as evident as one might think.

There were two fundamental prerequisites for the reform in Poland: on one hand the state
pay-as-you-go (PAYG) system seized being capable of serving future generations for demographic
reasons. On the other hand, the national saving rate was believed to be too low. In addition, reform
was expected to ameliorate the problem of capital market shallowness and increase the efficiency
as well as the transparency of national savings management. In this paper we attempt to verify
whether these major aims were satisfied. We analyse the institutional set-up of the new system and
point to the inefficiency of the current pension system, as well as its ineffectiveness since not only
is it relatively costly but also provides no risk hedge. The major hypothesis we try to support is
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that from the users’ point of view the current system is in its idea equivalent to the obligatory
bank savings, although significantly more expensive.

The paper is organised as follows. We first approach the officially acknowledged reasons for the
reform, thereby suggesting the initial requirements for the new system. In the second section we
discuss the macroeconomic and demographic characteristics of Poland which serves the purpose
of presenting the social security landscape on the eve of reform. We further move to the micro
level foundations, analysing the new system in section three. Eventually, we approach the issue
of efficiency, presenting the observed performance of the system and modelling its cost to the
beneficiaries. The paper is rounded of by conclusions.

2. REASONS FOR THE REFORM

Most European countries maintain a pay-as-you-go retirement system, sometimes allowing for
tax redemptions in case of additional participation in non-obligatory and private pension plans.
The pay-as-you-go system has emerged as a result of the welfare economics doctrine. With the
post-war demographic booms and trente gloires of economic expansion, outlooks for this solution
seemed not only sustainable but also strictly dominating other alternatives in terms of political
consensus and social support. The problems became evident as late as in 1980s when in most
European countries demographic structure started to change in the adverse direction hazarding the
liquidity of social security funds.

Poland is by no means exception from this pattern. Due to changes in population age scheme,
social security system required subsidisation during the entire 1990s, with numerous examples of
insolvency and delayed benefit payments. High unemployment (both observed unemployment and
the ’voluntary’ one resulting from foreign transmittances) have further deteriorated the situation
of society’s changing demographic structure. In addition, there is also an issue of savings habits
which constituted a serious problem for capital formation process.

2.1. Demographic issues

As in the rest of Europe, the demographic structure of Polish society was gradually changing. The
post-war population boom started approaching the retirement age, whereas new generations are
less numerous. The shift is clearly visible both for men and women. The decrease in number of
births is accompanied by a generally longer life time. In addition, for both genders, the population
of between the age of 20 and 35 years is decreasing, whereas the opposite may be observed in
the range of people aged 35 to 60 years. These elements considered together with the growing
unemployment, combine to a serious downfall in contributions to the social security funds.

This process is accompanied by various structural changes in the Polish society. Traditionally,
farmers’ contributions to the social security fund are rather symbolic, whereas welfare of this
social group vitally depends on the state transfers. Secondly, an increasingly important share of
unemployment originates from the structural mismatch. On the top, Polish economy was gradually
moving from 7% real GDP growth rate in 1997 to much lower levels owing to the general global
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economic slowdown.

2.2. Savings

For the forty years of the post-war period the economic system created little incentives for post-
poning consumption. First, in the presence of the socialist state, citizens rarely take up the respon-
sibility for their financial condition. Secondly, the trust in the value of Polish money was rather
diminishable — the main currencies for wealth accumulation were US dollar and German mark,
none of which could be legally deposited above certain predefined and extremely low level. On
the other hand, the financial system itself was rather a tease, since there were no internal financial
markets and international capital flows were strictly controlled.

In addition, trust in national institutions in this respect was significantly decreased by 1956
’reform’, when the government overnight devaluated the currency by 60% without any compen-
sation. The observed growing disparities between internal and external prices and skyrocketing
black market premium further diminished the propensity to institutionalise savings. In addition,
there are also psychological aspects in play — in case of a centrally planned economy many goods
and services were simply underprovided, which excessively raised consumption in case of acci-
dental availability. In addition, the 1990s brought a period of hyperinflation, while at the beginning
deposits were not indexed.

2.3. Financial markets

The Polish economy is troubled by a capital gap. Continuous inflow of foreign investment partly
alleviated the problem but ushered trade balance deficit and increased vulnerability of the Polish
economy to foreign shocks. In addition, the assets available on the markets were so far insufficient
to induce deepening of the financial markets by foreign investors, which is often raised in public
debates1. Hence, home investors are believed to be crucial to facilitate the process of developing
the Polish financial markets.

However, with virtually absent private pension funds (private plans are rare even among top
tier managers) there were only banks and investment funds. The first focus on the credit activity.
As to the latter, the participation in the stock market is still low among the citizens - lower than the
European average, which is in general much lower than the US levels. Shifting retirement savings
from the Social Security Fund to private and independent pension funds was believed to trigger the
process of deepening the Polish financial markets (Giunrken 1999).

1An extensive coverage of these debates may be found on Polish Insurance Portal (www.ubezpieczyciel.pl, in
Polish).
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3. THE NEW SYSTEM VERSUS ITS ASSUMPTIONS

In 1999 government introduced four general reforms: health care, education, administration and
social security system, all of which required creating a new institutional architecture as well as
introducing new rules concerning contributions and benefits. Five principles can be identified as
having guided these changes (Gomulka and Styczen 1999). They have laid the foundation for the
new system.

• The diversification principle: the necessity of enhancing the security and efficiency of
the pension system should be obtained by diversifying the system between state and private
funds as well as between obligatory and voluntary contributions. The system of retirement
pensions for workers consists of three pillars: (I) state PAYG, (II) private open pension funds
and (III) other pension funds. Only pillars II and III are private, whereas only pillars I and II
receive obligatory contributions (see figure 1).

• The distribution principle: maintain the PAYG rule in the public part of the new system,
while making it less redistributive and more transparent in order to immune the system to
temporary political pressures. Obligatory contributions remain proportional to earnings (a
form of a payroll tax, 19.52% of gross wage), but are also a subject to a cut-off point equal
to 2.5 times the average wage. Half of the contribution is paid by employers and the other
half by employees and the payment is made upfront each month.

• The capital-funding principle: make it capital funded as well as induce appropriate reg-
ulation of the private part. The private pension funds which constitute pillar II receive a
specified part of all the obligatory contributions (7.3% of gross wage, the remainder is left in
the PAYG state pillar I). The efficiency of the pension funds is recognised in two ways: con-
tributors are freely allowed to change the fund and a floor was imposed on the fund triennial
rates of return.

• The savings principle: the savings measures introduced must cover the cost of the reform.
The reform clearly implies the deterioration of the public finance in the initial phase, as part
of the obligatory contributions is diverted to pillar II. To contain this deterioration, supple-
mentary reforms were introduced, namely: tighter criteria for handicapped benefits, raising
the effective retirement age, reducing the scope for early retirement and reducing the growth
rate of benefits.

• The gradual phasing-in principle: the phasing-in of the new system must be spread over a
prolonged period of time, and should not involve people near retirement. A gradual phasing-
in of the reform is intended, above all, to protect the rights of older workers (actual founders
of Polish economy, as it was destroyed in nearly 80% after the second world war), as they
remain in the old system. On the other hand this helps to limit the cost of reform implemen-
tation.

As the authors of the reform admit, the necessary process of shifting away from the inefficient
and unsustainable PAYG system was prolonged over at least 20 years. In addition, even after this
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period, PAYG remains one of the pension sources, providing 30% of the benefit2.

3.1. The architecture of the new system

According to the rules outlined above, each citizen born after 1969 is obliged to participate in
both I and II pillar (the choice of II pillar is left to the worker). Citizens born between 1949 and
1969 are free to choose, whether they join the II pillar at all or remain in the PAYG system solely
(regardless of their choice, their pension is calculated according to new principles). Finally, citizens
born before 1949 do not have the choice, as they are obligatory members of the PAYG system3.
The government is the lender of last resort for the second pillar, which effectively neglects the risk
of loosing savings in result of a bankruptcy (Nowak 1999).

3rd Pillar
Towarzystwa Emerytalne - PFs

(Pension Funds)
Voluntary participation (particular fund is subject to choice)

Otwarte Zaklady Emerytalne - OPAs
(Open Pension Associations)

Compulsary participation (but particular association is subject to choice)
In principle responsible for benefits distribution, so far no legitimisation

Otwarte Fundusze Emerytalne - OPFs
(Open Pension Funds)

Compulsary participation (but particular fund is subject to choice)
Responsible only for funds collection

2nd Pillar

1st Pillar
Zaklad Ubezpieczen Spolecznych

(Social Security Fund - SSF)
Compulsory participation

Figure 1: The architecture of the New Social Security System

Everyone, regardless of age, is entitled to join any pension fund within the scheme of the III
pillar. However, contribution is limited to 7% of wage and is not tax deductible. In addition, the
solution of Individual Pension Accounts was introduced in 2004, allowing to deposit voluntary
contributions in banks and financial institutions (the equivalent of approximately 800-850 euro on
the annual basis) with the redemption of the tax on interest.

3.2. The impact on savings

The analysis of the household behaviour shows a considerable growth in the savings rate in the
period prior to the reform. However, although official statistics exhibit the growth in total econ-
omy savings from 16% of GDP in 1991 to 21% in 1997, with the average real GDP growth rate
for this period exceeding 7%, reality is much less optimistic (Liberda 1999). Firstly, 1996 brought
the change in the system of national account and in this year savings to GDP ratio amounted to ap-

2The problem of employed in the agriculture remains essentially unaddressed, as the scope of reform excluded
this social group from the reform thus strengthening the persistence of the old system, where the incompatibility
between contributions and benefits is especially visible — in the agriculture pension system mainly serves the purpose
of providing the safety net to this social group.

3The payment scheme, however, has been changed in order to facilitate maintaining liquidity in the future.
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Figure 2: Savings and investment (as a share of GDP).

proximately 18%. Secondly, this is mainly attributable to the institutionalisation of the previously
unofficial savings. More realistic estimates support the thesis of 2-3 percentage points increase.
Furthermore, this tendency was reversed in the later years yielding the persistent average saving
rates of 17-18% (Liberda 2003).

Authors of the reform expected to induce a change in household savings behaviour by intro-
ducing compulsory participation in pension funds and thus strengthening the expansion potential
of the private pension plans. Obviously, since propensity to save may crucially depend upon the
GDP growth rate, the economic slowdown might have overshadowed the impact of the reform.
However, one seems to be unable to prove this hypothesis based on available data. In other words,
although one cannot state that reform failed to achieve the aim of stimulating household savings,
the opposite seems largely disputable.

3.3. The impact on the depth of the capital market

With the wind of 1989 and gradual development of the banking system, some changes occurred.
Despite initially strong impact of inflation, people eagerly opened accounts in new, commercial
banks. The popularity of vista accounts and short term deposits is believed to be the key factor
of success in the stage of forming financial markets as well as in the initial investment process
(Jurkowski 2001). However, Polish economy suffers from a capital gap, which necessitates imple-
menting a strategy aiming at introducing capital accumulating institutions and creating investment
friendly environments.

Unfortunately, OPFs are rather inefficient in transforming the participants’ savings into in-
vestment capital. They avoid direct capital involvement (via for instance capital funds) and are
reluctant as stock exchange players, the latter being partly justifiable by the shallowness of the
stock market. More importantly, government and communal bonds continuously contribute to al-
most 70% of their assets. Furthermore, these bonds are rarely purchased on the primary market
realising the buy-and-hold strategy.

Based on these results it is difficult to support for the thesis of financial market deepening
argument. Although all OPFs investment occurs exclusively via the market mechanism, this group
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of investors is not particularly active on the markets — neither risk-less nor involving significant
uncertainty4.

4. THE VALUE-FOR-MONEY APPROACH AS AN EFFICIENCY CRITERION

As presented in the previous section, the reform has not achieved its initial aims. One lacks the
ground to state that it significantly affected the savings patterns, while it only marginally con-
tributed to deepening the financial markets. Above all, with the current status, pension funds
reform did not introduce the risk sharing mechanisms leaving the problem of benefit payouts es-
sentially unaddressed. OPFs are not pension funds in the canonical understanding of the word, as
they only play a role of contribution collectors and managers.

Despite all these shortcomings the new system involving Open Pension Funds might provide
benefits in terms of value-for-money analysis. To be able to verify this hypothesis we need to
specify a benchmark case. For simplicity we assume a slightly peculiar and perfidious example of
virtually no system at all — instead of introducing the pension funds the system would impose an
obligation to deposit monthly exactly the same contributions on a bank account without the right
to retrieve these holdings. We further assume that there is no cost associated to this saving strategy,
while in return it brings the average long term commercial bank deposit rate.

The choice of the benchmark was dictated by the observation emphasised in the previous sec-
tions that OPFs are only responsible for collecting and managing the contributions but they bear
no actuarial risk. The main advantage the new system enjoys over other solutions in this respect
concern the capital adequacy rules and investment prudence. Thus, although a bank account would
not be as secure without additional regulations, in predictable conditions the new system is func-
tionally not very distant from the current Polish solution.

In this section we compare the Open Pension Funds to this virtual benchmark case. We briefly
present the costs associated with this institutional solution, analysing at the same time whether
the current regulation introduces incentives for both efficiency of savings management and cost
rationalisation. Lastly, we try to specify minimum conditions for future OPFs performance to
insure strict domination of this solution5.

4The results suggest also that this is a consistent pattern across the funds implying low incentives for investment
strategies diversification (Mularczyk and Tyrowicz 2004). One needs to admit that in the previous system, current
contributions were neither accumulated nor invested. If the PAYG system liabilities were below contemporaneous
contributions, the surplus was taken over by the budget. In the case of Social Security Fund liquidity problems, the
government covered the deficit. Currently, contributions constitute savings and although they still finance the budget
deficit, it occurs via the market mechanism.

5Mularczyk (2002) tested for levels of substitution between men and women in the first pillar, pointing also to
the weaknesses of the floor mechanism - the results suggest that the system discriminates between the participants
for the moment of joining which cannot become a decision variable. Furthermore, as an experiment demonstrated,
protection against speculation on the event of fund bankruptcy is also weak with time. Mularczyk and Tyrowicz (2004),
performed a panel data analysis basing on the Markowitz model, indicating that funds benchmark poorly against the
market.
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4.1. The costs of the OFPs

Open Pension Funds are privately funded institutional investors as well as legal entities obliged
by the act of 1997 to perform certain reporting activities. Consequently, they face two types of
costs - those associated with organising and operating a financial institution (benefits collection,
funds management, etc.) and t hose following from regulator decision (essentially reporting to the
Pension Funds Superintendence as well as participants). They may seek two sources to cover these
costs: own capital and fees charged to the beneficiaries (Hadyniak and Monkiewicz 1999, Nowak
1999). Whereas the first option is rarely applied for the obvious reasons, the latter is strongly
regulated.

First, OPFs are entitled to a certain part of each first contribution. This rate is decreasing with
the participation in the fund. The regulator assumes that being a member of a fund for a longer
period of time entitles the participant to a special treatment, which is reflected in the fee charged.
The details are given in table 1.

Year of participation 1 2 3 4 5 6-10 11-15 16-20 21-25 26 27 28-...

Average fee (%) 8.94 8.88 6.43 6.27 6.23 6.22 6.18 5.26 5.12 5.03 5.01 4.97

Source: Own calculations based on Superintendence of Pension Funds Quarterly Bulletins

Table 1: The management fee on each first contribution

Secondly, OPFs are also allowed to charge a management fee of approximately 0.02% to 0.05%
of the accumulated capital, monthly at the end of each month. The size of the fee is inversely
related to the size of fund, which follows from an amendment of 2004. Previously it used to be a
constant percentage of 0.05% monthly regardless of the number of participants. The details of the
current regulation are outlined in table 2.

Size (in bln PLN) 0-8000 8000-20000 20000-35000 35000-65000 65000-...

Max. monthly fee (% of capital) 0.0450 0.040 0.032 0.023 0.015

Source: Superintendence of Pension Funds

Table 2: Structure of monthly management fees depending on OPFs size

While this new regulation allows the participants to internalise obvious returns to scale previ-
ously enjoyed exclusively by the fund, one can find little support to justifying the very presence
of this fee. The efficiency argument is often raised here, namely that funds will thus have an in-
centive to actively manage the participants’ savings invest as they will have their share in the high
returns earned for the members. However, funds are allowed to charge this fee irrespectively of
their performance, whilst regardless of their performance with the accumulation of members and
their contributions this fee is strictly increasing in time. Furthermore, the criteria according to
which the respective levels were specified are not evident.
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4.2. OPFs versus a bank account

In this section we intend to asses the efficiency of OPFs as capital accumulators vis-à-vis a stan-
dard financial institution that is a bank. We compare the observed risk-less interest rates with
OPFs results and — in a very simplified way — estimate the differential necessary ensure OPFs
outperform the bank account strategy.

Consider a very basic financing model to compare two different types of medium and long run
investment strategies (OPF versus bank strategy). Assume:

• Ki : monthly accumulated amount transfer to OFE or an alternative system;

• αi : part of Ki OPFs management fee, which they are allowed to deduce from the contribu-
tions;

• rOFE =
∑

i

weighti ·
K1,i −K0,i

K0,i
: average weighted OPFs rates of return (weights based on

the market shares);

K0 initial capital at time 0, K1 capital after a specified period (usually monthly);

• rfree : risk free interest rate identified with the return from annual T-bills (rfree,T) or commer-
cial bank deposits (rfree,D), depending on the scenario analysed.

We consider future values (FV) of a 480 monthly investment strategy: from 25 till 65 years of
age. Since any assumptions on the interest rates patterns over such a long time span is a disputable
issue, we avoid this problem by comparing the cash flows directly at time t.

We further assume that such a long run investment strategy is essentially costless under the bank
strategy. This assumption has two grounds. First, most citizens already have an independent bank
account. Secondly, there are many bank alternatives where opening and maintaining an account
actually is costless (e.g. internet banking). We assume that the return in case of such a strategy is
determined by the interest on treasury bills (the proxy for risk-less interest rate).

Based on the above specification, the cash-flows per a person are given by:

FV (rfree) =
480∑
i=1

Ki · (1 + rfree)
480−i − future value of benefit

FV (rOFE;α) =
480∑
i=1

Ki · (1 − αi)
480−i · (1 + rOFE)480−i − future value of benefit

Comparing these two amounts allows to formulate the following hypothesis:

FV (rOFE;α) − FV (rfree) ≥ 0.

It is thus sufficient to compare (1−αi)
480−i·(1+rOFE)480−i and (1+rfree)

480−i under the assumption
of strict stochastic domination. Taking appropriate roots we obtain a system of equations for each
i:

rOFE ≥ (1 + rfree)

(1 − αi)
− 1, where 1 − α ∈ (0, 1).
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Of course above inequality is a stochastic one and we do not know the processes followed by
rOFE
i ,rfree

i , neither do we know Ki. What we have at our disposal is the complete information
about the realisation of these processes up to know. We know rOFE

i and rfree
i in the period 1999 to

2004 as well as the pattern of αi evolution (constructed from tables 1 and 2). Based on this data
set and an additional assumption of scaling Ki to 1 we performed two simulations.

• Simulation I

We compute the gap between the accumulated returns to two types of investments: OPFs and
our artificial one controlling for the costs associated to OPFs. The artificial benchmark is
constructed basing on the average long term deposit rate in the commercial banks as reported
by the Central Bank (monthly data on three year or more deposits, annual rates). From these
time series we conclude that the artificial investment strategy was working better than OPFs.
This outcome can be attributed to both the structure of OPFs rates of return and significant
costs (αi factor in our model).

We then ask the data by how much on average must OPFs outperform simple bank deposits
over the next thirty five years to ensure that the new system is efficient from the value-for-
money point of view. For the reasons specified above it seems important to analyse the
accumulated increase in value and not only contemporaneous rates of return. We compare
the observed risk-less interest rates with OFEs results and — in a very simplified way —
estimate the differential necessary ensure OFEs outperform the bank account strategy. The
following formula is applied:

63∑
i=1

[
(1 − α)

i∏
m=1

[1 + rOFE
m ] −

i∏
m=1

[1 + rfree
m ]

]
−

416∑
j=64

[
(1 − α)

[1 + rOFE]j
− 1

[1 + rfree]j

]
> 0,

where ri
m denotes observed rates of return, while estimates of the expression in second

brackets on the RHS of the above equation is only considered in a form of a differential.
As demonstrated above, the first term at the left-hand side is clearly negative. These sim-
ple calculations demonstrate that OPFs would need to maintain on average returns 0.4 - 0.5
percentage points higher than the commercial banks deposit rates. The results are presented
below.

The results demonstrate, that values for matter significantly in comparing the completely
risk-free investment strategy and participating in the pension fund. It is only natural to
require OPFs to realise the effective returns above the bank deposit. With the interest rates
decreasing in Poland on its accession to European Monetary Union, OPFs are rather likely
to achieve the rates of return required in this simulation. However, one should be only
moderately optimistic about this result.

• Simulation II

Open Pension Funds are believed to play the role of crucial institutional investors on the
Polish capital market. If so, the secure investment rather than secure deposit should be
treated as a benchmark. Thus we repeated the above procedure for the most profitable low
risk investment opportunity over the relevant time span. Public offerings of the government
bonds in the period 1999-2004 were believed to be the most attractive from the risk-return
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trade-off point of view. We used the annual yields of these bonds, as indicated at the day of
offering as a reference level (regardless of maturity, dates of public offerings and OPFs unit
values accorded). This is equivalent to a simple buy & sell strategy.

Amount invested monthly 1 PLN

OFE cost structure As in table 1 plus average of table 2

Bank deposit cost structure None

No. of monthly observations of observed returns 64

No. of monthly contributions till retirement 480 (40 years)

Earned in OFE 76.9 PLN

Earned on Commercial T-bills

bank deposit trading

77.08 PLN 87,9 PLN

Differential for rfree
t = 0.00 0.48% 0.515%

Differential for rfree
t = 0.04 0.41% 0.469%

Differential for rfree
t = 0.08 0.37% 0.457%

Source: Own calculations. OPFs data from Superintendence of Pension Funds, commercial bank data from Polish Central Bank.

For the derivations we assumed a constant differential between the two considered rates of return

Table 3: Simulation – OFE versus a bank deposit a risk-free investment strategy

Clearly, the gap between the effective OPFs returns and the government bond yields is much
higher than in the previous case. Furthermore, although the budged needs will eventually
decrease over time, the effect of the current public offerings will last for even thirty years in
some cases. Thus, although government and communal bonds constitute the vast majority
of OPFs assets, funds should not be perceived as active investors on this market due to the
high returns differential.

Summarising, treating bank as a benchmark for analysing the efficiency of the OPFs is a rather
perfidious example. We did that only in order to show that effectively OPFs rates of return are
beaten even by the essentially risk free rates. Relatively low OPFs rates in the beginning make
it difficult to obtain relatively high benefits in the end due to accumulation process, although the
observed rates of return at the end might suggest that OPFs strategy outperforms the risk-free one.
There is also an additional effect of the timing of joining a fund. Most of the potential beneficiaries
belong to a fund starting 1999 due to a relatively short decision time (only one year). Currently,
only new generations may add to the status, which is very little when compared to the initial
situation6.

6However, there are sound arguments against leaving retirement savings in the banks domain. Primarily, banks
bankruptcy may have many sources and thus providing full guarantees might be much less attractive from the govern-
ment and the society point of view. Also supervision would be significantly more difficult, as standards for pension
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5. CONCLUSIONS

There can be no doubt that the PAYG system could not be maintained — it was inefficient and
failed to respond to demographic and economic changes in the Polish society. As a reform a three
pillar system was designed in which only the first pillar remains of pay-as-you-go nature, whereas
the other two have the contribution account character. The obligatory participation in the second
pillar had two major aims: increasing national savings and stimulating the formation of saving
habits.

In the paper we attempted to demonstrate that the current solution is no different in its nature
from the regular bank account, as second pillar OPFs are merely an obligatory money-box. We
further verified that this solution is inefficient in a sense that it is more expensive than a bank
account solution used as a benchmark case. The data show that OPFs invest most of their funds
in government bonds which certainly does not stimulate the growth of the Polish economy. In
addition, there is no mechanism that could alleviate the shortcomings of the OPFs at the moment
of retirement, as the OPAs are likely to be as inefficient.

In the case of each welfare state — socialist or Western European — citizens are used to rest
the burden of future on the state’s shoulders. Investors refuse to consider long-term opportunities,
whereas consumers are characterised by myopia and excessive claims. The process of shaping
proper saving behaviour patterns is a long one and requires a lot of time to be completed. However,
the current Polish pension fund system is not necessarily moving in the right direction.
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Abstract

Given a self-decomposable distribution D, a Non-Gaussian stationary process of Ornstein-
Uhlenbeck type can be constructed in such a way that their marginals coincide with D. This
is called a D-OU process. Bandorff-Nielsen and Shepard have recently extended the classical
Black-Scholes model for stock prices by allowing the volatility parameter to be either a D-
OU process or a superposition of these. In this article we propose a maximum likelihood
methodology to estimate the parameters for a general D-OU process. In particular we apply
these results when D is an inverse Gaussian distribution. Within this framework we present a
simulation study, which includes the case of superposition.

1. INTRODUCTION

Financial time series of different assets are widely documented as sharing a set of well established
stylized features. For example, log-returns are known to display heavy tailed distributions, aggre-
gational gaussianity, quasi long-range dependence and correlate negatively with their stochastic
volatilities. These empirical factors are successfully captured by a new class of models in which
the stochastic variance of log-returns is constructed via a one or more mean reverting, station-
ary processes of Ornstein-Uhlenbeck type driven by subordinators. The latter stochastic volatility
models have been introduced and studied by Bandorff-Nielsen and Shepard (2001) and are further
termed BN-S models.

In their seminal work, Bandorff-Nielsen and Shepard document the impossibility to obtain
direct maximum likelihood estimators for the parameters indexing the stochastic volatility model
and they review a series of different alternatives to deal with this problem.

The main contribution of this paper lies in the presentation of a new methodology to obtain the
maximum likelihood estimates for a general D-OU process. In particular, we could apply these
results to estimate the volatility parameters of the BN-S model under an IG-OU volatility model.
The IG-OU specification is of particular interest since in the simplest BN-S model, log returns are
approximately distributed according to a normal inverse Gaussian law. This distribution has been
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shown to provide very good fit to log-returns of stock prices (see for instance Prause (1999) and
Raible (2000)).

In order to asses the goodness of our approach, we performed a simulation study. In this,
we generated some non-superposed and superposed IG-OU processes and then we compared our
estimates with the underlying parameters of these processes.

2. THE BN-S MODEL

In the Black-Scholes world the logarithm of a stock-price process , X = {X(t) = Ln(S(t))} ,
satisfies the stochastic differential equation

dX(t) = (µ− 1

2
σ2)dt+ σdW (t) ,

where µ and σ > 0 are fixed parameters and W = {W (t)} is a standard Brownian Motion. As is
widely documented, this model presents a series of empirical limitations. First, log-returns do not
seem to behave according to a normal distribution and second, the estimated volatilities change
stochastically over time. More precisely, these volatilities tend to be clustered and their up jumps
are usually associated to down jumps in the stock price. This last feature is known as the leverage
effect. To circumvent these inadequacies Bandorff-Nielsen and Shepard (2001) proposed to extend
the Black-Scholes model by making σ2 = {σ2(t)} stochastic and by including a leverage term in
the log-price process. Their model states that

dX(t) = (µ− 1

2
σ2(t))dt+ σ(t)dW (t) + ρdZ(λt)

and
dσ2(t) = −λσ2(t)dt+ dZ(λt) , (1)

where λ > 0, ρ < 0 is a parameter which accounts for the leverage effect, and Z = {Z(t)}
is a zero-drift Lévy process with non-negative increments. In this setting, the Brownian motion
process W and the Lévy process Z are independent and the filtration F is taken to be the usual
augmentation of the filtration generated by the pair (W,Z). In both processes X(0) and σ2(0) are
assumed to be independent random variables.

A further extension in the BN-S model is given by considering in (1) not only a single volatility
process, but also a convex linear combination (superposition) of these processes.

As with other complex models, the BN-S model is arbitrage free but incomplete, which means
that there is more than one equivalent martingale measure (EMM). This problem is studied by
Nicolato and Venardos (2003), who pay particular attention to the class M′

of structure-preserving
EMM and in special to the subclass MIG ⊂ M′

of EMM preserving (1) when σ2 = {σ2(t)} is a
stationary process with inverse Gaussian law, or briefly, an IG-OU volatility process.

Using standard vanilla call option prices on the S&P 500 index and the characteristic-based
pricing formula developed by Carr and Madan (1998), Schoutens (2003) calibrates the parameters
of the BN-S model under an IG-OU volatility process. He shows that this model largely out-
performs the one obtained under the Black-Scholes model and other plausible Lévy models with
constant volatility.
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3. THE IG-OU PROCESS

Let Z = {Z(t)} be an univariate Lévy process with generating triplet (σ0, γ0, v0) and let λ > 0.
X = {X(t)} is called a process of Ornstein-Uhlenbeck type generated by (σ0, γ0, v0, λ) if it is
càdlàg and satisfies the stochastic differential equation{

dX(t) = −λX(t)dt+ dZ(λt)

X(0) = X0 ,

being X0 a random variable independent of Z. Under this setting Z is termed the background
driving Lévy process (BDLP).

Using the theory of integration of left-continuous predictable process with respect to semi-
martingales and in particular to Lévy processes ( see Protter (1990)), we obtain

X(t) = X0 + Z(λt) − λ

∫ t

0

X(s)ds,

or recursively

X(t+ ∆) = e−λ∆

(
X(t) + e−λt

∫ t+∆

t

eλsdZ(λs)

)
. (2)

As a result X is a Markov process. Furthermore, the following property is obtained.

Proposition 3.1 For any t,∆ > 0 :

e−λt
∫ t+∆

t

eλsdZ(λs)
d
=

∫ ∆

0

eλsdZ(λs).

Proof. It follows from the integration by parts rule for semimartingales (see Protter (1990)).

The random variable Z∗(∆) =
∫ ∆

0
eλsdZ(λs)

d
=
∫ λ∆

0
Z(s)ds will play a central role in our

analysis.

Definition 3.1 A random variable X has a self-decomposable distribution if for any 0 < a < 1, it
is possible to find a random variable Ya, independent of X , such that

X
d
= aX + Ya.

The following result, due to Sato (1999), explores the stationarity of a process of Ornstein-
Uhlenbeck type.

Proposition 3.2 If X is a process of Ornstein-Uhlenbeck type generated by (σ0, γ0, v0, λ) such
that ∫

|x|>2

Ln(|x|)dv0(x) <∞, (3)

then X has a unique self-decomposable stationary distribution µ.
Conversely, for any λ > 0 and any self-decomposable distribution D, there exists a unique

triplet (σ0, γ0, v0) satisfying (3) and a process of Ornstein-Uhlenbeck type X generated by (σ0, γ0, v0, λ)
such that D is the stationary distribution of X.
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The stationary process X in the converse result of proposition 3.2 is called a D-OU process.
As mentioned in section 2, this was the process describing the stochastic volatility behaviour in
the BN-S model.

A convenient way to analyze the relation between a D-OU process and its corresponding BDLP,
Z, is through their cumulant functions:

CD(ϑ) = LnE[eiϑD] and CZ(1)(ϑ) = LnE[eiϑZ(1)].

As proved in Bandorff-Nielsen (1988), these satisfy the following two properties.

Proposition 3.3 For any ϑ ∈ R:

CZ(1)(ϑ) = ϑ
dCD(ϑ)

dϑ
.

Proposition 3.4 For any ∆ > 0 and ϑ ∈ R:

E[eiϑZ
∗(∆)] = eλ

∫ ∆
0
CZ(1)(ϑe

λs)ds.

The dependence structure in a D-OU process is characterized as follows.

Proposition 3.5 For any t ≥ 0 and ∆ ∈ R:

ρ(∆) =
Cov(X(t), X(t+ ∆))√
V (X(t))V (X(t+ ∆))

= e−λ|∆|,

Proof. It follows easily from the stationary property and (2).

We close this section by introducing the IG-OU process.

Definition 3.2 A random variable X has an inverse Gaussian distribution with parameters a > 0
and b > 0, or briefly X ∼ IG(a, b), if it has a density

f(x) =
aeab√
2πx3

e−
1
2
(a2

x
+b2x), ∀x > 0.

The characteristic function of X ∼ IG(a, b) is proved to be

P̂X(ϑ) = ea(b−
√
b2−2iϑ),

which means that this is an infinitely divisible distribution and we can define an inverse Gaussian
Lévy process. Furthermore, Halgreen (1979) shows thatX ∼ IG(a, b) is self-decomposable. Then
proposition 3.2 can be invoked to justify the existence of an IG(a, b)-OU process.
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Figure 1: Simulation of an IG(2, 10)-OU sample path with λ = 5 and 1001 points.

4. LIKELIHOOD INFERENCE FOR A D-OU PROCESS

Suppose that X = {X(t)} is a D-OU process, where D depends on an unknown parameter θ ∈ R
m,

and we are interested in estimating θ based on a set of n + 1 observations x0, x1, . . . , xn from the
sample X(0), X(∆), X(2∆), . . . , X(n∆) of X. By the Markov property, the likelihood function
of this sample is

L(θ) = fX(0)(x0)

n∏
k=1

fX(k∆)|X((k−1)∆)=xk−1
(xk). (4)

According to (2) and proposition 3.1

X(k∆)
d
= e−λ∆(X((k − 1)∆) + Z∗(∆)), ∀k = 1, 2, . . . , n. (5)

This equality leads to the following simplification

L(θ) = fX(0)(x0)e
nλ∆

n∏
k=1

fZ∗(∆)(e
λ∆xk − xk−1). (6)

Hence, the likelihood function depends only on D, via fX(0), and on the Z∗(∆) density.
Briefly, our estimation methodology will be based on the evaluation of (6) via a fast Fourier

transform. To be more precise, let us assume that D is an inverse Gaussian distribution with
parameters a > 0 and b > 0. Then, by proposition 3.3, the cumulant function of the corresponding
BDLP becomes

CZ(1)(ϑ) =
aiϑ√
b2 − 2iϑ

.
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Consequently, by proposition 3.4

P̂Z∗(∆)(ϑ) = eλ
∫ ∆
0
CZ(1)(ϑe

λs)ds

= e
λ
∫ ∆
0

aiϑeλs√
b2−2iϑeλs

ds

= e
a
∫ ϑeλ∆

ϑ
i√

b2−2iy
dy

and

P̂Z∗(∆)(ϑ) = ea(
√
b2−2iϑ−

√
b2−2iϑeλ∆). (7)

This explicit representation motivates the following scheme to estimate θ = (a, b), when λ > 0 is
given.

• Find initial estimates of a and b:

Using (5), we propose to consider the n independent and identically distributed random
variables

Yk =

∫ λk∆

λ(k−1)∆

esdZ(s) = eλ∆X(k∆) −X((k − 1)∆), with k = 1, 2, . . . , n,

and match the expected value and variance of these with the statistics

Ȳ =
1

n

n∑
k=1

Yk and S2
Y =

1

n

n∑
k=1

(Yk − Ȳ )2.

This procedure generates the initial estimators

â0 =
b̂0Ȳ

(eλ∆ − 1)
and b̂0 =

1

SY

√
Ȳ (e2λ∆ − 1)

eλ∆ − 1
.

• Use (7) and the fast Fourier transform to evaluate fZ∗(∆).

• Use numerical methods to optimize (6).

If λ is not given, proposition 3.5 suggests it be estimated by solving:

λ̂0 = arg min
λ

n−2∑
k=1

( ˆacf(k) − e−λk∆)2,

where ˆacf(k) denotes the empirical autocorrelation function of lag k based on the data x0, x1, . . . , xn.
Once λ̂0 is obtained, we can opt for two methods. These will be called the ±λ and −λ method .
In the first we substitute λ with λ̂0 in the scheme above, while in the second we take (â0, b̂0, λ̂0) as
an initial estimator in the search for θ = (a, b, λ) that maximizes (6).
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5. THE SUPERPOSITION CASE

Let X1 = {X1(t)} be a D1-OU process and X2 = {X2(t)} be an independent D2-OU process,
satisfying the stochastic differential equations

dX1(t) = −λ1X1(t)dt+ dZ1(λ1t)

and
dX2(t) = −λ2X2(t)dt+ dZ2(λ2t).

In this section, we will be interested in analyzing the estimation problem for a superposed model
X = {X(t)} defined by

X(t) = ωX1(t) + (1 − ω)X2(t), where ω ∈ [0, 1].

In comparison to a D-OU process, this model presents a more interesting correlation pattern.

Proposition 5.1 The autocorrelation function of X has, for some c ≥ 0, the form:

ρ(∆) = ce−λ1|∆| + (1 − c)e−λ2|∆|, ∀∆ ∈ R.

Proof. It is a straightforward consequence of proposition 3.5.

In terms of applications, quasi-long-range dependence processes are better described by these
superposed models.

In order to study the inference problem, let us assume that we have a set of n+ 1 observations
x0, x1, . . . , xn from the sample X(0), X(∆), X(2∆), . . . , X(n∆) of X. Although in this case (4)
can not be reduced to (6), we can still make use of the general estimation scheme proposed in
section 4. To start, (5) now takes the form

X(k∆) = ωe−λ1∆X1((k − 1)∆) + (1 − ω)e−λ2∆X2((k − 1)∆) + Z∗(∆),

where

Z∗(∆) = ωe−λ1∆

∫ ∆

0

eλ1sdZ1(λ1s) + (1 − ω)e−λ2∆

∫ ∆

0

eλ2sdZ2(λ2s).

Since we do not have observations from X1 and X2, we could condition on X1 to obtain

P (X(k∆) ≤ x|X((k − 1)∆) = xk−1)

=

∫ ∞

0

P (Z∗(∆) ≤ x− e−λ2∆xk−1 − ξω(e−λ1∆ − e−λ2∆))
f(xk−1, ξ)

fX((k−1)∆)(xk−1)
dξ,

where f(., .) denotes the conjoint density function of X and X1 at time (k − 1)∆. Moreover,
this density can be explicitly obtained. For example, if X1 is an IG(a1, b)-OU process and X2 an
independent IG(a2, b)-OU process, then

f(y1, y2) =




a1a2
√

1−ω
2π(y2(y1−ωy2))

3
2
e
− 1

2

(
a2
1

y2
+

a2
2(1−ω)

y1−ωy2
+b2(y2+

y1−ωy2
1−ω

)−2b(a1+a2)

)
, ∀ 0 < y2 <

y1
ω

0 , otherwise.
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Figure 2: From bottom to top, simulated sample paths of an IG(2, 5)-OU process X1 with λ1 = 2,
a superposed process X = 0.7X1 + 0.3X2, and an IG(10, 5)-OU process X2 with λ2 = 30.

Summarizing, the conditional density fX(k∆)|X((k−1)∆)=xk−1
(xk) in (4) takes the form:

1

fX((k−1)∆)(xk−1)

∫ xk−1
ω

0

fZ∗(∆)(xk − e−λ2∆xk−1 − ωξ(e−λ1∆ − e−λ2∆))f(xk−1, ξ)dξ. (8)

Note that this integral can be approximated, for instance with a Simpson’s rule, and so (8) will
depend basically on the Z∗(∆) and X((k − 1)∆) densities. Consequently, (4) could be evaluated,
if we knew the characteristic functions of Z∗(∆) and X((k − 1)∆).

Let us consider for example, that X1 is an IG(a1, b)-OU process and X2 is an independent
IG(a2, b)-OU process. Then, by definition 3.2 and (7)

P̂Z∗(∆)(ϑ) = ea1(
√
b2−2iϑωe−λ1∆−√

b2−2iϑω)+a2(
√
b2−2iϑ(1−ω)e−λ2∆−

√
b2−2iϑ(1−ω))

and

P̂X((k−1)∆)(ϑ) = ea1(b−√
b2−2iϑω)+a2(b−

√
b2−2iϑ(1−ω)), ∀k = 1, 2, . . . , n.

As a result, approximated likelihood estimates of θ = (a1, a2, b) can be obtained by adapting the
estimation scheme in section 4. Table 3 presents some estimation results under this procedure.
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6. SOME SIMULATION RESULTS

In order to asses our approach, we performed two simulation studies. In the first, we considered
two sample paths of an IG(2, 10)-OU process X = {X(t)} with λ = 5. The paths were simulated
by means of the Euler scheme

X(0.01k) ≈ e−5λ(X(0.01(k − 1)) +

100∑
k=1

ek�Z(�)), ∀ k = 1, 2, . . . , 1000.

where Z = {Z(t)} is the corresponding BDLP of X and � = 0.0005. The simulation of Z
benefited from the fact that Z can be decomposed as a sum of an inverse Gaussian Lévy process
and an independent compound Poisson process (see Bandorff-Nielsen (1988) for details). The first
of the simulated sample paths is shown in Figure 1.

Once the simulated data was obtained, we proceeded to follow the scheme in section 4. The
resulting estimates are shown in Tables 1 and 2. The first rows in each table present the estimates
of a = 2 and b = 10 when λ is given, while the second and third rows present the results under the
±λ and −λ methods. All the procedures were implemented in Matlab.

Sample path 1

Method Initial estimates Likelihood estimates -Loglikelihood
+λ a b λ a b λ

(2.265) 2.033 10.309 5 1.9915 10.315 5 -3746.3
±λ a b λ a b λ

(3.75) 1.9082 9.6663 4.3614 1.3618 8.5796 4.3614 -3007.8
−λ a b λ a b λ

( 32.922) 1.9082 9.6663 4.3614 2.052 10.471 5.0298 -3748.1

Table 1: Estimation for an IG(2, 10)-OU process with λ = 5. The numbers in brackets indicate the
computational time in seconds.

Sample path 2

Method Initial estimates Likelihood estimates -Loglikelihood
+λ a b λ a b λ

(2.75) 2.0165 10.418 5 1.9064 10.068 5 -3801
±λ a b λ a b λ

(3.125) 2.2783 11.797 6.5284 2.8614 14.15 6.5284 -3537.2
−λ a b λ a b λ

(12.266) 2.2783 11.797 6.5284 1.9274 10.121 5.0101 -3801.3

Table 2: Estimation for an IG(2, 10)-OU process with λ = 5. The numbers in brackets indicate the
computational time in seconds.
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In the second simulation study, we considered two sample paths of the superposed process
X = 0.7X1 + 0.3X2, where X1 is an IG(2, 5)-OU process with λ1 = 2 and X2 is an independent
IG(10, 5)-OU process with λ2 = 30. In this opportunity, λ1, λ2 and ω were given and we aimed
to estimate the parameter θ = (a1, a2, b) = (2, 10, 5). The results are presented in Table 3 and the
first of the simulated sample paths is shown in Figure 2.

Sample path a1 a2 b
1 2.0074 9.2591 4.8854
2 1.3069 12.334 5.3315

Table 3: Approximated likelihood estimates for the process X = 0.7X1 +0.3X2, composed by an
IG(2, 5)-OU process X1 with λ1 = 2 and an independent IG(10, 5)-OU process X2 with λ2 = 30.
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Abstract

We consider a power market featured of a balancing mechanism, encouraging market partici-
pants to accurately match supply with demand for their customers. We illustrate the pricing of
typical power supply contracts in a series of simple cases involving only one time step. Our
pricing approach relies upon the application of utility optimization principles on a suitable
functional involving the hedging strategy in forward contracts.

1. INTRODUCTION

Several power markets around the globe have undergone widespread structural change since the
beginning of the nineties, in a process of deregulation. The intention behind deregulation attempts
is to open national power markets for competition, where they used to be mainly state controlled.
As a consequence of this deregulation, electrical energy is nowadays increasingly traded at ex-
changes such as NordPool (Oslo, Norway), Powernext (Paris, France), APX (Amsterdam, The
Netherlands) and EEX (Leipzig, Germany) to mention just a few examples within the European
context.

Together with the creation of transparent markets for electrical energy comes the question of
the market based pricing of customer deals. After all, price data recorded at the various exchanges
becomes the benchmark — and opportunity cost level — for all market players, as soon as traded
volumes express sufficient liquidity. Offering consumer deals below market price represents loss
of potential revenues as well as an increased risk exposure. Conversely, market players would price
themselves out of the market when being too generous in computing risk premia. Power market
participants face prices that have proven to be severely volatile in the past, due to the absence of
any physical buffer for the product, as electrical energy is not economically storable once it is
generated. As a result, all participants — producers and suppliers — must increasingly seek the
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careful balance between over- and underestimating cost levels, where their sole guidance is being
provided by market prices themselves.

In the present note, we consider a discrete time power market that is featured of forward-
and spot markets as well as a balancing mechanism ensuring network stability. Notations have
been inherited from Teichmann and Verschuere (2005), where a continuous time version was also
formulated. Existing spot markets for electrical power are usually of the day-ahead type, where
prices are determined by a supply and demand mechanism for any hourly delivery interval of the
next day. Forward markets trade contracts that entail either physical- or financial delivery against
future spot prices. Such standardized, exchange traded forward instruments possess primitive load
dispatching characteristics, with delivery periods ranging from days, over weeks, months up to
entire calender years. As an illustration, German EEX power futures are quoted in Base and
Peakload version, where Peak products go online at 1 MW from 08.00h until 20.00h Monday
to Friday while the baseload contracts entail the delivery of 1 MW around the clock during the
delivery period specified.

A last — but essential — component to any power market is a balancing mechanism, allowing
for real time price formation for any electrical energy required for maintaining the balance between
infeed and offtake of physical power from the high voltage grid. This service is usually offered
by the Transport System Operator (TSO) himself and implies that sufficient reserve capacity is
held available at short notice. As demand forecasting in power markets is at least as challenging
as weather prediction, such differences between forecasted infeed and offtake and their values at
delivery and must be compensated in real-time in order to guarantee reliability of supply. This
service represents an intrinsic cost for the market as an entity, but actual charges are somewhat
loaded in addition to these core expenses, with the objective to encourage the increased accuracy
of load prediction by market participants.

The remainder of this paper is structured as follows: We define a discrete time market model
in the next section and illustrate the structure of the UK and Belgian balancing mechanisms. We
next formulate two propositions on the existence of optimal forward investment strategies in this
environment. Section 3 describes a pricing approach to typical contract types present in power
markets based on Utility Maximization. The valuation of primitive versions to these contracts is
then described in section 4 and we finish by formulating some conclusions.

2. OPTIMAL FORWARD INVESTMENT IN A DISCRETE SETTING

Take a discrete probability space(Ω,F , P ) with a filtration (Fn)n=0,...,N . We consider time of
delivery at timeN . We denote the bank account process by(Bn)n=0,...,N and prices of forwards
on electricity delivered at timeT = N by (Fn)0≤n≤N . The strategy of investment is denoted
by (πn)n=0,...,N−1 and we assumeB,F andπ to be adapted processes. Prices are assumed to be
positive adapted processes. The costs which appear up to timeN − 1 are consequently the costs
of acquisition

∑N−1
i=0 πiFi. We assume a utility function, i.e. a strictly increasing, concaveC 2-

functionu : dom(u) → R with usual conditions. Furthermore, we assume a forecasting random
variableDN , which forecasts the amount of MWh at timeT = N used by the customers. Note that
certainly forecasting gets better as the instant of delivery closes in, but in order to calculate a rea-



106 M. Verschuere and J. Teichmann

sonable price per MWh in advance, one has to work with a long-term forecast. This updating can
be included in a re-calculation of the optimization problem for shorter periods or via parameters.

The customers are assumed to pay the pricex per MWh. The balancing at time of deliveryN
constitutes an additional costCN : the precise structure of these costs is market specific. We specify
in more detail the structure of balancing charges in the Belgian and U.K.-market below. However,
the joint feature of any system is that the demand at delivery has to be precisely fulfilled, hence the
costs are determined by the difference of the actual demandDN of the customers and the already
bought delivery contracts

∑N−1
i=0 πi. Consequently, we assume a cost functionc : R × R

2 → R

depending on this differenceDN −∑N−1
i=0 πi and on additional random variables reflecting the

price behaviour betweenN − 1 andN .

Example 2.1 In the Belgian market the function c is convex, increasing in the first variable and
depends in the second variable linearly on the day ahead price of the Dutch market one day before,
so CN := c((DN −∑N−1

i=0 πi), FN−1) = p(DN −∑N−1
i=0 πi)FN−1.

Example 2.2 In the U.K. market we can model the costs CN at timeN via a function c depending
on DN −∑N−1

i=0 πi and several prices which appear before delivery, when the actual demand gets
clear. The simplest choice would be p(DN −∑N−1

i=0 πi)FN , with p as in the previous example. Note
that we are given and applying a spot price FN here. The choice of p reflects your belief in the
liquidity of the market.

In line with the previous statements, we intend to solve the following optimization problem for
F ,DN andx fixed.

EP [u(−
N−1∑
i=0

πiB
−1
i Fi − B−1

N c(DN −
N−1∑
i=0

πi, FN−1, FN) +B−1
N xDN )] → max, (1)

where we maximize over all adapted strategies(πn)n=0,...,N−1. The structure of the cost functional
appearing as an argument to the utilityu(·) in (1) is clear: It represents the aggregated procurement
costs and sales revenues associated to the physical delivery ofDN MWh of power at timeT = N
and all cash flows have been discounted to time zero using the bond process(Bn)n=0,...,N−1.

We now formulate two propositions and the reader is referred to Teichmann and Verschuere
(2005) for their proof.

Proposition 2.1 Assume that the previous optimization problem has a solution (π̂n)n=0,...,N−1, then
there exists an equivalent measure Q such that the process

(F0, B
−1
1 F1, . . . , B

−1
N−1FN−1, B

−1
N c′(DN −

N−1∑
i=0

π̂i, FN−1, FN))

is a martingale. In particular the discounted forward price process (B−1
n Fn)n=0,...,N−1 is a mar-

tingale.

Let us now assume the existence of an equivalent martingale measureQ for the process
(B−1

n Fn)n=0,...,N−1 and the existence of anFN−1-measurable random variableΠN−1, such that

B−1
N−1FN−1 = EQ[B−1

N c′(DN − ΠN−1, FN−1, FN)|FN−1].
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Furthermore we assume thatc(x,·)
x

→ ∞ asx → ∞ and c(x,·)
x

→ 0 asx → −∞. Under these
conditions we can actually prove the existence of a solution of our optimization problem.

Proposition 2.2 If the previous regularity conditions are satisfied, then there exists an optimizer
(π̂n)n=0,...,N−1.

Proposition 2.1 tells us that existence of an optimal strategy in the sense of (1) is equivalent
to the existence of an equivalent martingale measure to the discounted extended futures price pro-
cess. The notion extended here means that the futures process is completed at timeT by marginal
procurement costs in the balancing regime, i.e. byc′(DN −∑N−1

i=0 π̂i, FN−1, FN ), where the prime
denotes differentiation with respect to the first argument ofc.

From proposition 2.2, we then learn that the existence of an optimal trading strategy is guar-
anteed under quite natural convexity conditions on the mappingx → c(x, ·), provided one can
identify anFN−1-measurable random variableΠN−1, which is relatively easy when considering
specific example cases.

Remark 2.1 The applied method is the classical method from financial mathematics of optimizing
expected utility (see for instance Schachermayer (2004)). Here we obtain in fact an incomplete
problem, since we can only trade up to timeN − 1 and we have to face the risk which appears
in the last tick. Hence we can hope for pricing mechanisms which are a mixture of actuarial and
financial methods of pricing.

3. PRICING SELECTED POWER CONTRACTS

In the present section, we introduce three different customer contracts tailored to the specific situ-
ation of a power market. The first contract offers a predetermined load at a future date in exchange
for a fixed EUR/MWh price per delivered commodity unit. Although it constitutes a very primitive
example, it provides some intuition on how price risk is to be mitigated if considered in the UK
environment. The second example concerns the delivery of a flexible load, again at a fixed unit
price to be determined. Such contracts are often referred to as balancing deals and we consider
their pricing in the Belgian market, where load uncertainty proves the only source of risk to be mit-
igated. Case three is a mixture of the previous two cases, where we allow for correlations between
the stochastic variables price and load.

Our pricing approach relies upon a utility maximization principle similar to the one introduced
before. It may be employed for pricing more complicated customer contracts, including power
derivatives. We next show how one should proceed in general, but restrict all examples in sec-
tion 4 to the selection of three basic customer contracts in order to keep calculations explicit and
transparent. Our goal here is to get some intuitive understanding on price determinants in power
contracts.

We thus retain the previous notation and introduce a functionh : R
3 → R such that the image

h(DN ,
∑N−1

i=0 πi, FN) is theFN -measurable random variable representing the timeT = N payoff
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of a contingent claim defined in terms of the specified variables. We wish to determine the utility-
optimal price for this contract, i.e. we address the optimization problem

EP [u(−
N−1∑
i=0

πiB
−1
i Fi − B−1

N c(DN −
N−1∑
i=0

πi, FN−1, FN) (2)

+B−1
N h(DN ,

N−1∑
i=0

πi, FN) + ξ)] → max,

while maximizing over all adapted strategies(πn)n=0,...,N−1. The constantξ represents the optional
up-front premium, to be paid at time zero in exchange for the rights on the contingent claimh.
Note that the form of the functional in (1) constitutes a special case for a specific supply contract
whereh(u, v, w) = xu, wherex is the constant customer price in EUR per delivered MWh. Once
the optimal trading strategy(π̂n)n=0,...,N−1 has been identified the utility indifference price for the
contingent claimh is implied from the utility indifference condition

EP [u(−
N−1∑
i=0

π̂iB
−1
i Fi −B−1

N c(DN −
N−1∑
i=0

π̂i, FN−1, FN) (3)

+B−1
N h(DN ,

N−1∑
i=0

π̂i, FN) + ξ)] = u(0),

whereξ is the optional up-front premium, to be paid at time zero. This relation reflects the idea
that selling and hedging the claim in the market at the indifference price is equivalent to not doing
anything at all in terms of the utility functionu.

Most types of power contracts can be moulded in the form of the payoff functionh as we
illustrate in the next four examples.

1. Fixed load contracts: In this case, there is no up-front premiumξ and the payoffh takes
the form

h(DN ,

N−1∑
i=0

πi, FN) = xDN , (4)

and the challenge is to determine the indifference pricex, for DN = D a constant load at
timeT = N .

2. Variable load contracts: This contracts offers flexible coverage of the timeT = N load
DN without need for any up-front premiumξ and the payoffh takes the form

h(DN ,

N−1∑
i=0

πi, FN) = xDN , (5)

The issue is to determine the indifference pricex, whilstDN is anFN−1-measurable random
variable of finite variance.
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3. CAP option contract: In this case, a premiumξ must be paid in advance in exchange for
the time-T = N payoffh

h(DN ,

N−1∑
i=0

πi, FN) = min{FN , A}. (6)

The contract thus entails delivery ofDN = 1 MWh at time-T = N at a price limited to the
upper boundA ≥ 0. The main task is to determine the premiumξ.

4. CALL option contract: In this case, a premiumξ must be paid in advance in exchange for
the time-T = N payoffh

h(DN ,
N−1∑
i=0

πi, FN) = −max{FN −K, 0} := −(FN −K)+. (7)

One recognizes the payoff for a shorted CALL option at strikeK in h. The contract thus
entails delivery of 1 MWh at time-T = N for K EUR/MWh in case the timeT = N price
exceeds the strikeK. In case the option is not exercised, any power procured up to time
N − 1 will be settled in the balancing regime. The goal is now to determine the premiumξ.

In the next section we address the pricing question for the first two contract types as well as in a
mixed case in simple one-step examples. We skip the valuation of CAP and CALL option contracts
in order to obtain explicit results in all cases. We thereto note that the utility indifference pricing
condition (3) reduces to pure optimal forward investment in caseu(x) = x, as the optimal strategy
is then determined only by the futures price dynamics and the balancing regime; The derivatives’
payoff does not intervene.

4. WORKED EXAMPLES

In the single step examples below, we select the “utility function”u(x) = x and balancing penalty
functionp(x) = exp(x) − 1. Balancing fees in the Belgian and UK environment only differ by
the benchmark futures price, respectivelyF0 (day-ahead market price in EUR /MWh) andF1 (the
forward price observed in the balancing market).

1. Fixed load contracts: Focusing on the one step case in the Belgian market, we haveD1 =
D ≥ 0 and the optimal strategŷπ0 solves

EP [−π0F0 − p(D − π0)F0 + xD] → max .

We trivially find π̂0 = D.

The UK environment is a bit richer, because the futures priceF1 is essentially random. Take
F1 = F0 exp(µ + σZ), with Z a standard normal random variable,µ a drift andσ > 0 the
forward price volatility. We optimize

EP [−π0F0 − p(D − π0)F1 + xD] → max,



110 M. Verschuere and J. Teichmann

to find thatπ̂0 = D+µ+σ2/2. This means that one procures extra because of the uncertainty
in futures prices at delivery in order to stay away from the unattractive balancing regime. The
customer pricex becomes

x =
F0

D
(π̂0 + 1 − exp(µ+ σ2/2)),

which is strictly less thanF0 if µ = 0, indicating that over-procurement of the future loadD
yields a slight advantage in costs in the presence of the balancing mechanism.

2. Variable load contracts: We restrict ourselves to the Belgian market case. The optimization
problem reads

EP [−π0F0 − p(D − π0)F0 + xD] → max,

and the random variable load is chosen asD1 = (m+ bZ)2, with Z again standard normal.
After a little calculating, we arrive at the optimal strategyπ̂0, namely

π̂0 =
m2

1 − 2b2
− 1

2
log(1 − 2b2),

which is strictly larger than the average loadEP [D] = m2 + b2 provided0 < b < 1√
2
. Once

more, the presence of a balancing regime implies that over procuring expected load levels is
the optimal strategy in avoiding high balancing charges. The customer pricex then proves a
little higher than the time zero futures priceF0, as

x = F0
π̂0

m2 + b2
≥ F0,

and this must be considered a canonical risk premium.

3. Combined case: We consider the UK market where futures prices andF1 and loadD1 are
correlated stochastic variables. We chooseF1 = F0 exp(µ + σZ1) andD1 = (m + bZ2)

2,
wherebyZ1, Z2 are bivariate normally distributed with correlationρ ≥ 0. We thus have

p(z1, z2) =
1

2π
√

1 − ρ2
exp(−z

2
1

2
− z2

2

2
+ ρz1z2),

as a bivariate density. The optimal investment strategyπ̂0 is then found from

π̂0 = log(EP [exp((m+ bZ2)
2 + µ+ σZ1)]),

which gives

π̂0 =
(2mb+ ρσ)2

2(1 − ρ2 − 2b2)
+ µ+m2 +

σ2

2

− 1

2
log(1 − ρ2) − 1

2
log(1 − ρ2 − 2b2).

Focusing to the caseµ = 0 and b, σ, ρ small, we arrive at the second order result for
π̂0 ∼ m2 + b2 + ρ2 + σ2/2. We recognize our earlier results in this approximate solution
if ρ = 0 but generally, the optimal strategy also includes loading that is entirely due to the
correlationρ, which is intuitively clear. When price and load correlate, balancing penalties
may become even more vulnerable and one procures additional load up front to mitigate this
risk.
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5. CONCLUSIONS

We have illustrated the utility optimized valuation of power contracts in a set of three one step
examples. We derived closed formulas for prices and premia for fixed- and variable load customer
deals, as well as the optimal investment in a combined case. The intention was to get intuitive
understanding in the price formation for such deals in power markets featured of a balancing
mechanism. The reason why we tackled the pricing question here by means of utility consid-
erations instead of risk neutral techniques can be motivated by observing that electrical power is
not economically storable. As a result, replicating portfolios can not be constructed using spot
power quantities and essential risk remains while hedging contingent claims. Our results are an
application of earlier work Teichmann and Verschuere (2005), where one can also find continuous
time equivalents to the basic propositions formulated in section 2.

References

W. Schachermayer. Utility maximisation in incomplete markets. In M. Frittelli and W. Rung-
galdier, editors,Stochastic Methods in Finance, Lectures given at the CIME-EMS Summer
School in Bressanone/Brixen, volume 1856 ofSpringer Lecture Notes in Mathematics, pages
225–288, 2004.

J. Teichmann and M. Verschuere. Optimal forward investment in power markets. Working paper,
2005.



De Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten coördineert 
jaarlijks tot 25 wetenschappelijke bijeenkomsten, ook contactfora genoemd, in de domeinen 
van de natuurwetenschappen (inclusief de biomedische wetenschappen), menswetenschappen 
en kunsten. De contactfora hebben tot doel Vlaamse wetenschappers of kunstenaars te 
verenigen rond specifieke thema’s. 
 
De handelingen van deze contactfora vormen een aparte publicatiereeks van de Academie. 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
Contactforum “3rd Actuarial and Financial Mathematics Day” (4 februari 2005, Prof. 
M. Vanmaele) 
 
 
De “3rd Actuarial and Financial Mathematics Day” kende net als de vorige edities een groot succes. Dankzij dit 
jaarlijks evenement worden de contacten tussen de verschillende onderzoekers en onderzoeksgroepen van de 
Vlaamse universiteiten (KULeuven, UA, UGent en VUB) in deze domeinen verder aangehaald. Daarenboven 
biedt het contactforum een uitstekende gelegenheid om resultaten van het gevoerde onderzoek voor te stellen 
aan collega's uit de bank- en verzekeringswereld, en de terugkoppeling te maken aan de hand van problemen 
vanuit de praktijk. Naast twee gastsprekers (een academicus en een practitioner) kwamen doctoraatsstudenten, 
postdocs en mensen uit de bedrijfswereld aan bod. In deze publicatie vindt u een neerslag van de voorgestelde 
onderwerpen. Alle onderwerpen kunnen gesitueerd worden in het ruime gebied van financiële en actuariële 
toepassingen van wiskunde, maar met een grote variatie: de bijdragen gaan van verdelingen tot schattingen, van 
benaderingsmethoden naar exacte prijszetting, en van allocatieproblemen naar vraagstukken in verband met 
efficiëntie. 




