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4th Actuarial and Financial Mathematics Day 
 
PREFACE 
 
The Contactforum “Actuarial and Financial Mathematics Day” was organized for the fourth 
time. It started four years ago with a modest meeting but since then, this event attracted every 
year more and more participants.  
The main purposes of this event is twofold. Firstly, we want to bring people together from 
two fields with a lot in common, namely the actuarial field and the financial field. This is 
important seen the recent evolution on a company level but also by looking at the nowadays 
battery of interrelated products such as equity-linked insurances and credit risk. Secondly, our 
aim is to bring practitioners and academics closer together in order to create a stimulating 
interaction for both of them. This edition welcomed as many practitioners as academics. 
This contactforum gives on one hand young and promising researchers the opportunity to 
present their recent work to a broad audience and to have their paper published in these 
proceedings. On the other hand, renowned practitioners were programmed as main speakers 
in order to give them a forum to talk about the needs, the problems, the hot topics in their 
fields. The invited paper about Solvency II is included in these transactions. 
 
We thank all our speakers, without their effort the organization of the contactforum wouldn't 
be possible. We are also extremely grateful to our sponsors: the Royal Flemish Academy of 
Belgium for Science and Arts, and Scientific Research Network “Fundamental Methods and 
Techniques in Mathematics” of the Fund for Scientific Research - Flanders. They made it 
possible to spend the day in a very agreeable and inspiring environment. 
 
The success of the meeting encourages us to continue with this yearly initiative. We are 
convinced that it provides a great opportunity to facilitate the exchange of ideas; it certainly 
stimulates the research in actuarial and financial mathematics in Belgium. 
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SOLVENCY II :
AS SIMPLE AS POSSIBLE, AS COMPLEX AS NECESSARY

(THE STORY OF A PASSIONATE CHALLENGE FOR ACTUARIES)

René Dhondt

Assuralia, De Meêussquare 29, 1000 Brussels, Belgium & Universiteit Antwerpen, Faculty of
Applied Economics, Prinsstraat 13, 2000 Antwerp, Belgium
Email: rene.dhondt@assuralia.be

Abstract

The need to redefine prudential standards according to the real risks insurance companies are
exposed to, has proven to be much more than pure intellectualwork. Indeed, trading off be-
tween policyholders protection and optimal capital allocation is no easy task (neither technical
nor political). The European Commission has to manage quitea complex project, taking into
account many divergent point of views: 25 national supervisors of as many different domestic
insurance markets (trying to coordinate within CEIOPS), representatives of insurance under-
takings (also coordinating their points of views within CEA, AISAM, CFO/CRO-Forums, . . . ),
consumers, accountants, auditors and . . . last but not leastthe actuaries whose advice is ex-
pected from the “Groupe Consultatif Actuariel Européen”.The Swiss Solvency Test could
prefigure some major parts of the output of the Solvency II project, one of them concerning
the “Standard Models” that CEA means to be “As simple as possible, as complex as neces-
sary”.

1. INTRODUCTION

In order to operate, an insurance company requires a number of different ‘resources’ (the descrip-
tion given here is simplified and limited in scope):

• An approach to the risks it has to deal with (not only insurance-related risks, but also various
business and financial risks).

• An extensive historical knowledge of the frequency and magnitude of these risks, as they
actually materialise.

• Staff with the necessary knowledge and experience (to undertake the various sub-activities-
product development, marketing, distribution, production and loss management, legal and
insurance-related support, management of all the above, etc.).

3



4 R. Dhondt

• The necessary financial resources - the only raw material that insurers use. These financial
resources may be provided by shareholders, obtained on the financial or reinsurance markets
or derived from the company’s annual business activities.

Available capital is far and away the most important elementfor an insurance company. Capital
is a basic commodity for insurers, allowing them to accept risks. It must be used effectively and in
an optimum way. If the necessary capital has to be borrowed orbought, it has a price, as have all
goods handled on a supply and demand market. This price, as well as the capacity of the financial
markets, are not defined at national level, not even at European level, but globally.

Identifying the precise capital needs of an insurance company is a complex exercise. The main
reason for this is that the normal production cycle is reversed: in other words the real cost of the
insurance product is only calculated when the risk materialises, not when the insurance contract is
drawn up. Indeed, it is highly likely that the price (or ‘premium’) asked for an insurance contract
will differ greatly from the real (average) cost of the insurance guarantee.

European legislators, realising from the outset that a minimum degree of harmonisation was
necessary to the development of the single market, developed an initial set of rules known as Sol-
vency I. Solvency I, which came into being at the time of the ‘first generation’ directives and still
officially applied by national supervisors, is purely quantitative in nature; solvency requirements
are expressed as a fixed percentage of the earned premiums and/or the loss provisions. Naturally,
this makes it impossible to properly study the solvency riskof different insurance companies and
how this risk is influenced by, say, the legal form of the company, its investment policy and its
product definition and price setting mechanisms. Further, the Solvency I rules provide for inade-
quate harmonisation, so that insurers operating from different Member States cannot be considered
in the same framework of reference. Finally, these rules were drawn up in the 1970s and so ob-
viously take no account of new concepts such as asset and liability management, alternative risk
transfer or the existence of derivatives offering financialprotection.

In view of this, a new project, Solvency II, was launched by the European Commission in
the late 1990s. This project is about providing the capital needed to guarantee the continuity of
insurance companies and giving near-certainty to beneficiaries that the payments will be executed
in due time.

Calculating the Solvency II margin for the insurance industry is one of the greatest adven-
tures in the financial world at the start of the third millennium. It is a voyage of discovery for
commodities, as important as those undertaken in the late 15th and early 16th century.

2. THE SOLVENCY OF THE BELGIAN INSURANCE MARKET

Let us now examine the solvency of the Belgian insurance market in real terms. What can be
legitimately expected from a solvency model?

First of all, the Solvency I rules, as applied in Belgium, seem to be effective, since there has
been no bankruptcy in the Belgian market in the last 30 years (the Insurance Companies Super-
vision Act, drawn up in response to the first-generation directives, dates from July 1975). This
cannot be pure chance, since a number of companies in neighbouring countries have gone under
in the recent past: the Belgian market clearly has a financially solid foundation.
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Figure 1: Evolution of the Ratio Available Solvency Margin /Required Solvency Margin

Let’s take a more detailed look at the Belgian market since 1995.
Figure 1 illustrates, over the period from 1995 to 2004, the ratio between the real overall

available solvency margin of the Belgian direct insurance market (not including reinsurance) and
the margin imposed by the Solvency I rules. The Belgian market has seen its solvency margin
decline slightly from 300% to 250%, but it remains comfortably outside the danger zone. The
solid ‘explicit’ part of this margin (i.e. the part based on the market value of underlying assets)
has fallen slightly more markedly than the more volatile ‘implicit’ part (unrealised gains, expected
profits, etc.).

Figure 2: Dispersion of Solvency Margins

This positive overall situation gives us no definite indication about the solvency of individual
companies. For clarification on this, we need to look at the spread of individual margins (figure 2).
The horizontal axis shows the explicit part (as a percentageof the regulatory margin, with maxi-
mum value 300%), the vertical axis shows the implicit part and each circle represents one insurance
company. The line passing through the 100% level on the two axes represents the regulatory mini-
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mum. No company is beneath this level, which means that everycompany possesses at least the
minimum required solvency capital. The dotted line shows the average margin actually available.
The companies are spread out around this average value but itis interesting to note that several
companies have a solvency capital, or equity, over three times higher than the required capital
level.

 

Figure 3: Evolution of Net Results

The increase in solvency capital is financed by annual financial revenues from underlying in-
surance transactions. Figure 3 shows how, following a real increase in companies’ net results
which lasted until 1998, there ensued a period of decline: initially, until 2000, results remained
very positive, but then came two successive years of loss in non-life insurance and – for the first
time ever – a year of overall loss for life-insurance companies (2002).

Accounting results remained positive until the turn of the Millennium, but the continual de-
struction of economic value in the insurance industry soon became apparent.

In 2000, the industry’s professional organisation joined forces with McKinsey & Company to
lead an awareness-raising campaign on ‘economic capital’.Some companies were already very
aware of the concept and had firmly embedded it in their business policies; for others, it was still
relatively unfamiliar.

Few of them had already integrated a model centred around the‘embedded value’ of the portfo-
lio, and there was too little awareness of the danger of underestimating the risk of value destruction.
Strong competition (inadequate pricing in non-life business, too high interest rates guaranteed in
life business) led to a decrease in profits and later, as a consequence of the tumbling stock markets
(from 2000), gave negative results, thus affecting the available capital and the solvency margins.

A look at the combined equity of the Belgian insurance industry between 1998 and 2004 (figure
4) shows that the book value remained roughly the same but thelosses sustained by insurers in 2001
and 2002 had major repercussions on this value, which led to capital injections for many companies
in 2003 (in total betweene550 and 600 million). The collapsing capital markets clearly had a
destructive impact on companies’ equity, but other factorstoo contributed to the loss, in the space
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Figure 4: Evolution of Equity Capital (in mio euro)

of four years, of over a half of the previously amassed equity, measured in market value terms,
from e20.5 to 8.8 billion. The trend was broken in 2003 when significant positive results were
again recorded, leading to the recovery of over half of the lost equity. The sector would therefore
seem to be resilient enough to ensure its own financial continuity. However, the volatility that has
been displayed raises questions about the capital requirements imposed on companies and about
the imminent reform of the financial reporting system, both of which could amplify this effect.

 

Figure 5: Evolution of Profitability and Solvency

Figure 5 summarises how the profitability and solvency of Belgian insurance companies have
changed over the past nine years. The year 1998 stands out as arecord year for the Belgian
insurance industry, as regards the ratio between the available solvency margin and the required
solvency margin and as regards the return on equity (return on available solvency margin). The
years from 1999 onwards saw a sharp decline in profitability,with a negative return in 2002. This
meant that the established solvency margin fell markedly in2002 and 2003, without however
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approaching the required minimum.

 

Figure 6: Solvency and Return on Available Solvency Margin

A look at the market situation gives an indication, althoughnot a definite one, of the situation
of individual companies. In figure 6, the same data are split up to show the position of individual
companies. As before, each circle represents one insurancecompany. The ratio between the
available margin and the required solvency margin (shown onthe X-axis) is capped at 600%,
while the return on the available margin (Y-axis) goes no higher than 30%.

Like figure 2, this diagram shows that all insurance companies possess a solvency margin
deemed to be adequate (i.e. greater than 100% of the requiredmargin). The return on this margin
– a reliable indicator of a company’s equity – is positive formost companies, but varies greatly
from one to another.

In some situations, there may be a degree of doubt as to the adequate allocation of capital or
the profitability of the underlying business. Or both. On theone hand, a high solvency margin
might lead to a very positive quotation by the rating agencies (Standard & Poor’s, etc.) and will
give access to interesting contracts, especially for the insurance of industrial risks. On the other
hand, high capital requirements may frighten stakeholdersand lead them to prefer investments in
other services, industry areas, or other commodities.

3. WHAT ARE THE (BELGIAN) INSURANCE INDUSTRY’S NEEDS WITH RE SPECT
TO SOLVENCY?

Belgian insurance companies possess sufficient equity to financially offset major discrepancies be-
tween the actual loss frequency and the theoretical expected value. Indeed, they have a comfortable
surplus, measured in terms of the required solvency margin imposed by the Solvency I rules. This
surplus is present at market level, but even individual companies seem in no immediate danger of
encountering problems.



Solvency II 9

The existing solvency requirements are principally concerned with insurance-related diver-
gences from the expected values resulting from statisticaland actuarial calculations based on his-
toric claims. Other ‘accidents’ resulting from, say, disappointing financial income (downturn on
the share markets, long-term interest) or a prolonged interruption to activity, are not taken into
account in the scenarios that managers or supervisors use tomeasure the business’s risk sensitiv-
ity so as to augment capital requirements accordingly. As indicated above, the absence of such
calculation methods often means that insurance companies become overcapitalised, which in turn
damages shareholders’ interests and may induce them to disinvest. Furthermore, these solvency
requirements are not harmonised throughout the EU, which can impact on competition between
insurers from different Member Sates.

Take, for example, the recent demand made by some EU Member States to create ‘guarantee
schemes’. The necessity of such schemes depends heavily on the prudent evaluation rules these
Member States initiated: much of the financial protection will be provided by correctly calculated
liabilities (reserves), a surplus of covering assets and anamount of unrealised gains; however, the
home country’s legislation demands that each business lineshould be profitable (this is the case
in Belgium, but may not be in some other Member States). This provides additional protection
vis-à-vis foreign companies, which are only required to have ‘total account equilibrium’. Another
question one might raise is whether the new solvency requirements will take into account existing
guarantee schemes for determining the capital required.

In view of this, there is everything to be said for encouraging much greater harmonisation of
supervisory rules, thus creating a level playing field between insurance companies competing on
the single European insurance market.

This means that new calculation methods for solvency requirements are necessary. These
methods must take account of increasingly diverse ruin scenarios and also factor in, amongst other
things, the management itself and the soundness of the working and production methods instigated
by the insurer. The time is therefore ripe for a new set of rules, Solvency II. There is now a strong
need for robust models to define suitable solvency margins – models based on in-depth financial,
statistical, actuarial and economic research.

Likewise, there is a strong need for a solid framework, guaranteeing continuity for these
models: after all, insurers cannot alter their strategic decisions every few years.

4. HOW TO MOVE FROM SOLVENCY I TO SOLVENCY II?

As stated above, the Solvency II project was launched by the European Commission in the late
1990s. It was designed to assess the financial solidity of insurers on a more prospective basis,
incorporating all the risks an insurance company may face and proposing a harmonised system at
European level.

The objectives were ambitious but reasonable: to provide greater protection of policyhold-
ers’ and claimants’ interests whilst boosting economic growth by optimising the allocation of risk
capital in the financial sector.

Various stakeholders, such as the Comité Européen des Assurances (CEA), have launched
studies and projects to help ensure that the insurance industry takes an active role in developing the
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new rules. Before starting the actual discussions, some clarification work was clearly necessary
to try to reach a common understanding and consensus on some of the major issues related to
Solvency II. This ongoing project, launched in early 2005 but continuing this year and possibly
also next year, will help the insurance industry to develop common views on objectives, the way
to meet them and the solvency models that will help insurancecompanies to deal with the various
risks they face.

The insurance industry has shown strong support for a Solvency II framework with the follow-
ing aims:

• Enable an institution to absorb significant unforeseen losses and offer reasonable insurance
to policyholders (Framework for Consultation on Solvency II).

• Contribute to a “better managed and more competitive insurance industry that can better
perform its key function of accepting and spreading risk” (Commissioner McCreevy).

• Encourage a single European market for financial services.

The industry has also formulated some general principles which should be taken into consider-
ation:

1. Insurers should be able to measure the risk to which they are exposed – which has reper-
cussions on the requirement of risk-based capital – and takeinto account the insurance risks
they have underwritten.

2. There should be maximum harmonisation across the European insurance markets. This
means that individual Member States or local supervisory authorities would not be able to
develop requirements that are more stringent than those defined at a European level.

3. The current solvency capital requirement should be replaced by a twofold requirement.
Firstly, in relation to minimum capital, i.e. the level below which insurance activity should
be put in run-off and, secondly, with regard to solvency capital (sometimes referred to as
target capital), which defines the capital needs for an ‘ongoing business’ and below which
intervention may be required from the supervisory authority. This would not necessarily
result in new equity being injected, but would encourage theinsurance company’s managers
to review and monitor the company’s procedures and methods.

4. The new approach to calculating the solvency requirementwill make existing hidden re-
serves (the result of an occasionally over-cautious approach) more transparent when deter-
mining provisions, unrealised capital gains etc.

In the meantime, the re-working of the existing rules on supervision of insurers’ solvency
should take into account the lack of harmonisation between countries and insurance markets, the
rigidity of the current rules, which focus on a merely quantitative approach and penalise compa-
nies with a prudent provisions policy, and, finally, the poorintegration of risks and opportunities
associated with technical and financial innovations (such as ALM, ART and derivatives).

The first phase of the Solvency II project led to an integration of the Basel II requirements into
the insurance environment, adopting but also adapting them, with a series of regulations for:

1. financial resources;

2. the prudential supervision process;

3. market discipline;
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Figure 7: What Does the Solvency II Three-Pillar Approach Mean?

thus creating a three-pillar approach. The Pillar I Solvency capital requirements should be based on
a total balance sheet approach, reflecting market-consistent value. This means measuring assets,
capital and liabilities on a market value (if available otherwise they should be measured on the
best estimate for projected future cash flow), see Figure 7. Asufficient level of harmonisation
is necessary to ensure that solvency requirements are determined by the nature and scale of the
activity and its risks rather than the location (or structure) of the company. Solvency rules should
be designed for both financial groups and stand-alone companies and also require a lead supervisor
to be appointed for the group.

A ‘total balance sheet’ approach involves evaluating all kinds of risks, taking into consideration
not only statistical risk (probability of ruin due to unforeseen frequency or intensity of insured
risks) but also financial risks, the risk of malfunctioning (improper product development, fraud
etc.) and so forth. Each risk should be evaluated in a prospective way, on the basis of a stochastic
evaluation of all future incoming premiums and payments.

The market value of the liabilities should be determined with enough certainty to ensure that
no additional prudence is required to cover the risk of variation against the current market value.
Although International Financial Reporting Standards (IFRS) have been incorporated into the ac-
counting principles and rules used by insurance companies,and risk and capital management dis-
closures are part of this financial reporting system, IFRS and Solvency II clearly continue to differ
considerably (IFRS equity versus regulatory capital as a result of the treatment of available-for-
sale investments, scope of the group and its levels of consolidation as a result of the different
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understanding of the nature of insurance activities between banking and insurance). Accounting
considerations must not affect the definitions used for solvency calculations.

The valuation of assets and liabilities and solvency capital requirement can be based on either
an internal model, accepted by the supervisor, or a standardindustry model. The standard approach
will need to be more approximate and closer to the existing formulas. Insurers who don’t have
enough staff to develop their own internal solvency models should find the approach easy to apply.
Moreover, it should also incorporate the recognition of diversification and risk mitigation.

Both methods should lead to the definition of two levels of equity capital requirements:
• A minimum capital requirement (MCR), calculated using simple formulas. This might even

be the actual solvency margin and will also serve as an advance alert indicator.

• A target or solvency capital requirement (SCR) to reduce theprobability that the company
is bankrupted by a predefined level (e.g. 0.5% for a one-year period).

Internal models would lead to a reduction in capital requirements as regards the standard mod-
els and insurance companies or groups would only be allowed to use them under strict conditions
(various aspects would be monitored, for example, the development and the quality of the models,
the way in which they are used by the management, audit trails, the procedures followed and the
level of compliance).

The standard model (a common insurance industry model) should be based on the same eco-
nomic principles as an internal model but be simplified as faras possible. Each of the companies,
even those using the standard model, should be encouraged toimprove their risk management ca-
pacity. The practical limitations of the current ‘one-size-fits-all’ solvency requirement or of the
Solvency II requirements could be avoided by using an approach that is more clearly based on
principles rather than a traditional rules-based approach, e.g. with respect to investment rules (no
arbitrary restrictions on investment flexibility needed since market, credit and liquidity risks are
taken into account).

The total balance sheet approach, which incorporates results from either a standard or an in-
ternal model, is outlined in Figures 8 and 9. This still leaves a wide range of options available, as
discussed below and in the definitions of the terms used in thefigures.

Technical provisions are composed of:

• the actuarial best estimate: discounted provisions, without incorporated margin, decreased
(for life provisions) with deferred acquisition costs and zillmerized, taking into account all
options and guarantees;

• the market value margin, based on either:

◦ the International Accounting Standards Board (IASB)’s tentative definition or;
◦ the cost of transfer to a third party;

• a prudence margin, which might be either:

◦ a specific percentage (function of the class of business) of the best estimate or;
◦ a multiple of the standard error or;
◦ a percentile of the probability distribution of the final costs (60/75 or 90%).
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Figure 8: Total balance sheet approach (a)

Figure 9: Total balance sheet approach (b)

Available capital (at market consistent value of net assets) is calculated by subtracting technical
provisions from net assets:

available capital= net assets− technical provisions

with
net assets= assets− debts,

where:

• assets and debts are calculated at market consistent value,which is the market value or
marked to model (IASB’s fair value?);
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• intangibles are taken into account if they are not deducted from the liability side (goodwill,
present value of future profits, net deferred taxes etc.).

Covering assets are reported either within the balance sheet or separately (separate annex to
the supervisor?) and should always be superior to technicalprovisions and, if necessary, subject to
harmonised (qualitative only?) investment rules.

Furthermore

free assets= net assets− covering assets,

where a distinction could be made between assets representing MCR, SCR, free surplus and
prudent-person principles could be adopted in relation to investment of some of these assets.

Measuring the economic value of liabilities requires calculation of the market-consistent value.
This assumes that either market-consistent standards could be defined or robust internal models
should be developed.

This process is not an easy one.
Almost all national insurance industries have started to develop market standards: new models

that aim to issue an adequate total appraisal of the balance sheet appear every two months (e.g.
Swiss Solvency Test, GDV models, FSA models, FFSA model to belaunched or the Belgian
model for workman’s compensation insurance which is currently being developed).

Certain ‘rules of thumb’ could also be used, for example, a 75% confidence level for the best
estimate of the technical provisions. (This means that there is 75% probability that the technical
provisions would at least equal the pay-off for all liabilities in the portfolio).

Another possibility could be a predefined percentile (75%).It is for this reason that the Quan-
titative Impact Study (part 1 - QIS1), launched by national insurance supervisors on behalf of the
CEIOPS (Committee of European Insurance and Occupational Pensions Supervisors), includes
testing for the plus and minus 15% percentile, in order to gain a thorough understanding of the
relation between the confidence level and the volume of technical provisions.

A predefined percentile does not give the competitive advantage that some insurance compa-
nies or groups aimed for when they set the development of an internal model as one of their key
priorities. Other companies might not have of the necessaryvolume of technical data available to
enter into the model.

Consequently, insurance associations like Assuralia are making preparations to help the market
collect and collate this technical data.

As for matching assets with technical provisions, contributions will obviously be made by the
International Accounting Standards Board (IASB) which defined the IFRS standards. So far, the
insurance industry has been critical of the IFRS-standardswhich offered a disparate approach to
liabilities and assets. The new IFRS rules (IFRS4 and IAS39)should allow a more consistent view
on both sides of the balance sheet.

Figure 9 shows the possible outcome of the process as regardsthe level of the technical pro-
visions (which will probably be lowered because the prudence margins would disappear) and sol-
vency capital (where SCR would probably be less than the actual available solvency margin which
would lead to a free surplus).
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Figure 10: Solvency Time Table for the Following Years

5. WHEN DO WE HAVE TO UNDERTAKE THIS VAST PROJECT?

Figure 10 gives an indication of the timetable for the next few years:

• After examining the input of the two planned quantitative impact studies, the European Com-
mission will prepare a directive during 2006, taking into account the advice submitted by
CEIOPS.

• This preliminary text will be examined by all stakeholders and presented to the European
Council and the Parliament for official adoption in 2008 (2009?).

• Member states will then have one or two years to implement thenew directive.

European insurers appreciate the way in which European authorities are undertaking this vast
project and calling for advice at several points during the procedure. The definition of new solvency
regulations, necessary due to the inadequacy of current Solvency I regulations and the evaluation
of the real risks taken by an insurer, will serve as the first positive illustration of the European
Commission’s new approach whereby impact studies are carried out before policy is defined.
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ACTUARIAL STATISTICS AND MIXED MODELS: APPLICATIONS AND
OPPORTUNITIES

Katrien Antonio and Jan Beirlant

University Center for Statistics, KULeuven, W. de Croylaan54, 3001 Leuven, Belgium
Email: katrien.antonio@econ.kuleuven.be, jan.beirlant@wis.kuleuven.be

Abstract

The purpose of this paper is twofold. On the one hand, it is a short overview of our recent
work on the use of mixed model methodology in actuarial statistics, which covers topics from
credibility, claims reserving and non-life ratemaking. Onthe other hand, opportunities and
challenges for future research are sketched.

1. INTRODUCTION

We discuss how mixed models can be applied in the analysis of insurance data and the decision
making process following it. Starting point for the use of mixed models in actuarial statistics
are traditional credibility models and their connection with linear mixed models. The credibility
ratemaking problem concerns the prediction of future claims of a risk class, given past claims of
that and related risk classes. Traditional credibility formulas can be reconstructed using the ex-
plicit expressions for the maximum likelihood estimations(MLE) of the fixed effects and the best
linear unbiased predictor (BLUP) for the random effects in alinear mixed model. This appealing
analogy was presented in Frees et al. (1999) and is a first steptowards the interpretation of tradi-
tional credibility schemes in the framework of generalizedlinear models, using the methodology
of generalized linear mixed models.

Next to the credibility ratemaking problem, examples from loss reserving and non-life ratemak-
ing with mixed models are discussed. Using the concept of mixed models, their connection with
smoothing methods and their implementation with Bayesian statistics, we present some new and
promising alternatives for the techniques that are currently in use.

Section 2 contains a brief overview of the statistical concepts that are involved. In Section 3
some concrete examples are discussed and possibilities forfurther research are sketched. More
details regarding the material presented here, are given inAntonio et al. (2006), Antonio and
Beirlant (2006a) and Antonio and Beirlant (2006b).
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2. STATISTICAL DETAILS

2.1. Linear mixed models (LMMs): specification and estimation

Linear mixed models extend classical linear regression models by incorporating random effects in
the structure for the mean. Assume the data set at hand consists ofN subjects. Letni denote the
number of observations for subjecti andY i its vector of observations (1 ≤ i ≤ N). The general
linear mixed model is given by

Y i = X iβ + Zibi + ǫi. (1)

β (p×1) contains the parameters for thep fixed effects in the model; these are fixed, but unknown,
regression parameters, common to all subjects.bi (q × 1) is the vector with the random effects for
theith subject in the data set. The use of random effects reflects thebelief that there is heterogeneity
among subjects for a subset of the regression coefficients inβ. X i (ni × p) andZi (ni × q)
are the design matrices for thep fixed andq random effects.ǫi (ni × 1) contains the residual
components for subjecti. Independence between subjects is assumed.bi andǫi are also assumed
to be independent and we follow the traditional assumption that they are normally distributed with
mean vector0 and covariance matrices, sayD (q × q) andΣi (ni × ni), respectively. Different
structures for these covariance matrices are possible; an overview of some frequently used ones
can be found in Verbeke and Molenberghs (2000). It is easy to see thatY i then has a marginal
normal distribution with meanX iβ and covariance matrixV i = Var(Y i), given by

V i = ZiDZ
′

i + Σi. (2)

In this interpretation it becomes clear that the fixed effects enter only the mean E[Yij ], whereas the
inclusion of subject-specific effects specifies the structure of the covariance between observations
on the same unit.

Denote the unknown parameters in the covariance matrixV i with α. Conditional onα, a
closed form expression for the maximum likelihood estimator of β exists, namely

ˆβ = (

N∑

i=1

X
′

iV
−1
i X i)

−1

N∑

i=1

X
′

iV
−1
i Y i. (3)

To predict the random effects, the mean of the posterior distribution of the random effects given
the data,bi|Y i, is used. Conditional onα, we have

ˆbi = DZ
′

iV
−1
i (Y i − X i

ˆβ), (4)

which can be proven to be the Best Linear Unbiased Predictor (BLUP) of bi (where ‘best’ is in the
sense of minimal mean squared error). For estimation ofα maximum likelihood (ML) or restricted
maximum likelihood (REML) is used. The expression maximized by the ML (L1), respectively
REML (L2), estimates is given by

L1(α; y1, . . . ,yN) = c1 −
1

2

N∑

i=1

log |V i| −
1

2

N∑

i=1

r
′

iV
−1
i ri (5)

L2(α; y1, . . . ,yN) = c2 −
1

2

N∑

i=1

log |V i| −
1

2

N∑

i=1

log |X
′

iV
−1
i X i| −

1

2

N∑

i=1

r
′

iV
−1
i ri, (6)
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whereri = yi −X i

(∑N

i=1 X
′

iV iX i

)
−1 (∑N

i=1 X
′

iV
−1
i yi

)
andc1, c2 are appropriate constants.

Equations (5) and (6) are maximized using iterative numerical techniques such as Fisher scoring
or Newton-Raphson. In (3) and (4) the unknownα is then replaced witĥαML or α̂REML, leading
to the empirical BLUE forβ and the empirical BLUP forbi. For inference regarding the fixed
and random effects and the variance components, appropriate likelihood ratio and Wald tests are
explained in Verbeke and Molenberghs (2000).

2.2. Generalized linear mixed models (GLMMs): specification and estimation

GLMMs extend generalized linear models (GLMs) by allowing for random, or subject-specific,
effects in the linear predictor. These models are useful when the interest of the analyst lies in the
individual response profiles rather than the marginal mean E[Yij]. The inclusion of random effects
in the linear predictor reflects the idea that there is natural heterogeneity across subjects in (some
of) their regression coefficients. Diggle et al. (2002) and Molenberghs and Verbeke (2005) are
useful references for full details on GLMMs.

Say we have a data set at hand consisting ofN subjects. For each subjecti (1 ≤ i ≤ N), ni

observations are available. Given the vectorbi with the random effects for subject (or cluster)i,
the repeated measurementsYi1, . . . , Yini

are assumed to be independent with a density from the
exponential family

f(yij|bi,β, φ) = exp

(
yijθij − ψ(θij)

φ

+ c(yij, φ)

)
, j = 1, . . . , ni. (7)

Similar to a GLM, the following (conditional) relations hold

µij = E[Yij|bi] = ψ

′

(θij) and Var[Yij|bi] = φψ

′′

(θij) = φV (µij) (8)

whereg(µij) = x
′

ijβ + z
′

ijbi. As before,g(·) is called the link andV (·) the variance function.
β (p× 1) denotes the fixed effects parameter vector andbi (q × 1) the random effects vector.xij

(p× 1) andzij (q × 1) contain subjecti’s covariate information for the fixed and random effects,
respectively. The specification of the GLMM is completed by assuming that the random effects,
bi (i = 1, . . . , N), are mutually independent and identically distributed with density function
f(bi|α). Herebyα denotes (again) the unknown parameters in the density. Traditionally, one
works under the assumption of (multivariate) normally distributed random effects with zero mean
and covariance matrix determined byα. Correlation between observations on the same subject
arises because they share the same random effectsbi.

The likelihood function for the unknown parametersβ, α andφ then becomes (withy =

(y
′

1, . . . ,y
′

N )

′

)

L(β,α, φ; y) =

N∏

i=1

f(yi|α,β, φ)

=

N∏

i=1

∫ ni∏

j=1

f(yij|bi,β, φ)f(bi|α)dbi, (9)
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where the integral is with respect to theq dimensional vectorbi. When both the data and the
random effects are normally distributed (as in the linear mixed model), the integral can be worked
out analytically and closed-form expressions exist for themaximum likelihood estimator ofβ
and the BLUP forbi (see (3) and (4)). For general GLMMs, however, approximations to the
likelihood or numerical integration techniques are required to maximize equation (9) with respect
to the unknown parameters. Restricted pseudo-likelihood ((RE)PL) (Wolfinger and O’Connell
(1993)) and (adaptive) Gauss-Hermite quadrature (Liu and Pierce (1994)) are two widely used
techniques to perform the maximum likelihood estimation. Both techniques are available in the
commercial software package SAS and their use will be illustrated in Section 3. The pseudo-
likelihood technique corresponds with the penalized quasi-likelihood (PQL) method of Breslow
and Clayton (1993). Since maximum likelihood techniques are hindered by the integration over
theq-dimensional vector of random effects, a Bayesian implementation of GLMMs is considered
as well. Hereby random numbers are drawn from the relevant posterior and predictive distributions
using Markov Chain Monte Carlo (MCMC) techniques. WINBUGS allows easy implementation
of these models. Illustrative code for both SAS and WINBUGS is available on the web1.

2.3. Smoothing with mixed models

To provide some background for smoothing with mixed model methodology, let us start from
the simple example of scatterplot smoothing. Data(xi, yi) (i = 1, . . . , n) are given and the model
Yi = f(xi)+ǫi (i = 1, . . . , n) is fitted. To estimate the unknown functionf(·), a linear combination
of some basis functions is used. Possible basis functions are truncated power basis functions, B-
splinesor radial basis functions, among others. For truncated power basis functions of degree p
with K knotsκ1, . . . , κK

2, define the design matrixB as

B =




1 x1 x

2
1 . . . x

p
1 (x1 − κ1)

p
+ . . . (x1 − κK)

p
+

...
...

...
...

...
...

...
...

1 xn x

2
n . . . x

p
n (xn − κ1)

p
+ . . . (xn − κK)

p
+



 . (10)

The unknown functionf(·) is then estimated aŝf(x) = B(x)β̂ whereB(x) is a row vector, simi-
lar to a row fromB, andβ̂ is the solution of the least-squares problemminβ

∑n
i=1(yi − B(xi)β)

2,
subject to the constraint

∑K
k=1 β

2
pk < C to obtain a smooth fit. Hereby,β = (β0, β1, . . . , βp, βp1, . . . ,

βpK)

′

and thus the penalized coefficients correspond with the truncated power functions. Using a
Lagrange multiplier argument, this optimization problem is rewritten as

min

β

n∑

i=1

(yi − B(xi)β)
2
+ αβ

′

Pβ, (11)

whereα is the so-called smoothing parameter andP a penalty matrix given by

P =

[
0p+1×p+1 0p+1×K

0K×p+1 IK×K

]
. (12)

1see http://www.econ.kuleuven.be/katrien.antonio
2The truncated line(x−κk)+ is zero, whenx < κk and equalsx−κk elsewhere.(x− κk)p

+ has to be interpreted
as{(x−κk)+}

p. The basis functions{1, x, x2, . . . , xp, (x−κ1)
p
+, . . . , (x−κK)p

+} span the vector space of piecewise
functions of degreep with knots atκ1, . . . , κK .
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Ruppert et al. (2003) (among others) rewrite the argument ofthe optimization problem in (11),
after dividing byσ2

ǫ , as

1

σ

2
ǫ

‖y − Xβ − Zu‖2
+

1

σ

2
u

‖u‖2
, (13)

whereσ2
u = σ

2
ǫ /α, y = (y1, . . . , yn)

′

, β = (β0, β1, . . . , βp)
′

(i.e. the regression parameters for the
basis functions1, x, x2

, . . . , x

p), u = (βp1, . . . , βpK)

′

,

X =




1 x1 x

2
1 . . . x

p
1

...
...

...
...

...
1 xn x

2
n . . . x

p
n



 andZ =




(x1 − κ1)

p
+ . . . (x1 − κK)

p
+

...
...

...
(xn − κ1)

p
+ . . . (xn − κK)

p
+



 . (14)

By consideringu as random effects withu ∼ N(0, σ
2
uIK×K), (13) reduces to minus two times the

log-likelihood of (Y ,u) in the linear mixed modelY = Xβ + Zu + ǫ, under the assumptions
Y |u ∼ N(Xβ + Zu, σ2

ǫ I), u ∼ N(0, σ
2
uI) andǫ ∼ N(0, σ

2
ǫ I).

A similar reasoning leads to the penalized splines formulation of a GAM, whereY1, . . . , Yn

are independent random variables with a densityf(·) from the exponential family and an additive
predictorηi =

∑l

h=1 fh(xih) (i = 1, . . . , n). Construct the design matrixX as

X =





1 x11 x

2
11 . . . x

p
11 . . . x1l x

2
1l . . . x

p
1l

...
...

...
...

...
...

...
...

...
...

1 xn1 x

2
n1 . . . x

p
n1 . . . xnl x

2
nl

... x

p
nl



 . (15)

In the above specification thel blocks specify the unpenalized basis functions for estimation of the
unknown functionsf1(·), . . . , fl(·). As in the scatterplot smoothing example, a smooth fit results
by putting constraints on the coefficients of the truncated basis functions. This is done by treating
them as random effects in a mixed model formulation. Define

Z
pen

=




(x11 − κ

1
1)

p
+ . . . (x11 − κ

1
K1

)

p
+ . . . (x1l − κ

l
1)

p
+ . . . (x1l − κ

l
Kl

)

p
+

...
. . .

...
...

...
. . .

...
(xn1 − κ

1
1)

p
+ . . . (xn1 − κ

1
K1

)

p
+ . . . (xnl − κ

l
1)

p
+ . . . (xnl − κ

l
Kl

)

p
+



 , (16)

whereKi denotes the number of knots to estimatefi(·) (i = 1, . . . , l). In case of a GAM, the log-
likelihood is considered as a function of the additive predictor η and, using penalized regression
splines,̂η = Xβ̂ + Zû, whereβ̂ is obtained from the following penalized log-likelihood

max

β
{y

′

(Xβ + Zu) − 1
′

ψ(Xβ + Zu)} −

1

2

l∑

j=1

αju
′

juj , (17)

andû from E[u|y] where – for ease of notation – a canonical link is assumed.β is the column
vector with the parameters for the unpenalized basis functions in (15) (one parameter per column
of X). uj = (uj1, . . . , ujKj

)

′

(j = 1, . . . , l), αj (j = 1, . . . , l) is the smoothing parameter for
functionfj(·) and sayu = (u

′

1, . . . ,u
′

l)
′

. The optimization problem in (17) is equivalent to the
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optimization problem in a generalized linear mixed model (see Breslow and Clayton (1993)) with
the GLMM specified as

f(y|u) = exp (y
′

(Xβ + Zu) − 1
′

ψ(Xβ + Zu) + 1
′

c(y)),

u ∼ N(0,Λ),

andΛ =




σ

2
1IK1×K1

0 . . . 0

...
...

. . .
...

0 0 . . . σ

2
l IKl×Kl



 , (18)

whereσ2
j = 1/αj (j = 1, . . . , l) and – again – a canonical link is used in (18) for ease of notation.

Both (17) and (18) are easily generalized to the case of a non-canonical link.
In line with the previous specifications, a GAMM for longitudinal data can be rewritten as

a GLMM as well. LetYij denote thejth observation for subjecti, wherei = 1, . . . , N and
j = 1, . . . , ni. Conditional on the random effectsbi (q × 1) for subjecti (andbi ∼ N(0,D)),
Yi1, . . . , Yini

are independent with a density from the exponential family and a predictorηij =∑l
h=1 fh(xijh) + z

′

ijbi. Specify the design matricesX i andZi for subjecti (i = 1, . . . , N) as

X i =





1 xi11 x

2
i11 . . . x

p
i11 . . . xi1l x

2
i1l . . . x

p
i1l

...
...

...
...

...
...

...
...

...
...

1 xini1 x

2
ini1

. . . x

p
ini1

. . . xinil x

2
inil

... x

p
inil



 , (19)

and

Z
pen
i =




(xi11 − κ

1
1)

p
+ . . . (xi11 − κ

1
K1

)

p
+ . . . (xi1l − κ

l
1)

p
+ . . . (xi1l − κ

l
Kl

)

p
+

...
. . .

...
...

...
. . .

...
(xini1 − κ

1
1)

p
+ . . . (xini1 − κ

1
K1

)

p
+ . . . (xinil − κ

l
1)

p
+ . . . (xinil − κ

l
Kl

)

p
+



 . (20)

Together with the ‘classical’ design matrix for the random effects forbi (i = 1, . . . , N),

Z
ran
i =




zi11 . . . zi1q

...
. . .

...
zini1 . . . ziniq



 and Zi = [Z
pen
i |Z

ran
i ], (21)

the contribution of subjecti to the GLMM specification of the GAMM is given by

f(yi|ri) = exp (y
′

i(X iβ + Ziri) − 1
′

ψ(X iβ + Ziri) + 1
′

c(yi)),

ri = (u
′

, b
′

i)
′

∼ N(0,Λi),

andΛi =





σ

2
1IK1×K1

0 . . . 0 0

...
...

. . .
...

...
0 0 . . . σ

2
l IKl×Kl

0

0 0 . . . 0 D



 . (22)

The assumption of independence among subjects completes the specification of the GLMM repre-
sentation of the GAMM.
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3. APPLICATIONS AND OPPORTUNITIES

3.1. Credibility

Using linear mixed models Frees et al. (1999) already gave a longitudinal data analysis interpreta-
tion of the well-known credibility models of Bühlmann (1967), Bühlmann (1969), Bühlmann and
Straub (1970), Hachemeister (1975) and Jewell (1975). Theyexplained how to specify the fixed
and random effects for every subject or risk classi (i = 1, . . . , N) and used̂β andb̂i (as in (3) and
(4)) to derive the Best Linear Unbiased Predictor for the conditional mean of a future observation
(E[Yi,ni+1|bi]). For the above mentioned credibility models, this BLUP corresponds with the clas-
sical credibility formulas.

However, the normal-normal model (normality for both responses and random effects) will
not always be plausible for the data at hand (which can be, forinstance, counts, binary or skewed
data). Therefore it is useful to revisit the credibility models in the context of GLMs and to consider
their specification as a GLMM. In this way, estimators and predictors will be used that take the
distributional features of the data into account.

Interpreting traditional credibility models in the context of GLMMs implies that the additive
regression structure in terms of fixed and subject-specific (or risk class specific) effects is specified
on the scale of the linear predictor, namely

g(µij) = ηij = x
′

ijβ + z
′

ijbi. (23)

Herebyi (i = 1, . . . , N) denotes the subject, for instance a policy(holder) or riskclass, andj refers
to its jth measurement, unless it is stated otherwise. The link function g(·) and variance function
V (·) are determined by the chosen GLM. More details are given in Antonio and Beirlant (2006a).

3.2. Claims reserving

We illustrate how information on claim counts and claim amounts can be combined in a semipara-
metric regression model for claims reserving. Using a Bayesian implementation of the smoothers
from Section 2, the data considered in de Alba (2002) are reanalyzed. A generalized additive
model is constructed that combines data on claim numbers andclaim intensities. We illustrate
that, by using Bayesian statistics, simulation from the predictive distributions in this more compli-
cated model is possible without many additional efforts. Full details are in Antonio and Beirlant
(2006b).

Denote withYij the aggregate payment for cell(i, j) and letNij be the corresponding num-
ber of claims. Thus,Yij =

∑Nij

k=1 Yijk, with Yijk the payments composing the aggregate claim
Yij. Following de Alba (2002), a model is considered which combines information on the number
of claims registered and the total amount paid out for these claims, per arrival/development year
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combination. LetZij := Yij/Nij be the average payment for cell(i, j) and model

Zij ∼ Γ(ν, µ
Av
ij /ν),

where log (µ
Av
ij ) = α

Av
1 ∗ I(i = 1) + · · ·+ α

Av
10 ∗ I(i = 10) + f

Av
(j)

and
Nij

φ

∼ Poisson

(
µ

Num
ij

φ

)

,

where log (µ
Num
ij ) = α

Num
1 ∗ I(i = 1) + · · ·+ α

Num
10 ∗ I(i = 10) + f

Num
(j). (24)

Furthermore, theZij ’s andNij ’s are assumed to be independent.
Based on an inspection of the scatterplots and residual plots from an analysis with Proc Glim-

mix in SAS (not shown), 4 knots in the direction of development years, with positions(2, 3, 5, 7)

(for claim counts and average payments), are used. Results for the reserves from this model are
summarized in Table 1 (claim counts) and Table 2 (total payments, obtained by multiplying claim
numbers and average payments).

Mean Mean St.Dev. 5% 50% 97.5%
Poisson o-Poisson Bayes. Bayes. Bayes. Bayes.

AY 2 2 2 4.36 0 0 17
AY 3 7 5 7.424 0 0 25
AY 4 13 9 10.372 0 8 34
AY 5 22 19 14.418 0 17 51
AY 6 41 40 21.06 8 34 85
AY 7 97 96 33.702 34 93 169
AY 8 149 147 47.275 68 144 246
AY 9 240 240 84.071 102 229 432
AY 10 332 322 215.339 42 279 855
Total 902 879 248.871 500 847 1,465

Table 1: Predictive distribution for the number of claims: results from a Bayesian analysis with
truncated line basis functions for smooth function over development years. A burn-in of 50,000
simulations was used, followed by another 450,000 simulations to which a thinning factor of 10
was applied.

3.3. Non-life ratemaking

We consider a data set from Frees et al. (2001). These authorsfocused on the longitudinal character
of the data and modelled the logarithmic transformation of ‘PP=Loss/Payroll’, using linear mixed
models. Our analysis as well takes the longitudinal character of the data into account and considers
inference and prediction regarding individual risk classes. Use is made, however, of a gamma
GLMM; in this way no transformation of the data is required. ‘Loss’ is the response variable and
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Mean St.Dev. 2.5% 50% 97.5%
Bayes. Bayes. Bayes. Bayes. Bayes.

AY 2 165 500 0 0 2
AY 3 372 742 0 0 2
AY 4 606 909 0 312 3
AY 5 1,038 1,127 0 726 3,963
AY 6 1,562 1,306 111 1,239 4,908
AY 7 2,473 1,612 523 2,103 6,510
AY 8 3,802 2,328 947 3,288 9,694
AY 9 5,503 3,522 1,344 4,673 14,507
AY 10 5,983 5,937 495 4,242 21,772
Total 21,503 8,990 9,513 19,753 43,903

Table 2: Predictive distribution of the reserves (data displayed inthousands): results from a
Bayesian analysis with truncated line basis functions for smooth functions over development pe-
riod. A burn-in of 50,000 simulations was used, followed by another 450,000 simulations to which
a thinning factor of 10 was applied.

‘Payroll’ is used as an offset. The following models are considered

Yij|bi ∼ Γ(ν, µij/ν)

where log (µij) = log (Payrollij) + β0 + bi,0 (25)

versuslog (µij) = log (Payrollij) + β0 + β1Y earij + bi,0 (26)

and log (µij) = log (Payrollij) + β0 + β1Y earij + bi,0 + bi,1Y earij . (27)

The gamma density function is specified asf(y) =
1

Γ(ν)

(
νy

µ

)ν

exp

(
−νy

µ

)
1
y
. The specification in

(27) did not lead to convergence of the SAS procedures. Structure (26) is the preferred choice for
the linear predictor. Table 3 contains the results of a maximum-likelihood and Bayesian analysis,
where non-informative priors were used. Fitted values against real observations are plotted in
Figure 1. More details and related examples are in Antonio and Beirlant (2006a).

PQL adaptive G-H Bayesian

Est. SE Est. SE Mean 90% Cred. Int.

β0 -4.172 0.091 -4.148 0.091 -4.147 (-4.298, -3.996)
β1 0.042 0.012 0.042 0.012 0.042 (0.022, 0.062)
δ1 0.915 0.128 0.912 0.127 0.938 (0.741, 1.174)

Table 3:Workers’ compensation data (Losses): results of maximum likelihood and Bayesian analy-
sis. REML is used in PQL.
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Workers’ Compensation Insurance: Losses
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Figure 1:Workers’ compensation data (Losses): observed versus fitted values.

3.4. Discussion

We presented some new statistical approaches for the analysis of actuarial data related to claims
reserving and credibility. To illustrate further possibilities in this framework, we mention three
interesting topics of our current research. Firstly, it is interesting to compare the mixed model
approach with a copula construction to model the dynamics inpanel data (as in Frees and Wang
(2005)). Secondly, the joint modelling of longitudinal data on claim numbers and claim amounts
through a mixed model, can be considered and contrasted with– again – a copula construction.
Thirdly, instead of working in the framework of the exponential distribution, regression models for
heavy-tailed data are of interest for actuaries. In this way, a combination of the models discussed
above with heavy-tailed regression models, can be useful for actuarial applications.
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Abstract

This paper is an overview of recent results by Kolodko and Schoenmakers (2006), Bender
and Schoenmakers (2006) on the evaluation of options with early exercise opportunities via
policy improvement. Stability is discussed and simulationresults based on plain Monte Carlo
estimators for conditional expectations are presented.

1. INTRODUCTION

The evaluation of American style derivatives on a high dimensional underlying is an important and
challenging problem. Typically these derivatives cannot be priced by the classical PDE methods,
as the computational cost rapidly increases with the dimension of the underlying. This problem is
known as the ‘curse of dimensionality’. Only in recent yearsseveral approaches have been pro-
posed to overcome this problem. These methods basically rely on Monte Carlo simulation and
can be roughly divided into three groups. The first group directly employs a recursive scheme for
solving the stopping problem, known as backward dynamic programming. Different techniques
are applied to approximate the nested conditional expectations. The stochastic mesh method by
Broadie et al. (2000) and the least square regression methodof Longstaff and Schwartz (2001) are
among the most popular approaches in this group. An alternative to backward dynamic program-
ming is to approximate the exercise boundary by simulation,see e.g. Andersen (1999), Ibáñez and
Zapatero (2004). The third group relies on a dual approach developed in Rogers (2002), Haugh
and Kogan (2004), and in a multiplicative setting by Jamshidian (1997). For a numerical treatment
of this approach, see Kolodko and Schoenmakers (2004). By duality, tight price upper bounds may
be constructed from given approximative processes.

In this paper we survey a new policy iteration for discretized American options which was
recently introduced in Kolodko and Schoenmakers (2006) andBender and Schoenmakers (2006).

1Supported by the DFG Research Center MATHEON ‘Mathematics for Key Technologies’ in Berlin.

31



32 C. Bender et al.

The method is mending one of main drawbacks of backward dynamic programming: Suppose
exercise can take place at one out ofk time instances. Then, in order to obtain the value of
the optimal stopping problem via backward dynamic programming, one has to calculate nested
conditional expectations of orderk. No approximation of the time0 value is available prior to
the evaluation of thekth nested conditional expectations. This prevents the use of plain Monte
Carlo simulations for approximating the conditional expectations and requires more complicated
approximation procedures for these quantities. For instance, to employ the procedure of Longstaff
and Schwartz (2001), one has to choose the number of basis functions and the basis functions
themselves, i.e. the approximation procedure must be differently tailored to different derivatives.
Contrary, our policy iteration yields approximations of the time0 value of the value function for
every iteration step, which monotonically increase to the Snell envelope. This allows to calculate
some approximations of the Snell envelope by plain Monte Carlo simulations. The algorithm
converges in the same number of steps as backward dynamic programming does. So theoretically,
the algorithm is as good as backward dynamic programming.

After recalling the optimal stopping problem in section 2, we introduce our policy iteration
in section 3.1. Note, the policy iteration is different fromHoward (1960) policy iteration for
backward dynamic programming and can be shown to yield better approximations. Stability of
the policy improvement is discussed in section 3.2. It turnsout, that the shortfall of the perturbed
policy improvement under the theoretical policy improvement converges to zero. Surprisingly, the
distance need not convergence, so that the perturbed improvement can even perform better than the
theoretical. Section 4 is devoted to simulations. We evaluate the price of basket-put and maximum-
call on five assets, which has become a benchmark problem in recent years. The examples show
that tight approximations of the option prices can be achieved with a plain Monte Carlo simulation.

2. OPTIMAL STOPPING IN DISCRETE TIME

It is well known that by the no arbitrage principle the pricing of American options is equivalent to
the optimal stopping problem of the discounted derivative under a pricing measure. We now recall
some facts about the optimal stopping problem in discrete time.

Suppose(Z(i): i = 0, 1, . . . , k) is a nonnegative stochastic process in discrete time on a prob-
ability space(Ω,F , P ) adapted to some filtration(Fi : 0 ≤ i ≤ k) which satisfies

k∑

i=1

E|Z(i)| < ∞.

We may think of the processZ as a cashflow, which an investor may exercise once. The investors’
problem is to maximize his expected gain by choosing the optimal time for exercising. This prob-
lem is known as optimal stopping in discrete time.

To formalize the stopping problem we defineSi as the set ofFi stopping times taking values
in {i, . . . , k}. The stopping problem can now be stated as follows:

Find stopping timesτ ∗
(i) ∈ Si such that for0 ≤ i ≤ k

E

Fi
[Z(τ

∗
(i))] = esssupτ∈Si

E

Fi
[Z(τ)] . (1)
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The process on the right hand side is called theSnell envelopeof Z and we denote it byY ∗
(i).

We collect some facts, which can be found in Neveu (1975) for example.

1. The Snell envelopeY ∗ of Z is the smallest supermartingale that dominatesZ. It can be
constructed recursively by backward dynamic programming:

Y

∗
(k) = Z(k)

Y

∗
(i) = max{Z(i), E

Fi
[Y

∗
(i + 1)]}.

2. A family of optimal stopping times is given by

τ̃

∗
(i) = inf{i ≤ j ≤ k : Z(j) ≥ Y

∗
(j)}.

If several optimal stopping families exist, then the above family is the family of first optimal
stopping times. In that case

τ̂

∗
(i) = inf{i ≤ j ≤ k : Z(j) > Y

∗
(j)}

is the family of last optimal stopping times.

3. THE POLICY ITERATION

3.1. Definition of the improvement procedure

Suppose the buyer of the option chooses ad hoc a family of stopping times(τ(i) : 0 ≤ i ≤ k)

taking values in the set{0, . . . , k}. We interpretτ(i) as the time, at which the buyer will exercise
his option, provided he has not exercised prior to timei. This interpretation requires the following
consistency condition:

Definition 3.1 A family of integer-valued stopping times(τ(i) : 0 ≤ i ≤ k) is said to beconsis-
tent, if

i ≤ τ(i) ≤ k, τ(k) ≡ k,

τ(i) > i ⇒ τ(i) = τ(i + 1), 0 ≤ i < k.

Indeed, supposeτ(i) > i, i.e. according to our interpretation the investor has not exercised the
first right prior to timei + 1. Then he has not exercised the first right prior to timei, either. This
means he will exercise the first right at timesτ(i) andτ(i + 1), which requiresτ(i) = τ(i + 1). A
typical example of a consistent stopping family can be obtained by comparison with the still-alive
European options

τ(i) := inf

{
j : i ≤ j ≤ k, Z(j) ≥ max

j+1≤p≤k
E

Fj
[Z(p)]

}
. (2)

Given some consistent stopping familyτ we define a new stopping family by

τ̃(i) := inf

{
j : i ≤ j ≤ k, Z(j) ≥ max

j+1≤p≤k
E

Fj
[Z(τ(p))]

}
. (3)
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Note, the stopping familỹτ is consistent. In particular̃τ(k) = k, sincemax ∅ = −∞. We
call τ̃ a one-step improvementof τ for the following reason: denote byY (i; τ) the value process
corresponding to the stopping familyτ , namely

Y (i; τ) = E

Fi
[Z(τ(i))] .

Then the one-step improvement yields a higher value than thegiven family,

Y (i; τ̃) ≥ Y (i; τ).

This will be proved in theorem 3.2 below. We note that, for example, the stopping family based
on the maximum of still alive Europeans in (2) is the one-stepimprovement of the trivial stopping
family τ(i) = i.

It is natural to iterate this policy improvement: supposeτ0 is some consistent stopping family.
Define, recursively,

τm = τ̃m−1

Ym(i) = Y (i; τm).

It can be shown thatYm(i) coincides with the timei value of the Snell envelope whenm ≥

k− i. This means the policy improvement algorithm is theoretically as good as backward dynamic
programming, but admits to calculate increasing approximations of the Snell envelope at every
iteration step.

Remark 3.1 Given a consistent stopping familyτ , Y (0; τ) is always a lower bound ofY ∗
(0).

From this lower bound an upper bound can be constructed by a duality method developed by
Rogers (2002) and Haugh and Kogan (2004). Define,

Yup(τ) = E

[
max

0≤j≤k
(Z(j) − M(j))

]
, (4)

whereM(0) = 0 and, for1 ≤ i ≤ k,

M(i) =

i∑

p=1

(
Y (p; τ) − E

Fp−1
[Y (p; τ)]

)
.

Remark 3.2 Whenτ

∗ is some optimal stopping family, the supermartingale property of the Snell
envelope yields,

max

i+1≤p≤k
E

Fi
[Z(τ

∗
(p))] = E

Fi
[Y

∗
(i + 1)] .

Thus, the one-step improvement ofτ

∗ is the family of first optimal stopping times. This shows, the
latter family is the only fixed point of the one-step improvement.
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3.2. Stability

In practice, we cannot expect to know analytical expressions of the conditional expectations on the
right hand side of the exercise criterion in (3), but can onlycalculate approximations. Therefore, a
stability result is called for.

Given a consistent stopping familyτ and a sequence ofFi-adapted processesǫ(N)
(i) define

τ̃

(N)
(i) := inf

{
j : i ≤ j ≤ k, Z(j) ≥ max

j+1≤p≤k
E

Fj
[Z(τ(p))] + ǫ

(N)
(j)

}
.

The sequenceǫ(N) accounts for the errors when approximating the conditionalexpectation. We
suppose throughout this section that

lim

N→∞

ǫ

(N)
(i) = 0, P -a.s.

We will first show by some simple examples that we must neitherexpect

τ̃

(N)
(i) → τ̃ (i) in probability

nor
Y (0; τ̃

(N)
) → Y (0; τ̃).

Example (i) SupposeξN is a sequence of independent binary trials withP (ξN = 1) = P (ξN =

0) = 1/2. We define the process(Z(i) : i = 0, 1) by Z(0) = Z(1) ≡ 1. Theσ-field F0 = F1 is
the one generated by the sequence of trials. Moreover, the sequence of perturbations is defined by
ǫ

(N)
(0) = ξN/N andǫ

(N)
(1) = 0. Then, starting with any consistent stopping familyτ , we get

τ̃

(N)
(0) = ξN .

In particular, no subsequence ofτ̃

(N)
(0) converges in probability.

(ii) Let Ω = {ω0, ω1}, F the powerset ofΩ andP ({ω1}) = 1/4 = 1 − P ({ω0}). We define the
process(Z(i) : i = 0, 1, 2) by Z(0) = Z(2) = 2 andZ(1, ω0) = 1, Z(1, ω1) = 3. Fi is the
filtration generated byZ. We start with the stopping familyτ(i) = i. As E[Z(1)] = 3/2, we have

Z(0) = 2 ≥ max{3/2, 2} = max{E[Z(1)], E[Z(2)]} = Ŷ (0, τ).

Therefore,
τ̃ (0) = 0

and
Y (0; τ̃) = 2.

The perturbation sequenceǫ(N) is defined to beǫ(N)
(1) = ǫ

(N)
(2) ≡ 0 andǫ

(N)
(0) = 1/N . A

straightforward calculation shows, forN ≥ 2,

τ̃

(N)
(0, ω0) = 2, τ̃

(N)
(0, ω1) = 1.

Thus,
Y (0; τ̃

(N)
) = 9/4 > 2 = Y (0; τ̃),

which is the claimed violation of stability.

The example paints a rather sceptical picture of the stability of the one-step-improvement.
Indeed, the best we can now hope for, is
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(ia) there is a sequencēτ (N) of stopping families such that

|τ̃
(N)

(i) − τ̄

(N)
(i)| → 0 P -a.s.

and, for allN , τ̄

(N) is at least as good as̃τ , i.e.

Y (i; τ̄
(N)

) ≥ Y (i; τ̃ ).

(iia) The shortfall ofY (i; τ̃
(N)

) belowY (i; τ̃) converges to zeroP -a.s.

Note, however, that the convergence of the shortfall as in (iia) is the relevant question, not of the
distance as in example (ii), page 35: the shortfall corresponds to a change for the worse ofτ̃

(N)

compared tõτ . As we are interested in an improvement it suffices to guarantee that such a change
for the worse converges to zero. An additional improvement of τ̃

(N) compared tõτ due to the error
processesǫ(N) may be seen as a welcome side effect.

In the remainder of this section we sketch the proof of (ia) and (iia).

Theorem 3.1 The one-step improvement is stable in the sense of (ia) and (iia).

Remark 3.3 It clearly suffices to prove (ia). Indeed,

(
Y (i; τ̃

(N)
) − Y (i; τ̃ )

)
−
≤

(
Y (i; τ̃

(N)
) − Y (i; τ̄

(N)
)

)
−

+

(
Y (i; τ̄

(N)
) − Y (i; τ̃ )

)
−

.

By (ia) the second term vanishes and the first converges to zero due to dominated convergence.

In order to construct an appropriate familyτ̄

(N) we first derive a criterion for a consistent stopping
family τ̄ to be at least as good asτ̃ . To this end define,

τ̂(i) := inf

{
j : i ≤ j ≤ k, Z(j) > max

j+1≤p≤k
E

Fj
[Z(τ(p))]

}
.

Obviously,
τ̂(i) ≥ τ̃ (i).

Theorem 3.2 Supposeτ , τ̄ are consistent stopping families and

τ̃(i) ≤ τ̄ (i) ≤ τ̂(i). (5)

Then,

Y (i; τ̄) ≥ Y (i; τ̃ ) ≥ max

{
Z(i), max

p≥i
E

Fi
[Z(τ(p))]

}
≥ Y (i; τ).

Proof. The last inequality is trivial, sinceY (i; τ) = E

Fi
[Z(τ(i))]. To prove the other inequalities

we begin with a preliminary consideration. Define

Ỹ (i; τ) = max

p≥i
E

Fi
[Z(τ(p))]

Ŷ (i; τ) = max

p≥i+1
E

Fi
[Z(τ(p))] .
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Then,
Ỹ (i; τ) = 1{τ(i)>i}Ŷ (i; τ) + 1{τ(i)=i} max

{
Ŷ (i; τ), Z(i)

}
, (6)

since, by the consistency ofτ ,

E

Fi
[Z(τ(i))] = E

Fi
[
1{τ(i)=i}Z(i)

]
+ E

Fi
[
1{τ(i)>i}Z(τ(i + 1))

]

= 1{τ(i)=i}Z(i) + 1{τ(i)>i}E
Fi

[Z(τ(i + 1))] .

Step 1:

Y (i; τ̄) ≥ max

{
Z(i), max

p≥i
E

Fi
[Z(τ(p))]

}
(7)

by backward induction overi. The induction base is obvious, sinceτ(k) = τ̄(k) = k. Suppose
now0 ≤ i ≤ k−1, and that the assertion is already proved fori+1. Note,{τ̄(i) = i} ⊂ {τ̃ (i) = i}

by (5). Hence, we obtain on the set{τ̄(i) = i},

Y (i; τ̄) = Z(i) ≥ Ỹ (i; τ).

However, on{τ̄(i) > i} the induction hypothesis yields,

Y (i; τ̄ ) = E

Fi
[Z(τ̄ (i + 1))] = E

Fi
[Y (i + 1; τ̄)] ≥ E

Fi

[
Ỹ (i + 1; τ)

]

= E

Fi

[
max

i+1≤p≤k
E

Fi+1
[Z(τ(p))]

]
≥ max

i+1≤p≤k
E

Fi
[Z(τ(p))]

= Ŷ (i, τ).

Property (5) implies{τ̄(i) > i} ⊂ {τ̂(i) > i}. Thus, on{τ̄(i) > i},

Ŷ (i, τ) ≥ Z(i)

and, by (6),
Ŷ (i, τ) = Ỹ (i, τ) on{τ̄(i) > i}.

This completes the proof of step 1. The second inequality nowfollows from (7) with the particular
choiceτ̄ = τ̃ .

Step 2:It remains to show that
Y (i; τ̄) ≥ Y (i; τ̃ ).

For i = k even equality holds. Suppose0 ≤ i ≤ k−1 and the inequality is proved fori+1. Then,
on{τ̄(i) > i} ∩ {τ̃(i) > i},

Y (i, τ̄ ) = E

Fi
[Y (i + 1, τ̄)] ≥ E

Fi
[Y (i + 1, τ̃)] = Y (i, τ̃)

by induction hypothesis. On{τ̄ (i) > i} ∩ {τ̃(i) = i}

Y (i, τ̄ ) ≥ Z(i) = Y (i, τ̃ )

by step 1. Finally, the set{τ̄(i) = i} ∩ {τ̃ (i) > i} is evanescent by (5).
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Suppose, for the time being, the sequenceτ̃

(N)
(i) convergesP -a.s. to some stopping timēτ(i).

Clearly, τ̄ is, as a limit of consistent stopping families, itself a consistent stopping family. It can
be shown by backward induction overi, that τ̄ satisfies (5). Indeed, the basic idea is as follows.
Assumēτ (i) = i. Then, forN ≥ N0(ω) sufficiently large

τ̃

(N)
(i) = i,

i.e.
Z(i) ≥ max

i+1≤p≤k
E

Fj
[Z(τ(p))] + ǫ

(N)
(i).

We can now sendN to infinity and obtain

Z(i) ≥ max

i+1≤p≤k
E

Fj
[Z(τ(p))] ,

i.e.
τ̃ (i) = i.

Thus, on{τ̄(i) = i},
τ̃(i) ≤ τ̄ (i) ≤ τ̂(i).

A similar argument, making use of the induction hypothesis,yields the inequalities on{τ̄(i) > i}.
We can now definēτ (N)

= τ̄ and (ia) is satisfied.
Unfortunately, example (page 35) shows that we may not expect τ̃

(N)
(i) to converge in gen-

eral. Nonetheless, the previous considerations point to the right path. Forω such that̃τ (M)
(i; ω)

converges, we definēτ (N)
(i; ω) as this limit for allN . Otherwise, we definēτ (N)

(i; ω) = i, if and
only if a subsequence of̃τ (M)

(i; ω) converges toi andτ̃

(N)
(i; ω) = i. The intuition is, that in the

latter case we are free to choose the limit of any subsequencein order to obtain (5). So we choose
τ̄

(N)
(i; ω) as close as possible tõτ (N)

(i; ω).
This reasoning can be formalized as follows. Define,

τ̄

(N)
(k) = k

and

τ̄

(N)
(i) = i ⇐⇒ (τ̃

(M)
(i) > i for only finitely manyM)

∨ (τ̃
(M)

(i) = i for infinitely manyM andτ̃

(N)
(i) = i)

τ̄

(N)
(i) 6= i =⇒ τ̄

(N)
(i) = τ̄

(N)
(i + 1).

We have:

Lemma 3.3 τ̄

(N) satisfies (ia).

The details of the proof can be found in Bender and Schoenmakers (2006), theorems 4.2 and 4.3.
Stability of the algorithm, not only of one improvement stepis also proven in this paper.

Remark 3.4 Sinceτ̄ (N)
(i) ≤ τ̂(i), we obtain,

lim sup

N→∞

τ̃

(N)
(i) ≤ τ̂ (i).

On the other hand, the supermartingale property of the Snellenvelope yields

τ̂ (i) ≤ τ̂

∗
(i) = inf

{
j : i ≤ j ≤ k, Z(j) > E

Fj
[Y

∗
(j + 1)]

}
.

As τ̂

∗ is the family of ‘last optimal stopping times’, we may conclude that the sub-optimality of
τ̃

(N) (for largeN) basically stems from exercising to early.
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4. NUMERICAL EXAMPLES

We now illustrate our algorithm with two examples: Bermudanbasket-put and maximum-call
options on 5 assets. We assume, that each asset is governed under the risk-neutral measure by the
following SDE:

dSi(t) = (r − δ)Si(t)dt + σSi(t)dWi(t), 1 ≤ i ≤ 5,

where(W1(t), . . . , W5(t)) is a standard 5-dimensional Brownian motion. Suppose that an option
can be exercised atk + 1 datesT0, . . . , Tk, uniformly distributed betweenT0 = 0 andTk = 3(yr).
The discounted price of the option is given by (1) with

Z(i) = e

−rTi
(K −

S1(Ti) + · · · + S5(Ti)

5

)
+ for the basket-put option and

Z(i) = e

−rTi
(max{S1(Ti), . . . , S5(Ti)} − K)

+ for the maximum-call option.

For our simulation, we take the following parameter values,

r = 0.05, σ = 0.2, S1(0) = . . . = S5(0) = S0, K = 100,

δ = 0 for basket-put option, δ = 0.1 for maximum-call option.

We consider options ‘out-of-the-money’, ‘at-the-money’ and ‘in-the-money’ att = 0. For an initial
stopping family(τ(i) : 0 ≤ i ≤ k), we construct the lower boundY (0; τ), an improved lower
boundY (0; τ̃) with τ̃ given by (3), and the dual upper boundYup(0; τ) given by (4). A natural
‘intuitively good’ initial exercise rule is to exercise, when the cashflow is larger than the maximal
value of all still-alive European options:

τ(i) = inf{j ≥ i : Z(j) ≥ max

p≥j+1
E

Fj
Z(p)},

which is in fact a one-step improvement of the trivial exercise policyτ(i) ≡ i. For our exam-
ples, however, a closed-form expression for still-alive EuropeansEFj

Z(p), p > j does not exist.
Fortunately, a good closed-form approximation is available for the basket-put option. For the
maximum-call option we improve upon the exercise rule, suggested by Andersen (1999), Strategy
1. We will show that in all examples our method gives Bermudanprices with a relative accuracy
better than 1%.

4.1. Bermudan basket-put

In this example we approximate still-alive European options by a moment-matching procedure.
Let us definef(Tj) := (S1(Tj) + · · · + S5(Tj))/5 for 0 ≤ j ≤ k and takej, p with j ≤ p ≤ k.
First, we approximatef(Tp) by

fj(Tp) := f(Tj) exp

(
(rj −

1

2

σ

2
j )(Tp − Tj) + σj(W (Tp) − W (Tj))

)
,
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where the parametersrj andσj are taken in such a way that the first two moments off(Tp) and
fj(Tp) are equal conditionalFj:

rj = r,

σj =

1

Tp − Tj

ln





5∑
m,n=1

Sm(Tj)Sn(Tj) exp(1m=nσ

2
(Tp − Tj))

(

5∑
m=1

Sm(Tj))
2



 ,

see, e.g., Brigo et al. (2004), Lord (2005). Then, we approximateE

Fj
Z(p) by E

Fj
[e

−rTp
(K −

fj(Tp))
+
] using the Black-Scholes formula,

E

Fj
[e

−rTp
(K − fj(Tp))

+
] = e

−rTj
BS(f(Tj), r, σj, K, Tp − Tj),

and define the initial stopping family

τ(i) := {j ≤ i : Z(j) ≥ e

−rTj
max

j+1≤p≤k
BS(f(Tj), r, σj , K, Tp − Tj)}, 0 ≤ i ≤ k.

Note that the initial stopping family(τ(i) : 0 ≤ i ≤ k) leads already to a reasonable lower ap-
proximationY (0; τ) of the Bermudan price (less then 5% relative). The gap between the improved
lower boundY (0; τ̃) and dual upper boundYup(0; τ) does not exceeds 1% relative. See table 1,
where we used10

7 Monte Carlo trajectories forY (0; τ) and 2000 trajectories (with 1000 nested
trajectories) forYup(0; τ). To simulateY (0; τ̃) we use10

5 outer and 500 inner trajectories. An
obvious variance reduction is obtained by simulatingYup(0; τ) − Y (0; τ) andY (0; τ̃) − Y (0; τ)

rather thanYup(0; τ) andY (0; τ̃).

k S0 Y (0; τ) (SD) Y (0; τ̃) (SD) Yup(0; τ) (SD)

90 10.000(0.000) 10.000(0.000) 10.000(0.002)
3 100 2.156(0.001) 2.158(0.002) 2.162(0.001)

110 0.537(0.001) 0.537(0.001) 0.538(0.001)
90 10.000(0.000) 10.000(0.000) 10.000(0.002)

6 100 2.361(0.001) 2.395(0.004) 2.406(0.003)
110 0.571(0.001) 0.578(0.002) 0.578(0.001)
90 10.000(0.000) 10.000(0.000) 10.001(0.002)

9 100 2.387(0.001) 2.471(0.005) 2.490(0.006)
110 0.579(0.001) 0.594(0.002) 0.596(0.002)

Table 1: Bermudan basket-put on 5 assets

4.2. Bermudan maximum-call

In contrast to the previous example, no good approximationsare known for the still-alive maximum-
call Europeans. For this example we take as initial stoppingfamily strategy I of the Andersen
method (see Andersen (1999)):

τ(i) = inf{j ≥ i : Z(j) ≥ Hj}.
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The sequence of constantsHj is pre-computed using5 ·10
5 simulations. Note that the gap between

Andersen’s lower boundY (0; τ) and its dual upper boundYup(0; τ) varies from 2% to 4%, see
columns 3 and 5 in table 2 (we use5 · 10

6 Monte Carlo trajectories forY (0; τ) and 500 Monte
Carlo trajectories (with 1000 inner simulations forYup(0; τ) − Y (0; τ)). Further, we construct
the improvementY (0; τ̃) of Andersen’s lower bound using10

4 outer and 1000 inner simulations.
The results are compared with the 90% confidence interval of Broadie and Glasserman (2004)
computed by the stochastic mesh method, see table 2. We see that in almost all cases,Y (0; τ̃) and
Yup(0; τ) is within the 90% confidence interval, and that the gap between them does not exceed
1%.

Remark 4.1 The cross-sectional least square algorithm by Longstaff and Schwartz (2001) yields
results consistent with B-G: The lower bound reported in Longstaff and Schwartz (2001) ford = 9

and 19 basis functions are 16.657, 26.182, and 36.812, respectively. Slightly lower values are
reported in Andersen and Broadie (2004) with 13 basis functions.

90% Confidence
k S0 Y (0; τ) (SD) Y (0; τ̃) (SD) Yup(0; τ) (SD) interval by BG

90 15.702(0.008) 16.026(0.033) 15.986(0.021) [15.995, 16.016]

3 100 24.716(0.009) 25.244(0.044) 25.333(0.031) [25.267, 25.302]

110 34.856(0.011) 35.695(0.056) 35.745(0.037) [35.679, 35.710]

90 16.064(0.007) 16.394(0.080) 16.462(0.054) [16.438, 16.505]

6 100 25.171(0.009) 25.751(0.107) 25.978(0.066) [25.889, 25.948]

110 35.399(0.010) 36.329(0.131) 36.523(0.079) [36.466, 36.527]

90 16.202(0.007) 16.681(0.079) 16.734(0.063) [16.602, 16.710]

9 100 25.343(0.009) 26.118(0.110) 26.333(0.083) [26.101, 26.211]

110 35.605(0.010) 36.652(0.134) 37.028(0.100) [36.719, 36.842]

Table 2: Bermudan maximum-call on 5 assets

Concluding remarks

The iterative Monte Carlo procedures for pricing callable structures reviewed in this paper are
quite generic as in principle it only requires a Monte Carlo simulation mechanism for an under-
lying Markovian system, for instance a Markovian system of SDEs. Moreover, by incorporating
information obtained from another suboptimal method, for example Andersen’s method (see An-
dersen (1999)) or the method of Longstaff and Schwartz (2001), we may improve upon this method
to obtain our target results more efficiently.

The iterative procedures can be easily adapted to a large class of path-dependent exotic in-
struments where a call generates a sequence of cash-flows in the future. For these products one
may construct ‘virtual cash-flows’ which are basically present values of future cash-flows speci-
fied in the contract. An important example is the (cancellable) snowball swap, an exotic interest
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rate product with growing popularity. In Bender et al. (2005) this product is treated in the context
of a full-blown Libor market model (structured as in Schoenmakers (2005)). From this treatment
it will be clear how to design Monte Carlo algorithms for related callable path-dependent Libor
products.
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Abstract

In Borovkova et al. (2006), a new approach to valuation and hedging of basket options
was developed, based on a generalized family of lognormal approximating distributions. This
approach copes with possible negative values and negative skewness of a basket, and provides
closed formulae for the option price and the greeks. This paper is devoted to a comparative
simulation study of spread option pricing methods. We show that the Borovkova et al. (2006)
approach performs well in terms of the option pricing and delta hedging, compared to other ex-
isting approximation approaches. Moreover, it is suited tobaskets with several assets and with
negative weights: a situation where other analytical approximation methods are not applica-
ble. The analysis of the option’s vegas shows that the price of a spread option is a decreasing
function of the correlation and can decrease with the increase of individual volatilities – a
seemingly paradoxical phenomenon of negative vegas.

1. INTRODUCTION

A basket option is an option whose payoff depends on the valueof a basket, i.e., a portfolio of
assets. A basket value is the weighted sum of individual asset prices, and, even when these prices
have lognormal distribution, the basket value does not. This leads to difficulties in valuing and
hedging basket options, similar to those arising in valuingAsian options.

Studies from many other areas of science (see e.g. Aitchisonand Brown (1957), Mitchell
(1968), Crow and Shimizu (1988), Limpert et al. (2001)) suggested to approximate the sum of
lognormal random variables by the lognormal distribution,and have confirmed the high accu-
racy of such approximation. These results motivated the approach introduced in Borovkova et al.
(2006), which is based on a generalized lognormal approximation of the basket value. Such an ap-
proximation makes it possible to apply the Black-Scholes formula to get a closed form expression
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for the value of a basket option.
There is a major obstacle to approximating a general basket distribution by the lognormal dis-

tribution: a basket with negative weights can have negativevalues and negative skewness, some-
thing that the regular lognormal distribution cannot approximate. To overcome this obstacle, in
Borovkova et al. (2006) the basket distribution was approximated using the generalized family of
lognormal distributions: regular, shifted, negative regular or negative shifted lognormal. We shall
call this new approach theGeneralized Lognormal approach (GLN). These distributions approx-
imate the basket distribution remarkably well and capture the features of general baskets, such
as negative values and negative skewness, which cannot be captured using the regular lognormal
distribution.

Using these approximating distributions, the Black-Scholes formula can be applied to obtain
the option price and the greeks. The approach is easily implementable and it can deal with options
on baskets with several assets and negative weights: a situation where most other existing analytical
approximation approaches for pricing basket options cannot be applied.

A simplest basket with negative weights is a so-calledspread, i.e., a difference between two
asset prices. Several analytical approximation methods for pricing options on spreads were pro-
posed: the Bachelier’s method (applied by Shimko (1994)) and the Kirk’s method (inspired by the
classical paper of Margrabe (1978). A relatively new analytical approximation approach was pro-
posed by Carmona and Durrleman (2003a). In Carmona and Durrleman (2003b) a possibility to
extend their method to options on a linear combination of several assets was mentioned. However,
nowadays it can only deal with spread options.

In Borovkova et al. (2006), the GLN approach was compared to the Bachelier and Kirk methods
for spread options. A simulation study showed the GLN approach performs better than either of
these methods in terms of both option pricing and delta-hedging. A simulation study in Carmona
and Durrleman (2003b) also demonstrated the superiority ofthe Carmona method over the Kirk
and Bachelier methods. In this paper we are concerned with comparing the performance of the
GLN approach to the Carmona method.

In the next section, we review the GLN approach. Section 3 gives a short review of three other
analytical approximation approaches. Empirical analysisof analytical approximation approaches
is given in Section 4.

We consider baskets of futures on different (but related) commodities. Such basket options are
very common in commodity markets. We also assume that the futures in the basket and the basket
option mature at the same time. In practice, different commodity futures have different expiration
schedules, and a typical basket option matures just before the earliest expiring futures or forward
contract in the basket.

2. THE MODEL

Consider a basket ofN futures, whose pricesFi(t) follow correlated Geometric Brownian Motions.
The basket value at timet is given by

B(t) =

N∑

i=1

aiFi(t),
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whereai is the weight corresponding to the asseti.
A general basket with negative weights can have negative values, and the basket distribution

can be negatively skewed. Because of these features, the lognormal approximating distribution
cannot be used directly.

In Borovkova et al. (2006), we propose to approximate the basket distribution using the gen-
eralized family of lognormal distributions: regular, shifted, negative regular or negative shifted
lognormal. Recall that the probability density function (p.d.f.) of the regular log-normal distribu-
tion is given by

f(x) =

1

sx

√

2π

exp

(
−

1

2s
2
(log x−m)

2
)
, x > 0. (1)

If a random variableX has the (regular) log-normal distribution, then the randomvariableY =

X + τ has the shifted lognormal distribution and the random variableZ = −X has the negative
regular lognormal distribution. The combination of the shift and the reflection to they-axis gives
rise to thenegative shifted log-normal distribution. m is the scale,s is the shape andτ is the shift
parameter.

Recall that, under the risk-adjusted probability measure,the futures prices are martingales. Un-
der the assumption of Geometric Brownian Motion dynamics ofthe futures prices (and hence the
lognormality), the first three moments of the basket value onthe maturity dateT can be calculated.
In terms of the first three moments, the skewness of basket is

ηB(T ) =

E

[
B(T ) − EB(T )

]3

s

3
B(T )

, (2)

wheresB(T ) =

√
EB

2
(T ) − (EB(T ))

2 is the standard deviation of the basket value at timeT .
For shifted and negative shifted lognormal distributions,we can derive the first three moments

in terms of the parametersm, s, τ . The parameters of the appropriate approximating distribution
are estimated by matching the first three moments of the basket with the first three moments of the
appropriate log-normal distribution. This amounts to solving a nonlinear system of three equations
with three unknowns (m, s andτ ).

The skewness of basket distribution and the shift parameterplay the key role in choosing the
appropriate approximating distribution. Table 1 summarizes the choice of the approximating dis-
tribution for different parameter combinations.

Skewness η > 0 η > 0 η < 0 η < 0

Shift parameter τ ≥ 0 τ < 0 τ ≥ 0 τ < 0

Approximating distribution regular shifted negative neg.shifted

Table 1: Choice of the approximating distribution

Note that in the caseη > 0, τ ≥ 0 our approach reduces to the Wakeman method (Turnbull
and Wakeman (1991)), who approximate the distribution of a basket with positive weights by the
lognormal distribution. If the basket distribution is assumed to be regular lognormal, then the
basket option can be valued using the Black-Scholes formula(or in our case Black (1976)). For
general baskets, the problem of pricing an option must be reduced to that simple case.
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Let the basket 1(B1(t)) be (regular) log-normally distributed with parametersm, s. Further-
more, suppose that the basket 2(B2(t)) has the following relationship with the basket 1:

B2(t) = B1(t) + τ

whereτ is a constant. The distribution of basket 2 must be shifted log-normal with parameters
m, s, τ. On the maturity dateT , the payoff of a call option on basket 2 is

(
B2(T ) −X

)+
=

(
(B1(T ) + τ) −X

)+
=

(
B1(T ) − (X − τ)

)+
.

This is the payoff of a call option on the basket 1 with the samematurity dateT and the strike price
(X − τ), and such a call option can be valued by the Black’s formula.

Using an analogous argument, we value a basket option using anegative lognormal distribution
(see Borovkova et al. (2006)). Valuation of a basket option using a negative shifted lognormal
distribution can be considered as a combination of valuation of a basket option with the shifted
and negative regular lognormal distributions.

These arguments lead to the following closed form formulae for the price of a call option on a
basket with the strike priceX and time of maturityT . EverywhereM1(T ) andM2(T ) denote the
first two moments of the basket on the maturity dateT , Φ(·) is the cumulative distribution function
of the standard normal distribution, andd2 = d1 − V .

• Using the shifted log-normal approximation

c = e

−rT
[
(M1(T ) − τ)Φ(d1) − (X − τ)Φ(d2)

]
(3)

where d1 =

log(M1(T ) − τ) − log (X − τ) +
1
2
V

2

V

V =

√

log

(
M2(T ) − 2τM1(T ) + τ

2

(M1(T ) − τ)
2

)

• Using the negative log-normal approximation

c = e

−rT
[
−XΦ(−d2) +M1(T )Φ(−d1)

]
(4)

where d1 =

log(−M1(T )) − log (−X) +
1
2
V

2

V

V =

√

log

(
M2(T )

(M1(T ))
2

)

• Using the negative shifted log-normal approximation

c = e

−rT
[
(−X − τ)Φ(−d2) + (M1(T ) + τ)Φ(−d1)

]
(5)

where d1 =

log(−M1(T ) − τ) − log (−X − τ) +
1
2
V

2

V

V =

√

log

(
M2(T ) + 2τM1(T ) + τ

2

(M1(T ) + τ)
2

)

In Borovkova et al. (2006), the closed formulae for the greeks are also derived.
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3. OTHER ANALYTICAL APPROXIMATIONS

We shall compare the GLN approach to several analytical approximation approaches for spread
option valuation. Note, however, that the GLN approach is not restricted to spread options, while
other methods are.

Under the risk adjusted probability measure , the call pricec on a spread
(
F2(t) − F1(t)

)
at

time 0, with time of maturityT and strikeX, is given by :

c = e

−rT
E

(
F2(T ) − F1(T ) −X

)+

.

Several methods have been introduced to value spread options. The Bachelier method assumes the
distribution of the spread can be approximated by the normaldistribution. This allows for negative
spread values, but not for a negative skewness. As a result, option prices obtained by the Bachelier
method are often significantly different from the real option prices or those obtained by Monte
Carlo simulation. The closed formula of a call price on a spread at time 0, with time of maturityT
and strikeX, is given by :

c

B
= e

−rT

[
F2(0) − F1(0) −X

]
Φ(d) + V

B
ϕ(d)

where

d =

e

−rT
(
F2(0) − F1(0) −X

)

V

B

V

B
= e

−rT

√
F

2
2 (0)

(
e

σ2

2
T
− 1

)
− 2F1(0)F2(0)

(
e

ρσ1σ2T
− 1

)
+ F

2
1 (0)

(
e

σ2

1
T
− 1

)

ϕ(·) is the probability density function of the standard normal distribution.
Another, more successful approximation method, is suggested by Kirk (1995), who replaced

the difference of asset prices by the ratio, and adjusted thestrike price. The closed formula of a
call price on a spread at time 0, with time of maturityT and strikeX, is given by :

c

K
= e

−rT

[
F2(0)Φ(d1) −

(
F1(0) +X

)
Φ(d2)

]

where

d1 =

log

(
F2(0)

F1(0)+X

)

V

K
+

1

2

V

K

d2 =

log

(
F2(0)

F1(0)+X

)

V

K
−

1

2

V

K

V

K
= e

−rT

√

σ

2
2T − 2ρσ2σ2T

(
F1(0)

F1(0) +X

)
+ σ

2
2T

(
F1(0)

F1(0) +X

)2

.
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A relatively new approach is proposed by Carmona and Durrleman (2003a). There, a good
overview of spread options is given, and precise lower bounds are proposed to approximate spread
option prices. The closed formula of a call price on a spread at time 0 with the time of maturityT
and the strikeX is given by :

c

C
= e

−rT

[
F2(0)Φ

(
d

∗
+ σ2

√

T cos(θ
∗
+ φ)

)
− F1(0)Φ

(
d

∗
+ σ1

√

T cos(θ
∗
)

)
−XΦ(d

∗
)

]

whereθ∗ is a solution of following equation corresponding to the maximum :

−

1

σ2

√
(T ) cos(θ + φ)

log

[
−σ1X sin(θ)

F2(0)

(
σ2 sin(θ + φ) − σ1 sin(θ)

)
]
−

1

2

σ2

√

T cos(θ + φ)

=

1

σ1

√
(T ) cos(θ)

log

[
−σ2X sin(θ + φ)

F1(0)

(
σ2 sin(θ + φ) − σ1 sin(θ)

)
]
−

1

2

σ1

√

T cos(θ)

d

∗
=

−1

σ

√

T cos(θ
∗
− ψ)

log

[
F2(0)σ2 sin(θ

∗
+ φ)

F1(0)σ1 sin(θ
∗
)

]
−

1

2

(
σ2

√

T cos(θ
∗
+ φ) − σ2

√

T cos(θ
∗
)

)

φ = arccos(ρ);ψ = arccos(

σ1 − ρσ2

σ

); σ =

√
σ

2
1 − 2ρσ1σ2 + σ

2
1.

However, there is a fundamental problem with the above equation: for certain (realistic) combi-
nations of spread parameters, its solution does not exist, and hence, it is not clear how to apply
the method proposed in Carmona and Durrleman (2003a). For such spreads the Carmona method
cannot be applied directly.

4. SIMULATION STUDY

We apply our approach to a number of hypothetical spreads andbaskets, such that all possible
approximation distributions occur. We do not consider a regular normal approximating distribution
since it reduces to the Wakeman method. The parameters of thetest spreads are given in Table 2
and the call option prices on spreads are given in Table 3. Forall spreads and baskets, the interest
rate (r) is 3% per-annum and the time of maturity (T ) is one year.

Our main motivation comes from basket options in energy markets, where typically assets have
high volatilities and high correlations. However, we also apply our approach to a basket with a low
correlation (spread 2) and low volatilities (spreads 2 and 3) to investigate the performance of our
approach for low correlations and low volatilities as well.In all spreads and baskets, the options
are almost in-the-money. The Monte Carlo simulation is repeated 1000 times for each spread (or
basket), to obtain the means and standard errors of call prices (which are given in parenthesis in
the last row of Table 3).

Simulation results in Table 3 show that both the Carmona and the GLN methods perform very
well. The prices obtained by the Carmona method are slightlycloser to those obtained by Monte
Carlo. Note, however, that the GLN method also performs wellfor the basket consisting of three
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Spread 1 Spread 2 Spread 3 Basket 4 Basket 5

Futures priceF0 [100,110] [120,100] [200,50] [95,90,105] [100,90,95]
Volatility σ [0.2,0.3] [0.15,0.1] [0.1;0.15] [0.2,0.3,0.25] [0.25,0.3,0.2]
Weightsa [-1,1] [-1,1] [-1,1] [1,-0.8,-0.5] [0.6,0.8,-1]

Correlationρ ρ1,2=0.9 ρ1,2=0.2 ρ1,2=0.8 ρ1,2=ρ2,3=0.9 ρ1,2=ρ2,3=0.9
ρ1,3=0.8 ρ1,3=0.8

Strike priceX 10 -20 -140 -30 35
Skewnessη η > 0 η < 0 η < 0 η < 0 η > 0

Shift parameterτ τ < 0 τ < 0 τ > 0 τ < 0 τ < 0

Table 2: Basket parameters

assets with negative weights (basket 4 and 5). The prices arealmost everywhere within 95 %
Monte Carlo confidence bounds, except for the spread 1. The deltas (w.r.t. the prices of futures 1
and 2) and vegas (w.r.t.σ1, σ2 and correlationρ) for the spreads 1, 2 and 3 at time 0 are given in
Table 4.

Method Spread 1 Spread 2 Spread 3 Basket 4 Basket 5

GLN 6.7440 7.2643 1.9576 7.7587 9.0264
(shifted) (neg. shifted) (neg.regular) (neg.shifted) (shifted)

Carmona 6.7075 7.2560 1.9566 - -
Kirk 6.7099 7.2350 1.5065 - -

Bachelier 7.0004 7.3054 2.1214 - -
Monte Carlo 6.7091 7.2521 1.9594 7.7299 9.0222

(0.0126) (0.0098) (0.0045) (0.0095) (0.0151)

Table 3: Call option prices

Next, we investigate the performance of our method on the basis of delta-hedging the option,
and compare it with Carmona method. We generate price paths of the basket assets from the time
of writing the option until maturity, and on each hypothetical day we calculate the option’s deltas
with respect to each asset. We then re-adjust daily the hedging portfolio according to the deltas.
We define the hedge error as the difference between the optionprice and the discounted hedge cost
(i.e. the cost of maintaining the delta-hedged portfolio).If the hedging scheme works perfectly,
the hedge cost would be exactly equal to the theoretical option price and the hedge error would be
zero. In practice it is not zero due to the model error and discrete (e.g. daily) hedging. We expect
the hedge error and its standard deviation to decrease when the hedge interval decreases, i.e. when
hedging is done more frequently.

We investigate the delta-hedging performance for our approach on a spread option with para-
metersF0 = [100, 110], σ = [0.1, 0.15], a = [−1, 1], ρ = 0.9,X = 10, r = 3% per-annum and the
time to maturityT one year. The spread distribution is approximated using a shifted lognormal. In
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spread 1 spread 2 spread 3
greeks GLN approach Carmona GLN approach Carmona GLN approach Carmona

delta -0.4573 -0.4599 -0.4639 -0.4548 -0.2200 -0.2200
0.5149 0.4815 0.5274 0.4713 0.2226 0.2063

vega -20.6582 -21.5671 39.6771 39.5018 55.4916 55.5976
36.4075 36.6710 14.0768 13.1539 -8.3683 -8.4689
-15.2418 -14.7080 -3.7561 -3.7017 -2.9813 -3.0064

Table 4: Deltas and Vegas
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Figure 1:Left: Hedge error vs. hedge interval for a spread call optionusing GLM approach and Carmona
method. Right: Hedge error vs. hedge interval for a basket call option consisting of 3 assets with negative
weights, the GLN approach.

the left plot of figure 1 we show the ratio of the hedge error standard deviation to the call price vs.
the hedge interval. The figure shows that for both the GLN approach and the Carmona method, this
ratio (and so, the standard deviation of the hedge error) decreases together with the hedge interval,
as we expect. In this example the mean hedge error is approximately the same (around 7%) for
daily hedging for both methods. But the ratio obtained by theGLN approach is a slightly lower
than that obtained by the Carmona method.

We also investigate the delta-hedging performance of the GLN approach for a basket consisting
of 3 assets, one with positive and two with negative weights,with parametersF0 = [100, 90, 105],
σ = [0.2, 0.3, 0.25], a = [1,−0.8,−0.5], ρ1,2 = ρ2,3 = 0.9, ρ1,3 = 0.8 X = −30, r = 3% per-
annum and the time to maturity (T ) is one year. We use a negative shifted lognormal distribution
to approximate the basket distribution. The ratio of the hedge error standard deviation to the call
price vs. the hedge interval shown is shown in the right of plot of Figure 1. The result is similar to
that of the spread option in the previous example. For this basket, the mean of the hedge error is
4.8% for daily hedging.

Characteristic features of option vegas for spread optionsare different from the Black-Scholes
model. Carmona and Durrleman (2003b) showed that the price of a spread option is a decreasing
function of the correlation parameter. They also demonstrated on an example that the volatility
vegas can be negative as well as positive. It means that the call price does not necessarily increase
with increasing individual volatilities. The GLN approachapplied to the spread option with para-
metersF0 = [110, 100], a = [−1, 1], r = 3%, T = 1 year,σ = [0.3, 0.2] (left figure), ρ = 0.9
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andX = −10 (middle and right figures) demonstrates the same phenomena, as shown in Figure
2. The observations are similar to those obtained by the Carmona method.
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Figure 2: Left: Correlation vega vs. correlations and strike prices.Middle: Volatility vega w.r.t.σ1 for
different volatilitiesσ1 andσ2. Right: Volatility vega w.r.t.σ2 for different volatilitiesσ1 andσ2.

5. CONCLUSION AND FUTURE WORK

Simulation studies on a number of hypothetical spreads showed that the Generalized Lognormal
approach for valuing and hedging spread options, suggestedby Borovkova et al. (2006) performs
well, and its performance is comparable to the method proposed by Carmona and Durrleman
(2003a). Moreover, the GLN approach has several advantagesover the Carmona method, such
as its applicability to baskets more general than two-assets spreads. A closed formula for the op-
tion price is derived by applying the Black-Scholes (or Black) formula, which is easy to implement
and easy to be understand by practitioners, who are familiarwith the Black-Scholes model. Appli-
cation of the GLN approach to spread options confirms ’the negative vega’ phenomenon, reported
by Carmona and Durrleman (2003a).

In this paper we considered baskets of futures contracts. The GLN approach can be easily
extended to baskets of physical commodities, as those considered by Carmona and Durrleman
(2003a). The extension of the GLN approach to physical commodity baskets will be reported
shortly.

An important feature of energy markets is that most deliverycontracts are priced on the basis
of an average price over a certain period. Hence, most energyderivatives (also basket and spread
options) are Asian-style. So Asian basket options (that is,an Asian option on a basket of assets)
need to be considered as well. Extension of our approach for valuation and hedging of Asian
basket option is a topic of ongoing research.
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Abstract

This work presents a reduced-form credit risk model driven by pure-jumps Ornstein-Uhlenbeck
(OU) process. We analyse the case of the Gamma and Inverse Gaussian OU processes and
show that the default probability can be expressed in closed-form through the characteristic
function of the integrated OU process. The model is calibrated to a series of real-market credit
default swap term structures. Results are compared with thewell known cases of Poisson and
CIR dynamics. We finally price a digital default put and show that models with pretty similar
survival probabilities result in sometimes different option prices.

1. INTRODUCTION

Credit risk models are usually classified into two categories: structural models and reduced-form
models. In structural models an event of default is defined interms of boundary conditions on
the asset value process. The first structural models date back to Merton (1974) and Black and
Cox (1976) but a lot of modifications/extentions can be foundin the literature (e.g. Leland (1994),
Leland (1995), Madan et al. (1998), Cariboni and Schoutens (2004)). On the other hand, the
reduced form approach models directly the default intensity and defines the time of default as the
first jump-time of a counting process. The first example is given by the Jarrow and Turnbull (1995)
model, who considered a constant default intensity. Subsequent generalizations allow for time-
dependent or stochastic default intensities. In this latter case, the corresponding counting process
is called a Cox-process. Duffie and Singleton (1999) developed a basic affine model, which allows
for jumps in the hazard dynamics.

This work introduces a reduced-form model where the intensity of default follows a Ornstein-
Uhlenbeck (OU) process. Under this assumption, we show thatthe survival probability of the
obligor can be expressed in terms of the characteristic function of the integrated OU process. We
consider the special cases of the Gamma-OU and Inverse Gaussian-OU (IG-OU) processes, where
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the characteristic function of the integrated process is available in closed-form. This allow to easily
estimate the survival probability and price a broad class ofcredit derivatives.

We calibrate the model on a series of real Credit Default Swaps (CDS) term structures. For
comparison purpose, we also calibrate intensity models based on the Poisson, inhomogeneous
Poisson, and CIR dynamics. Once the models are calibrated, we price a digital default put and
show that two models with pretty similar default probabilities and both almost perfectly calibrated
on the market structures, can result in sometimes differentoption prices.

In the next section, we introduce the basic background on OU processes, concentrating on the
Gamma and Inverse Gaussian OU processes. Section 3 presentsour reduced-form OU default
model. We then introduce CDS and link CDS spreads to the integrated OU process. The last part
of section 3 presents the results of the calibration exercises and the pricing of the digital default
put. The last section concludes.

2. ORNSTEIN-UHLENBECK PROCESSES

An OU processy = {yt, t ≥ 0} (see e.g. Barndorff-Nielsen and Shephard (2001a), Barndorff-
Nielsen and Shephard (2001b), Barndorff-Nielsen and Shephard (2003), Sato and Yamazato (1982))
is described by the following stochastic differential equation:

dyt = −ϑytdt + dzϑt, y0 > 0 (1)

whereϑ is the arbitrary positive rate parameter andzt is a subordinator, i.e. a Lévy process with
no Brownian component, nonnegative drift and only positiveincrements. The processzt is known
as Background Driving Lévy Process (BDLP).

The processyt is strictly stationary on the positive half-line, i.e. there exists a lawD, called
the stationary law, such thatyt will follow D for everyt, if y0 is chosen according toD (yt is thus
calledD-OU process). In particular, given a one-dimensional distributionD there exists aD-OU
process if and only ifD is self-decomposable (for definition see Sato (1999)).

An important related process will be the so called integrated OU process (intOU)Y = {Yt, t ≥

0}:

Yt =

∫ t

0

ysds.

One can show (see Barndorff-Nielsen and Shephard (2001a)) that for giveny0,

log E[exp(iuYt)|y0] = ϑ

∫ t

0

k(uϑ

−1
(1 − exp(−ϑ(t − s))))ds

+iuy0ϑ
−1

(1 − exp(−ϑt)),

wherek(u) = kz(u) = log E[exp(−uz1)] is the cumulant function ofz1.
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2.1. The Gamma-Ornstein-Uhlenbeck Process

The Gamma(a, b)-OU process has as BDLP a compound Poisson process:

zt =

Nt∑

n=1

xn

whereN = {Nt, t ≥ 0} is a Poisson process with intensitya and{xn, n = 1, 2, . . . , Nt} is a
sequence of independent identically distributed Exp(b) variables. It turns out that the Gamma-OU
process has a finite number of jumps in every compact time interval. Its stationary law is given by
a Gamma(a, b) distribution:

fGamma (x; a, b) =

b

a

Γ(a)

x

a−1
exp(−xb), x > 0,

which immediately explains the name.
For the Gamma-OU process, the characteristic function of the intOU process is given in closed-

form by:

φGamma-OU (u, t; ϑ, a, b, y0) = E[exp(iuYt)|y0]

= exp

(
iuy0

ϑ

(1 − e−ϑt
) +

ϑa

iu − ϑb

(
b log

(
b

b − iuϑ

−1
(1 − e−ϑt

)

)
− iut

))
. (2)

2.2. The Inverse Gaussian-Ornstein-Uhlenbeck Process

The Inverse Gaussian (IG(a, b)) density function is given by:

fIG(x; a, b) =

a

√

2π

exp(ab)x
−3/2

exp(−(a
2
x

−1
+ b

2
x)/2), x > 0.

This IG(a, b) is self-decomposable and hence an IG-OU process exists. TheBDLP of a
IG(a, b)-OU process is a sum of two independent Lévy processesz = {zt = z

(1)
t + z

(2)
t , t ≥ 0}.

z

(1) is an IG-Lévy process with parametersa/2 andb, while z

(2) is of the form:

z

(2)
t = b

−1
Nt∑

n=1

v

2
n,

whereN = {Nt, t ≥ 0} is a Poisson process with intensity parameterab/2. {vn, n = 1, 2, . . .} is a
sequence of independent identically distributed random variables: eachvn follows a Normal(0, 1)

law independent from the Poisson processN . The IG-OU process jumps infinitely often in every
interval viaz

(1).
The characteristic function of the integrated IG-OU process can also be given explicitly (see

e.g. Nicolato and Venardos (2003)):

φIG-OU(u, t; ϑ, a, b, y0) = E[exp(iuYt)|y0]

= exp

(
iuy0

ϑ

(1 − exp(−ϑt)) +

2aiu
bϑ

A(u, t)

)
, (3)
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where

A(u, t) =

1 −

√
1 + κ(1 − exp(−ϑt))

κ

(4)

+

1

√

1 + κ

[
arctanh

(√
1 + κ(1 − exp(−ϑt))

√

1 + κ

)
− arctanh

(
1

√

1 + κ

)]
,

κ = −2b
−2iu/ϑ.

3. THE INTENSITY OU-MODEL

Reduced-form models assume an event of default to occur at the first jump of a counting process
M = {Mt, t ≥ 0}. The corresponding intensity of defaultλ = {λt, t ≥ 0} represents the
instantaneous default probability:

λ(t) = lim

h→0

P [τ ∈ (t, t + h]|τ > t]

h

, (5)

whereτ is the default time. The dynamics of the default intensity determine the credit quality of
the corresponding asset.

We assume that the default intensity follows the Gamma-OU1 or the IG-OU process introduced
in the previous section. The dynamics are thus given by Equation (1):

dλt = −ϑλtdt + dzϑt, λ0 > 0.

The time of defaultτ is defined as the first jump ofMt:

τ = inf[t ∈ R
+
| Mt > 0].

The implied survival probability from0 to t, P (t), is given by:

P (t) = P [Mt = 0]

= P [τ > t]

= E

[
exp

(
−

∫ t

0

λsds

)]
(6)

= E [exp (−Yt)]

= φOU(−i, t; ϑ, a, b, y0),

whereφOU(−i, t; ϑ, a, b, y0) is the characteristic function of the intOU process evaluated at point
u = i. Equations (2) and (3) are used to evaluate the survival probability in the cases of the
Gamma-OU and IG-OU processes.

1Note that the Gamma-OU case can be rephrased as a special caseof the basic affine model introduced by Duffie
and Singleton (1999).
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3.1. Calibration of the model on CDS term structures

Credit Default Swaps (CDS) are derivatives that provide thebuyer an insurance against the default
of a company in exchange for (continuous) predetermined payments. The payments continue until
the maturity of the contract, unless a default event occurs.In this case, the buyer delivers a bond
on the underlying defaulting asset in exchange for its face value.

The price of a CDS with maturityT is given by the difference between the discounted spread
and the loss payments:

CDS = (1 − R)

(
−

∫ T

0

exp(−rs)dP (s)

)
− c

∫ T

0

exp(−rs)P (s)ds,

whereR is the recovery rate,r the risk free rate andP (t) is the survival probability up to timet.
The par spreadc∗ that makes this price equals to zero is:

c

∗
=

(1 − R)

(
−

∫ T

0
exp(−rs)dP (s)

)

∫ T

0
exp(−rs)P (s)ds

=

(1 − R)

(
1 − exp(−rT )P (T ) − r

∫ T

0
exp(−rs)P (s)ds

)

∫ T

0
exp(−rs)P (s)ds

. (7)

The closed-form expressions available for the survival probabilities in the cases of the Gamma and
IG-OU dynamics allow to easily estimatec∗.

We calibrate the Gamma and IG-OU models to the CDS term structures (T1 = 1y, T2 = 3y,
T3 = 5y, T4 = 7y, andT5 = 10y years) of the Itraxx Europe Index as of the 13th of December
2005. In this exercise we have setr = 0.03 andR = 0.4 for all the assets. In the calibrations we
minimize the root mean square error (rmse):

rmse =

√√√√
∑

CDS prices

(Market CDS price− Model CDS price)2

number of CDS prices
.

The cpu time required to calibrate our OU-model to all the 125CDS term structures is around one
minute.

For comparison purposes, the capabilities of the OU model are tested by calibrating on the
same term structures the following models:

1. the Homogeneous Poisson (HP) model (Jarrow and Turnbull (1995)), where the default in-
tensity is constant;

2. the Inhomogeneous (INH) Poisson model with piecewise constant default intensity

λt = Kj , Tj−1 ≤ t < Tj , j = 1, 2, . . . , 5;

3. the Cox-Ingersoll-Ross (CIR) model (Cox et al. (1985)), where the default intensity is sto-
chastic:

dλt = κ(η − λt)dt + ϑ

√
λtdWt.
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To compare the overall quality of the fits, we compute for eachmodel the average absolute
error as a percentage of the mean price (ape):

ape =

1

mean CDS price

∑

CDS

|Market CDS price− Model CDS price|
number of CDS prices
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Figure 1: Distributions of the average absolute error as a percentage of the mean CDS price for the
calibrated models.

Figure 1 plots the distributions of theape for each model. Results for the inhomogeneous
Poisson dynamics are not reported, since a perfect match is obtained between market and model
prices (see below).

In the following, we concentrate on two companies,ABN AMROandTDC. Similar results are
obtained for all the other assets. Figures 2 and 3 plot the default probabilities (left plots) and the
calibrated term structures (right plots). The figures highlight the failure of the HP model to match
market data. The IHP model can match the market data but the behavior of the term structure is
clearly unreliable, due to the piecewise constant assumption. The CIR, Gamma-OU and IG-OU
models can all be nicely calibrated to market data. Figure 1 shows that, overall, the Gamma-OU
dynamics outperforms the other two. Table 1 list market and models prices together with the values
of thermse.
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Figure 2: Estimated default probabilities and term structures for ABN AMRO Holding.
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Figure 3: Estimated default probabilities and term structures for TDC.
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Company 1y 3y 5y 7y 10y rmse
ABN AMRO Market 3 7 8 11 15

Model HP 9 9 9 9 9 8.95
Model IHP 3 7 8 11 15 —
Model CIR 4 7 9 11 14 2.10
Model GOU 4 7 9 11 14 1.62
Model IGOU 3 7 9 11 14 1.66

TDC Market 50 158 266 299 329
Model HP 221 221 221 221 221 230.41
Model IHP 50 158 266 299 329 —
Model CIR 127 206 250 277 299 99.44
Model GOU 105 174 235 286 345 68.616
Model IGOU 89 178 242 288 334 51.10

Table 1: Results of the calibrations on CDS term structures (in bp).

3.2. Pricing of Digital Default Put and Model Risk

The calibrated models are finally used to price a Digital Default Put (DDP) with maturityT and
payoff1 at default. If default occurs at any timeτ < T , the owner of a DDP receives a unit payoff.
The price of such an instrument at timet < τ is given by Schönbucher (2003):

D(t) = E

[∫ T

t

λ(s)exp

(
−

∫ s

t

(r(u) + λ(u))du

)
ds

]
. (8)

We estimateD(t) using Monte Carlo simulation (sample sizeN = 10 000). Figure 4 plots the
prices forAMRO (left plot) andTDC (right plot). We concentrate here on the prices obtained
with CIR, Gamma-OU and IG-OU dynamics, which best fit market data. Despite of the similar
calibration results, the DDP prices for very low (1y) and very high (10y) times to maturity can
be rather different. For intermediate time horizons some differences still exist but are less pro-
nounced. If we focus onTDC, the maximum relative difference is obtained when comparing 1y

prices (around30% when comparing CIR and OU). Finally, although the calibrated CDS patterns
are almost coincident, the same order of magnitude for the relative differences in DDP prices is
obtained forABN AMRO(around12% when comparing IG-OU and CIR). This happens because of
the path-dependence of the DDP price, which is not captured by the default probability behavior.

4. CONCLUSIONS

We have introduced a reduced-form credit risk model where the dynamics of the default intensity is
described by a Gamma or Inverse Gaussian Ornstein-Uhlenbeck process. Under this assumption,
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Figure 4: Price of the digital default put on ABN AMRO Holding(left plot) and TDC (right plot).

the survival probability has been expressed in closed-formusing the characteristic function of the
integrated process. We have shown that this allows to easilyestimate the par spread of a CDS.

We have calibrated the model on the 125 CDS constituting the Itraxx Europe Index. The cal-
ibration of the model is quite fast: in one minute a standard pc station can calibrate the model to
the complete set of 125 CDS. The Ornstein-Uhlenbeck model has been compared with the homo-
geneous and inhomogeneous Poisson models and with the Cox-Ingersoll-Ross dynamics. Results
have shown that while homogeneous and inhomogeneous Poisson models fail in replicating real
market structures, the CIR, Gamma-OU and IG-OU models can benicely calibrated to market data.
Generally, the Gamma-OU model outperforms the other two models in terms of mean squared dif-
ference between model and market prices.

After the calibrations, the models have been used to price a digital default put through Monte
Carlo simulation. Despite of the similar calibration results, the option prices have sometimes
resulted to be different (up to30% of relative difference between e.g. the CIR and the Gamma-OU
prices). This happens because of the path-dependence of thedigital default put price, which is not
captured by the default probability behavior.
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P.J. Schönbucher.Credit derivatives pricing models. Wiley Finance, 2003.



STOP-LOSS PREMIUM BOUNDS ON MARKOV MARTINGALE PROCESSES

Cindy Courtois† and Michel Denuit†§
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§Institut de Statistiques, Université catholique de Louvain, Voie du Roman Pays 20, B-1348 Louvain-
la-Neuve, Belgium
Email: courtois@stat.ucl.ac.be

Abstract

In this paper, we deal with an incomplete market framework ina discrete time model. In
actuarial science as well as in finance, the pricing of most products are based on some under-
lying stochastic process. Here, use is made of the theory of stochastics-convex orderings and
their respective extrema to find the extrema (minimum and maximum) for these underlying
processes in incomplete markets. For example, the previousmethod can provide an analytic
approach to the evaluation of aggregate claims models and the closely related stop-loss insur-
ance.

As an application, we study the pricing problem of contingent claims of stop-loss type in
the context of incomplete markets. As an illustration, the binomial and trinomial models are
studied in detail. So, to calibrate the price of these products, our method leads to the computing
of bounds within an incomplete market framework.

1. INTRODUCTION

Stochastic orderings are probabilistic tools to compare random variables or random vectors. Math-
ematically speaking, they are partial order relations defined on sets of probability distributions.
Many papers have been devoted to the derivation of bounds in some stochastic order on a given
random variableS. These bounds use some information about the random variable S, like mo-
ments, support, unimodality, etc. Relying onextremawith respect to some order relation, the
actuary acts in a conservative way by basing his decisions onthe least attractive risk that is con-
sistent with the incomplete available information. The extrema correspond to the “worst” and the
“best” risk. See, e.g., Denuit et al. (1999a) and the references therein.

In this paper, we will use the convex order, defined as follows: given two random variablesS
andT , S is said to be smaller thanT in the convex order, denoted asS �cx T , if the inequality

65
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E[φ(S)] ≤ E[φ(T )] holds for all the convex functionsφ : R → R, provided the expectations exist.
The intuitive meaning ofS �cx T is thatS is less variable thanT . The multivariate version of
�cx is easily obtained by considering convex functionsφ : R

n
→ R. However, this ordering does

not allow for interesting applications (so that we will rather consider in this paper�cx-inequalities
among linear combinations of the components of the random vectors to be compared, as explained
below).

In this paper, we consider multiplicative discrete-time processes{Xn, n = 1, 2, . . .} obtained
as follows. Starting from a sequence{Yn, n = 1, 2, . . .} of positive independent random variables,
we define recursively theXn’s as

Xn+1 = XnYn+1, n = 1, 2, . . .

with X1 = Y1. Such a process can be seen as a multiplicative random walk with relative increaseYn

at timen. It is widely used in finance to model the price of financial instruments (whereXn is the
exponential of some process with independent increments).Our aim is to derive lower and upper
bounds on the process{Xn, n = 1, 2, . . .} in the sense that any positive linear combination of the
Xn’s is bounded in the convex order by the corresponding linearcombinations of the components
of the extremal processes. This is similar to the works by Koshevoy and Mosler (1996 1997 1998)
where orderings between random vectorsX andY defined bya1X1 + a2X2 + · · · + anXn �cx

a1Y1 + a2Y2 + · · · + anYn for all constantsa1, a2, . . . , an are studied.
The results derived in this paper are applied to discrete-time contingent claims pricing models.

The underlying assets are assumed to follow a discrete-timeprocess and trading only takes place
at some prespecified dates. In this paper, we consider an incomplete market framework, so that
the risk-neutral probability measure is not unique and we are in presence of a class of risk-neutral
measures. The aim is thus to find the risk-neutral probability measures that imply the lower and
upper bounds on the price of the claim and that are elements ofthe class of admissible prices.
Examples within a trinomial model (i.e. a model where the change in the value of the stock between
two trading times can attain three different values) are discussed.

The connection between the papers devoted to extremal distributions that appeared in the actu-
arial literature and financial pricing in incomplete markets is as follows. The class of risk-neutral
probability measures is considered as a class of distributions with fixed support and first moment.
Then, extremal elements are identified within the set of risk-neutral distributions, leading to bounds
on the prices of contingent claims. This bridge between actuarial risk theory and financial mathe-
matics seems to be promising.

The paper is organized as follows. The extremal processes are built in Section 2. Section 3
describes the application to financial pricing in the trinomial model. Numerical illustrations are
provided there. The final Section 4 concludes.

2. EXTREMAL PROCESSES

2.1. Definitions

Let us denote asY −

i andY

+
i two positive random variables such thatY

−

i �cx Yi �cx Y

+
i holds for

all i. Assume for instance that the support ofYi is in [ai, bi] and thatE[Yi] = µi. Then if we define
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the random variablesY −

i andY

+
i asY

−

i = µi almost surely, and

Y

+
i =






ai with probability
bi − µi

bi − ai

,

bi with probability
µi − ai

bi − ai

,

we haveY

−

i �cx Yi �cx Y

+
i . Other choices for the�cx-bounds are possible, according to the

amount of information available about theYi’s (support, moments, unimodality, ageing notions,
etc.). See, e.g., Courtois and Denuit (2005) and the references therein.

All the random variablesY1, Y2, . . . , Y
−

1 , Y

−

2 , . . . , Y

+
1 , Y

+
2 , . . . are assumed to be independent.

Starting fromX

−

1 = Y

−

1 andX

+
1 = Y

+
1 , we define the extremal processes{X

−

n , n = 1, 2, . . .}

and{X+
n , n = 1, 2, . . .} by X

−

i = X

−

i−1Y
−

i andX

+
i = X

+
i−1Y

+
i for i = 2, 3, . . ..

2.2. Convex ordered marginals

We expect that a convex ordering holds betweenX

−

i , X

+
i andXi. To prove that this is indeed the

case, we will need the following useful lemma.

Lemma 2.1 Let T1, T2, Z1, Z2 be independent and positive random variables such thatT1 �cx T2

andZ1 �cx Z2. Then,T1Z1 �cx T2Z2 holds.

Proof. Let φ be a convex function, and let us denote asFT1
, FT2

, FZ1
andFZ2

the distribution
functions ofT1, T2, Z1 andZ2, respectively. From

E[φ(T1Z1)] =

∫
∞

0

E[φ(tZ1)]dFT1
(t)

≤

∫
∞

0

E[φ(tZ2)]dFT1
(t) sinceZ1 �cx Z2

=

∫
∞

0

E[φ(T1z)]dFZ2
(z)

≤

∫
∞

0

E[φ(T2z)]dFZ2
(z) sinceT1 �cx T2

= E[φ(T2Z2)],

we conclude that the announced�cx-inequality indeed holds.
We are now ready to prove the next result that shows that the processes{X−

n , n = 1, 2, . . .},
{Xn, n = 1, 2, . . .} and{X+

n , n = 1, 2, . . .} have indeed�cx-ordered univariate marginals.

Proposition 2.2 The stochastic inequalitiesX−

i �cx Xi �cx X

+
i hold for all i.

Proof. Let us prove the announced result using an iterative argument. The result is obviously
true for i = 1, since it reduces toY −

1 �cx Y1 �cx Y

+
1 . Now, assume that the result holds for



68 C. Courtois and M. Denuit

i = 1, 2, . . . , n and let us prove it forn + 1. Let us apply Lemma 2.1 in our setting. Taking
T1 = T2 = X

−

n andZ1 = Y

−

n+1, Z2 = Yn+1, we get

X

−

n Y

−

n+1 = X

−

n+1 �cx X

−

n Yn+1.

Now, takingT1 = T2 = Yn+1 andZ1 = X

−

n , Z2 = Xn, we have

X

−

n Yn+1 �cx XnYn+1 = Xn+1.

We then conclude thatX−

n+1 �cx Xn+1 by transitivity. The proof ofXn+1 �cx X

+
n+1 follows along

the same lines.

2.3. Convex ordered linear combinations

Let us now prove that any positive linear combination of theXi’s is bounded from below and from
above in the�cx-sense by the same combination of theX

−

i ’s and of theX+
i ’s.

Proposition 2.3 Whatever the positive constantsα1, . . . , αn, the stochastic inequalities

n∑

j=1

αjX
−

ij
�cx

n∑

j=1

αjXij �cx

n∑

j=1

αjX
+
ij

hold for anyi1 < i2 < · · · < in and integern.

Proof. We only prove the stochastic inequality
∑n

j=1 αjX
−

ij
�cx

∑n
j=1 αjXij ; the reasoning to

establish
∑n

j=1 αjXij �cx
∑n

j=1 αjX
+
ij

is similar. The result is obviously true forn = 1. Let us
first establish the result forn = 2. To this end, let us write

α1X
−

i1
+ α2X

−

i2
= X

−

i1

(
α1 + α2Y

−

i1+1 . . . Y

−

i2

)

α1Xi1 + α2Xi2 = Xi1

(
α1 + α2Yi1+1 . . . Yi2

)
.

SinceY

−

i1+1 . . . Y

−

i2
�cx Yi1+1 . . . Yi2 and since�cx is closed under changes of scale and origin,

Lemma 2.1 then givesα1X
−

i1
+ α2X

−

i2
�cx α1Xi1 + α2Xi2, as announced. Now, let us assume that

the result holds forn and let us establish it forn + 1. First, note that

α1X
−

i1
+ · · ·+ αn+1X

−

in+1
= α1X

−

i1
+ · · · + X

−

in

(
αn + αn+1Y

−

in+1 . . . Y

−

in+1

)
.

The recurrence relation ensures that, givenY

−

in+1 . . . Y

−

in+1
= t, the stochastic inequality

α1X
−

i1
+ · · ·+ X

−

in

(
αn + αn+1t

)
�cx α1Xi1 + · · ·+ Xin

(
αn + αn+1t

)

holds true. SinceY −

in+1 . . . Y

−

in+1
is independent from bothX−

i1
, . . . , X

−

in
andXi1 , . . . , Xin, the�cx-

inequality also holds unconditionally, so that we get

α1X
−

i1
+ · · ·+ αn+1X

−

in+1
�cx α1Xi1 + · · ·+ Xin

(
αn + αn+1Y

−

in+1 . . . Y

−

in+1

)

�cx α1Xi1 + · · ·+ Xin

(
αn + αn+1Yin+1 . . . Yin+1

)

sinceY

−

in+1 . . . Y

−

in+1
�cx Yin+1 . . . Yin+1

. This ends the proof.
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3. APPLICATIONS TO THE TRINOMIAL MODEL FOR STOCK PRICES

3.1. Description of the model

In the trinomial asset pricing model, we begin with an initial stock priceS0 = 1. There are three
possible numbers,d, 1 andu, with 0 < d < 1 < u, such that at the next period, the stock price will
be eitherdS0, S0 or uS0. Typically, we taked andu to satisfy0 < d < 1 < u, so change of the
stock price fromS0 to dS0 represents adownwardmovement, and change of the stock price from
S0 to uS0 represents anupwardmovement. Therefore, at each time step, the stock price either
goes up by a factoru or down by a factord or does not move.
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Figure 1:100 trajectories of the trinomial process.

Let {Sn, n = 0, 1, . . .} be the stock price process andr be the risk-free interest rate. We also
assume thatd < 1 and1 + r < u (no arbitrage opportunities). This process falls into the scope
of this paper sinceSn+1 can be obtained as the product of the previous stock priceSn timesJn+1,
where theJn’s are independent and identically distributed random variables, taking the valuesd, 1
oru. Figure 1 describes 100 typical trajectories of the trinomial process withu = 1.1, d = 0.9. The
physical probabilities associated with the downward (d), stationary (1) and upward (u) movements
are respectively equal to 10%, 51.26% and 38.74% as in Hull (2002).

The financial pricing of contingent claims is not made under the physical (or historical) prob-
ability distribution, but well under the risk-neutral one.Recall that arisk-neutral probability mea-
sureis a measure that agrees with thephysical probability measureabout which price paths have
zero probability, and under which the discounted prices of all primary assets are martingales. The
condition for the model to be free of arbitrage opportunities is the existence of a risk-neutral prob-
ability measure and the price is then obtained by taking the expectation of the discounted payoff
under such a measure.

If there exist claims that are not attainable, then the market is said to beincomplete. In this
case there are infinitely many risk-neutral measures. The trinomial model is known to be incom-
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plete. The spaceP of all risk-neutral probability measures is taken such thatunder all risk-neutral
probability measures̃P, the discounted stock price process{

Sn

(1+r)n , n = 0, 1, . . .} is a martingale
with respect to the natural filtration, i.e.

EeP [ Sn+1

(1 + r)
n+1

∣∣∣S0, S1, . . . , Sn

]
=

Sn

(1 + r)
n

for anyP̃ ∈ P.

3.2. The setP of risk-neutral probability measures

Let us denote asXn the discounted stock price, that is,Xn =
Sn

(1+r)n , starting fromX0 = S0. The
process{Xn, n = 1, 2, . . .} admits the representationXn = Xn−1Yn with

(1 + r)Yn =






d with probabilityp̃2,

1 with probabilityp̃1,

u with probabilityp̃3.

By convention,X1 = Y1.
Within the trinomial model, every risk-neutral probability measurẽP corresponds to a triplet

(p̃1, p̃2, p̃3) of positive real numbers satisfying̃p1+ p̃2+ p̃3 = 1, where the risk-neutral probabilities
p̃1, p̃2 and p̃3 are respectively associated with a stationary (1), downward (d) and upward (u)
movement of the stock price process. The classP of risk-neutral probability measures can then be
identified with the set of admissible triplets.

All the risk-neutral probability measures, henceforth denoted asP̃ = (p̃1, p̃2, p̃3), must be
equivalent to the historical measure (in the sense that the set of events that have probability0 under
P̃ is the same as the set of events that have probability0 under the physical measureP) and such
thatEeP[Xn+1|Xn] = Xn for all n. So(p̃1, p̃2, p̃3) have to verify the following system

{
p̃1 + p̃2 + p̃3 = 1

p̃2 · d + p̃1 · 1 + p̃3 · u = 1 + r

with 0 < p̃i < 1 (i = 1, 2, 3). This is equivalent to say that all risk-neutral probability measures
(p̃1, p̃2, p̃3) must be such that̃p1 = 1−

r
u−1

− p̃2
u−d
u−1

andp̃3 =
r

u−1
+ p̃2

1−d
u−1

with 0 < p̃2 <

u−(1+r)
u−d

.

3.3. Extremal price processes

Denuit and Lefèvre (1997) and Denuit et al. (1999b) derived�cx-bounds on random variables
valued in{0, 1, . . . , n}. These extremal distributions can be generalized to the case of random
variables valued in an arbitrary setEn = {e0, . . . , en}, with e0 < e1 < · · · < en, in the spirit
of Denuit et al. (1999c). Specifically, consider a random variable S valued inEn with meanµ.
Defining

S

disc
min =






ek with probability
ek+1 − µ

ek+1 − ek

,

ek+1 with probability
µ − ek

ek+1 − ek

,
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whereek ∈ En−1 is such thatek < µ ≤ ek+1, and

S

disc
max =






e0 with probability
en − µ

en − e0

,

en with probability
µ − e0

en − e0

,

we haveSdisc
min �cx S �cx S

disc
max. Knowing thatEeP[Yn] = 1 for all n, we see easily that the random

variablesY −

n andY

+
n such that the stochastic inequalitiesY

−

n �cx Yn �cx Y

+
n hold true are defined

by

(1 + r)Y
−

n =






1 with probability
u − (1 + r)

u − 1

,

u with probability
r

u − 1

,

and

(1 + r)Y
+
n =






d with probability
u − (1 + r)

u − d

,

u with probability
(1 + r) − d

u − d

.

The processes{X−

n , n = 1, 2, . . .} and{X+
n , n = 1, 2, . . .} are then defined byX−

n = X

−

n−1Y
−

n

andX

+
n = X

+
n−1Y

+
n , starting fromX

−

1 = Y

−

1 andX

+
1 = Y

+
1 .

The stochastic processes{X−

n , n = 1, 2, . . .} and{X+
n , n = 1, 2, . . .} are trinomial models

with probabilities associated to(1, d, u) being respectively
(

u−(1+r)
u−1

, 0,
r

u−1

) (
0,

u−(1+r)
u−d

,

(1+r)−d

u−d

)
.

These two sets of probabilities do not correspond to risk neutral measures (since the support is not
the physical one). The two extremal processes are obtained by letting the probability associated
to d (i.e. p̃2) converging to its minimal and maximal possible values (i.e. 0 and u−(1+r)

u−d
). Figure 2

describes100 trajectories of the minimal and the maximal processes withu = 1.1, d = 0.9.

3.4. Numerical results

3.4.1. EUROPEAN CALL OPTION

The owner of a European call option has the right to buy a stockfor K (strike price) at a certain
future timeN . We denote byS0 the current value of the stock price and we make the assumption
that the considered stock price follows a trinomial model with N periods of time. Considering̃P
in the setP of risk-neutral probability measures, a possible price of this European call is given by

1
(1+r)N EeP[(SN − K)+]. Every possible price satisfies

1

(1 + r)
N

EeP[(S−

N − K)+] ≤

1

(1 + r)
N

EeP[(SN − K)+] ≤

1

(1 + r)
N

EeP[(S+
N − K)+],

where

EeP[(S−

N − K)+] =

N∑

i=0

(
N

i

)(
r

u − 1

)i(
u − (1 + r)

u − 1

)N−i

(S0u
i
− K)+
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Figure 2:100 trajectories of the extremal trinomial process.

and

EeP[(S+
N − K)+] =

N∑

i=0

(
N

i

)(
(1 + r) − d

u − d

)i(
u − (1 + r)

u − d

)N−i

(S0u
i
d

N−i
− K)+.

Table 1 displays the bounds obtained on the call price for different maturities and strike prices.
As in Hull (2002), we consideru = 1.1 andd = 0.9. The annual risk-free rate is12%. A period of
time corresponds to3 months. The range of possible values for the price of the calloption is not
too large.

N K Minimum Maximum

3 months 0.95 0.07653785 0.0938558

1 0.02793458 0.0625706

1.05 0.01396729 0.0312853

6 months 0.95 0.1023344 0.1191295

1 0.0550888 0.0822166

1.05 0.0318363 0.0626412

1 year 0.95 0.1517857 0.1714171

1 0.1071429 0.1383014

1.05 0.0740133 0.1136681

2 years 0.95 0.2426658 0.2610702

1 0.2028061 0.2318204

1.05 0.1655976 0.2042068

Table 1: Bounds on the price of a European call option.
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3.4.2. ASIAN CALL OPTION

An arithmetic Asian call option with exercice dateN , exercice priceK andM averaging dates

generates a pay-off
(

1
M

∑M−1
i=1 SN−i − K

)

+
. This contingent claim is traded at time0 for a price

1

(1 + r)
N

EeP [( 1

M

M−1∑

i=1

SN−i − K

)

+

]

whereP̃ is in the setP of all risk-neutral probability measures. For a comprehensive background
on Asian option prices, the reader is referred, e.g., to Simon et al. (2000), Vanmaele et al. (2006)
and the references therein.

As a numerical illustration, we consider the same parametervalues as for the European call.
Moreover, the averaging dates are taken to be all the dates during the life of the option (including
maturity), i.e.M = N . Results are displayed in Table 2. The bounds displayed in Table 2 are
computed by simulation using10 000 random generations (standard errors attached to these ap-
proximations are also given). Again, the intervals of admissible prices is not too large.

N K Minimum Std Error Maximum Std Error

6 months 0.95 0.08853629 0.0487% 0.1018841 0.0847%

1 0.04004108 0.0483% 0.07083054 0.0660%

1.05 0.01814324 0.0309% 0.04076772 0.0488%

1 year 0.95 0.1103681 0.0579% 0.1251327 0.1045%

1 0.06580303 0.0585% 0.09112557 0.0926%

1.05 0.0352885 0.0456% 0.06358178 0.0780%

2 years 0.95 0.152037 0.0733% 0.1629523 0.1391%

1 0.1114088 0.0738% 0.1301361 0.1278%

1.05 0.07566844 0.0684% 0.1022506 0.1161%

Table 2: Bounds on the price of an Asian call option.

4. DISCUSSION

In this paper, extremal elements in the class of risk-neutral probability measures are investigated,
leading to bounds on the prices of contingent claims. This promising approach also leaves some
open questions. It is well-known that improvements of the�cx-bounds are possible when the
underlying distributions are unimodal (and are given by mixtures of uniform distributions). See,
e.g., Denuit et al. (1999a). Unimodality is often satisfied under the physical probability measure.
An interesting question could be to investigate the possible transmission of unimodality to the class
of risk-neutral distributions. The same problem could be investigated with ageing notions.
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Of course, alternative approaches could be investigated. For instance, convex bounds on the
conditional distributions could be derived. From the definition of the process{Xn, n = 1, 2, . . .}

we see thatE[Xn+1|X1, . . . , Xn] = XnE[Yn+1]. If E[Yn] = 1 for all n (as it is usually the case
in the financial applications, after a suitable change of measure) thenE[Xn+1|X1, . . . , Xn] = Xn.
The idea is then to construct the extremal processes from theextremal conditional distributions
from the knowledge of the support(a, b) and the conditional meanXn.
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Portfolio Management and Modelling Department, DEXIA S.A., Brussels, Belgium
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Abstract

The concept of economic capital (EC) refers to the amount of capital a financial institution is
supposed to set aside in order to prevent that its net asset value fall below a certain ‘catastrophic
level’. One then associatesEC with the idea of a protection buffer for unexpected losses that
might be incurred by the conglomerate. Traditionally one defines theEC with a certain confi-
dence level (say 99.95%) of the loss distribution. The problem we will address is the compu-
tation of the total credit risk component of the economic capital and how to allocate it among
the different entities of a financial conglomerate. The entities might be seen as business lines,
portfolios or even whole institutions of a financial conglomerate. The model used to generate
the loss distribution uses Monte Carlo (MC) simulation. Forthe time being, there are several
models currently available in the literature for the allocation of theEC of a conglomerate
among its different Business Lines. In this presentation wewill present numerical results of a
comparison between the main approaches, enlightening the drawbacks and advantages of each
of them.

1. INTRODUCTION

The concept ofeconomic capital(EC) refers to the amount of capital a financial institution is
supposed to set aside in order to prevent its net asset value falling below a certain level that would
have an impact on its normal operation. It is supposed to function as a buffer for any unexpected
losses (ULs) that might be incurred by the institution.

On the regulatory side the Basel II framework has forced banks to use methodologies that
link EC allocation techniques with risk. In addition, supervisorswill be closely monitoring the
procedures the banks will have put in place to deal with economic capital on Banking Super-
vision (BCBS). Moreover the increasing competition and itspressure on business margins have

1corresponding author
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brought up the problem of efficientEC allocation among the different entities and business linesof
a financial conglomerate. Directly related to the problem ofefficientEC allocation is the problem
of measuring the diversification benefits and risk adjusted contributions for individual positions
and business lines taking into account the whole portfolio.

Several approaches have been proposed to calculate risk contributions at position and entity
levels. Tasche (2004) for example shows that the only suitable way to measure performance is
by defining a risk contribution as the derivative of the risk measure in the direction of the asset
weight. Kalkbrener et al. (2004) on the other hand compares the expected shortfall measure with
the classically usedV aR/CoV ar approach. A derivation ofEC allocation and risk measures is
the paper of Dhaene et al. (2003). Additionally issues relating comonotonicity andEC allocation
is treated in Dhaene et al. (2004). Recently Goovaerts et al.(2005) proposed an algorithm in which
one uses both the whole loss distribution of the portfolio and the standalone distributions of the
individual sub-portfolios to allocateEC. The problem this paper proposes to address is the one
of comparing some of the different methodologies largely used in practice by market participants
for allocatingEC among the different entities of a financial conglomerate. Given the complexity
of the task behind this work this paper should be seen as the first on a series of research articles in
which the end goal is to present an approach for using such a system for active credit ALM portfolio
management. In this scope a full discussion of the methodologies with a detailed explanation of
the differences on the portfolios and positions levels is out of the scope of this article.

The paper will be structured as follows. In section 2 and section 3 we describe the portfolio
model used and some of the different risk measures used in themarket respectively. In section 4
we test those measures in a typical banking portfolio and give comments on the differences. In
section 5 we conclude the article with a résumé of the differences and give a hint of the results of
the forthcoming research.

2. THE PORTFOLIO MODEL

In order to be as realistic as possible with what is done in practice we have made our analysis on a
one-period framework using a model (see Gupton et al. (1997)for details) commonly adopted by
practitioners that also includes ratings migrations. In such a model the credit portfolio will consist
of bonds whose returnsYi are given by:

Yi = α

2∑

j=1

βjZj +

√

1 − α

2
ξi (1)

with α representing the average correlation between the bonds andthe systematic risk factors
((Z1, Z2): the market) which we suppose to be two: an industry and a country; andξi being the
idiosyncratic risk term (N (0, 1): unidimensional gaussian distributed with mean zero and standard
deviation one). The loss distribution of the portfolio willbe given by:

L =

n∑

i=1

Li (2)
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with the individual lossesLi given by one year forward changes in prices of each position due to
rating migrations.

The rating migrations are determined using a standard Gaussian copula algorithm for the sys-
tematic factors and a standard uni-dimensional Gaussian for the idiosyncratic factor. The correla-
tion between the market factors have been taken from the equity markets as explained in de Servi-
gny and Renault (2003)2. The transition probability matrix (TPM) is a historical one and some
standard adjustments have been done in order to compensate for some ratings incoherences.

3. ECONOMIC CAPITAL AND RISK MEASURES

Once the portfolio loss distribution has been determined one then uses risk measures for determin-
ing the unexpected loss and the allocation of the economic capital.

Assume a loss distribution defined byL and a certain quantileα. The credit value at risk
(cV aR) and the expected shortfall (ES) associated with the quantile are defined respectively as:

cV aRα(L) = inf{x > 0|P (L ≤ x) ≥ α} (3)

ESα(L) = EP [L|L > cV aRα(L)]. (4)

Below we will define approaches using standard risk measuresthat are largely used in practice
for allocating economic capital. Assume the conglomerate is comprised ofn sub-portfolios whose
allocations we want to determine. The approaches we will be comparing in this paper are the
following:

a) V aR/CoV ar: although largely used by practitioners this approach is typical for the case of
Gaussian loss distribution. In this approach the allocatedcapital of a certain sub-portfolio
will be given by:

ECi(α) =

cov{L, Li}

σ

2
T

· ECT (α) (5)

whereLi and L are the losses of sub and the total portfolio respectively. And σ

2
T and

ECT (α) are the total portfolio loss variance and theEC for the total portfolio (assumed
to becV aRα(L)).

b) Pro-RatacV aR: In this approach one uses the standalonecV aRα of each sub-portfolio as a
weight in the allocation of the total risk3:

ECi(α) =

cV aRα(Li)∑
cV aRα(Li)

cV aRα(L). (6)

c) Basel II: in this approach we use the relative proportionsresulted from the Basel II formulas
to allocatecV aR. Assume for example thatBsli is the regulatory capital of portfolioi then

2In our case we have used the equity correlations given by Portfolio Risk Tracker (PRT) from S&P.
3As measured by the totalcV aR that takes into account the whole correlation structure of the portfolio
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the allocated capital for portfolioi will be given by:

ECi(α) = cV aRT ∗ Bsli/(

n∑

i=1

Bsli). (7)

The principle behind this approach is to keep Basel II proportions forEC allocation.

d) Marginal Optimization of TotalcV aRα (see Goovaerts et al. (2005)): the idea is to search
on the standalone loss distribution of each sub-portfolio the quantile for which the addition
of thecV aRα of the sub-portfolios would equal the totalcV aR of the whole portfolio. One
then searches the quantileβ on the standalone loss distribution of the sub-portfolios such
that:

β = inf{β
′
∈ [0, 1] :

n∑

i=1

cV aRβ′(Li) ≥ cV aRα(L)} (8)

thenECi(α) is defined as
ECi(α) = cV aRβ(Li). (9)

e) CreditV aR Contribution via Expected Shortfall: In this approachcV aR is allocated us-
ing the concept of Expected Shortfall contribution. The Expected shortfall contribution is
defined by:

ESβ(Li) = EP [Li|Li > cV aRβ(Li)]. (10)

The allocation is then given by:

ECi(α) =

ESβ(Li)

ESβ(L)

cV aRα(L). (11)

Observe that the quantiles for thecV aRα and for theESβ do not need to be the same. For
example a bank might have itscV aRα depending on a quantileα of (say) 99.97% while
allocating it following a quantileβ of 99%. I.e. portfolios that are more risky would need
more capital. Such decisions are strategic and depend on thepolicy of the bank.

f) Expected Shortfall that equalscV aRα: in this approach we will be looking at theES quantile
that equals thecV aR. Then the allocation will be done using theES. Assume for example
that:

β = inf{β
′
∈ [0, 1] : ESβ′(L) ≥ cV aRα(L)}. (12)

In this way:
ECi(α) = ESβ(Li) (13)

Observe that the main objective of this approach is to eliminate the problem thatcV aR is a
non-additive measure (see Artzner et al. (1999) for details).

The results of the experiment will be given in function of thediversification benefit (DB)of a
portfolio and it is defined as:

DBT = 1 − ECT /(

n∑

i=1

ECi) (14)

whereECT is the total economic capital for the whole portfolio andcV aRα(Li) is the standalone
cV aR of the portfolioi composed byn sub-portfolios. TheDB is a measure of the diversification
gain one has when the sub-portfolios are put together in one large portfolio.
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4. THE RESULTS

For the tests that follow we have selected 5 portfolios of different sizes, compositions and con-
centrations. The portfolios chosen have in general good quality and we have made them quite
concentrated to show problems practitioners may face. The compositions of the different portfo-
lios in terms of average rating, average maturity and concentration factor (defined as the percentage
of issuers with 50% of the portfolio) are shown in table 1. We show the standalonecV aR99.97% of
each portfolio (it is given as a percentage of the totalcV aR99.97% of the whole portfolio).

In terms of sector concentrations we have build the portfolios P1 up to P5 with securities from
mainly four sectors (financials, sovereigns, utilities, and some ABS’s (not more than 10% of this
class)) while portfolio P6 contains ABS’s only. When comparing the sub-portfolios, P6 is the most
diversified sub-portfolio.

Avg Dur(yr) Rating CF Amount(%) Std-AloneV aR

P1 13 AA 5 43.3 36.5
P2 7 A+ 7 35.4 56.3
P3 11 A+ 11 5.4 13.3
P4 1 AA- 9 10.3 15.6
P5 30 AA 3 5.1 8.7
P6 5 AAA 30 0.5 0.4

Table 1: Composition of the Different Portfolios.

In the present analysis, one used the Moody’s transition probability matrix adjusted for some
rating imperfections. The correlation function is the one derived using equity returns. The correla-
tion is the one that comes from PRT (Portfolio Risk Tracker)), a credit risk system comercialized
by S&P (see de Servigny and Renault (2003) for more details).The systematic factor used, was
calculated via regression using equity data and in this study we will be using 50% for that factor
(although the market factor has proved to be quite lower than45% we have been using 50% for a
question of prudence). The result of the tests (in terms ofDB) for the different methodologies is
shown in table 2.

P1 P2 P3 P4 P5 P6
a)V aR/CoV aR 1.8 19.0 48.9 82.8 -0.10 83.3
b) ProRataV aR 23.5 23.5 23.5 23.5 23.5 23.5
c) Basel II 27.0 7.1 36.7 72.7 6.0 64.1
d) Marg. Opt. 15.0 18.7 28.9 46.1 15.7 20.7
e) cV aR contr 11.6 13.3 48.7 75.6 6.1 76.2
f) ES contr 20.2 10.5 48.7 62.0 14.1 80.0

Table 2: Diversification benefit ofEC allocation using different measures.

A first observation is about theV ar/CoV ar approach. As already reported elsewhere it can
lead to a capital allocation that is higher than its standaloneV aR and in some very special cases
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even higher than the whole amount of the portfolio. An example of it can be seen in the case of
sub-portfolio P5.

The simple ProRata approach has the characteristic of dividing equally the DB among the sub-
portfolios independent of the correlation within the sub-portfolios. As it is seen for sub-portfolio
P6 this approach can have a negative impact on small sub-portfolios that would present ideal di-
versification characteristics with respect to the remaining portfolio. The Basel II approach has also
the characteristic of simplicity (as the numbers are anywayavailable in the internal systems of
most banks). The problem with this approach is that the correlation underlying Basel II formulas
does not necessarily represent the correlation among the sub-portfolios under study (see e.g. the
allocation given by theES contrib. approach).

The Marginal Optimization uses the standalone loss distribution for allocation and that distrib-
ution does not take into account the correlation among the sub-portfolios. This is again evidenced
by the allocation given to sub-portfolio P6. ThecV ar and theES contribution approaches account
quite well the DB brought by sub-portfolio P6.

ThecV aR contribution methodology permits one to transfer risk among the sub-portfolios in
a way that risk generated in low risk sub-portfolio is allocated to a higher risk one. Although it
brings up the issue that the quantile used for allocation (99% in our case) is certainly arbitrary and
certainly depends on management decisions. TheES contribution has the problem that one does
not know in advance which quantile (β in the equation (12)) one will need to take, implying that
one will need to make a couple of simulations to determine it (what can be time consuming).

The first three approaches have the advantage of simplicity at the cost of loosing important
insights when allocating the DB. The Marginal Optimizationmethod represents an increase in
mathematical complexity. For communication purposes within subsidiaries and business lines
it can be quite convenient: the standaloneV aR is certainly available at the sub-portfolio levels
and the holding would only need to pass the information on thespecific quantile for allocation
purpose. The disadvantage is the loss in correlation among the sub-portfolio when deciding the
allocation. ThecV aR and theES contributions both useES factors for allocation purposes. The
cV ar contribution brings up the quite (politically) sensitive issue of determining the quantile for
allocation purpose. TheES contribution has the additional complexity of needing preliminary
simulations to determine the allocation quantile.

5. CONCLUSIONS

In this paper we have shown the impact of different capital allocation methodologies for sub-
portfolios of a large conglomerate and for individual positions. We have discussed six method-
ologies, three quite simple and straightforward: theV aR/CoV ar, the ProRata and the Basell II
(factors); and three more complex ones: Marginal Optimization, cV aR contribution andES con-
tribution. The methodologies were tested on the problem of allocating risk as measured bycV aR

at the99.97% quantile on six sub-portfolios.
The first three approaches have the advantage of simplicity at the cost of loosing important

insights when allocating the DB. The Marginal Optimizationmethod represents an increase in
mathematical complexity. For communication purposes within subsidiaries and business lines
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it can be quite convenient: the standalonecV aR is certainly available at the sub-portfolio level
and the holding would only need to pass the information on thespecific quantile for allocation
purpose. The disadvantage is the loss in correlation among the sub-portfolio when deciding the
allocation. ThecV aR and theES contributions both useES factors for allocation purposes. The
cV ar contribution brings up the quite (politically) sensitive issue of determining the quantile for
allocation purpose. TheES contribution has the additional complexity of needing preliminary
simulations to determine the allocation quantile.

A continuation of this study includes building tables showing economic capital consumptions
per position, rating, and sector. Those tables are put in thecontext of a portfolio management
approach to an ALM credit desk. In order to avoid loosing resolution on a position level and being
able to build a scenario analysis framework for the whole portfolio of the financial conglomerate a
paralel system (with up to 25 machines) has been put in place being able to handle large amounts
of positions in very short time. Additionally an innovativeimportance sampling algorithm has
been implemented to improve the performance of the system. This study which represents the
continuation of what has been shown in this paper will be published in brief.

References

P. Artzner, F. Delbaen, J. Eber, and D. Heath. Coherent measures of risk.Mathematical Finance,
9(3):203–228, 1999.

A. de Servigny and O. Renault. Correlations evidence.Risk, 16(7):90–94, 2003.

J. Dhaene, M.J. Goovaerts, and R. Kaas. Economic capital allocation derived from risk measures.
North American Actuarial Journal, 7(2):44–59, 2003.

J. Dhaene, S. Vanduffel, Q.H. Tang, M. Goovaerts, R. Kaas, and D. Vyncke. Capital requirements,
risk measures and comonotonicity.Belgian Actuarial Bulletin, 4:53–61, 2004.

M.J. Goovaerts, E. Van den Borre, and R.L.A. Laeven. Managing economic and virtual economic
capital within financial conglomerates.K.U.Leuven, Working Paper, 2005.

G.M. Gupton, C.C. Finger, and M. Bhatia. Credit metrics – technical document.Morgan Guaranty
Trust, 1997.

M. Kalkbrener, H. Lotter, and L. Overbeck. Sensible and efficient allocation for credit portfolios.
Risk, 17(1):19–24, 2004.

Basel Committee on Banking Supervision (BCBS). International convergence of capital measure-
ment and capital standards: a revised framework. 2004.

D. Tasche. Allocating portfolio economic capital to sub-portfolios. Economic Capital: a Prac-
tioner Guide, pages 275–302, 2004.



84



MINIMIZING THE (CONDITIONAL) VALUE-AT-RISK
FOR A COUPON-BEARING BOND USING A BOND PUT OPTION.

Dries Heyman†, Jan Annaert†, Griselda Deelstra‡ and Michèle Vanmaele§
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Abstract

In this paper, we elaborate a formula for determining the optimal strike price for a bond put
option, used to hedge a position in a bond. This strike price is optimal in the sense that it
minimizes, for a given budget, either Value-at-Risk or Conditional Value-at-Risk. Formulas are
derived for both zero-coupon and coupon bonds, which can also be understood as a portfolio
of bonds. These formulas are valid for any short rate model with a given distribution of future
bond prices.

1. INTRODUCTION

The importance of a sound risk management system can hardly be underestimated. The advent
of new capital requirements for both the banking (Basel II) and insurance (Solvency II) industry,
are two recent examples of the growing concern of regulatorsfor the financial health of firms in
the economy. This paper adds to this goal. In particular, we consider the problem of determining
the optimal strike price for a bond put option, which is used to hedge the interest rate risk of
an investment in a bond, zero-coupon or coupon-bearing. In order to measure risk, we focus on
both Value-at-Risk and Conditional Value-at-Risk. Our optimization is constrained by a maximum
hedging budget. Alternatively, our approach can also be used to determine the minimal budget a
firm needs to spend in order to achieve a predetermined absolute risk level. This paper can be seen
as an extension of Ahn et al. (1999), who consider the same problem for an investment in a share.
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2. LOSS FUNCTION AND RISK MEASURES

Consider a portfolio with valueWt at timet. W0 is then the value or price at which we buy the
portfolio at time zero.WT is the value of the portfolio at timeT . The lossL we make by buying at
time zero and selling at timeT is then given byL = W0 −WT . The Value-at-Risk of this portfolio
is defined as the(1 − α)-quantile of the loss distribution depending on a time interval with length
T . A formal definition for theVaRα,T is

Pr[L ≥ VaRα,T ] = α. (1)

In other wordsVaRα,T is the loss of the worst case scenario on the investment at a(1 − α) confi-
dence level at timeT . It is also possible to define theVaRα,T in a more general way

VaRα,T (L) = inf {Y | Pr(L > Y ) ≤ α} . (2)

Although frequently used, VaR has attracted some criticisms. First of all, a drawback of the
traditional Value-at-Risk measure is that it does not care about the tail behaviour of the losses.
In other words, by focusing on the VaR at, let’s say a 5% level,we ignore the potential severity
of the losses below that 5% threshold. This means that we haveno information on how bad
things can become in a real stress situation. Therefore, theimportant question of ‘how bad is
bad’ is left unanswered. Secondly, it is not a coherent risk measure, as suggested by Artzner
et al. (1999). More specifically, it fails to fulfil the subadditivity requirement which states that
a risk measure should always reflect the advantages of diversifying, that is, a portfolio will risk
an amount no more than, and in some cases less than, the sum of the risks of the constituent
positions. It is possible to provide examples that show thatVaR is sometimes in contradiction with
this subadditivity requirement.

Artzner et al. (1999) suggested the use of Conditional VaR (CVaR) as risk measure, which they
describe as a coherent risk measure. CVaR is also known as TVaR, or Tail Value-at-Risk and is
defined as follows:

CVaRα,T (L) =

1

α

∫ α

0

VaRβ,T (L) dβ. (3)

This formula boils down to taking the arithmetic average of the quantiles of our loss, from 0 toα
on, where we recall thatVaRβ,T stands for the quantile at the level1 − β, see (1). This formula
already makes clear thatCVaRα,T (L) will always be larger thanVaRα,T (L).
If the cumulative distribution function of the loss is continuous, CVaR is also equal to the Condi-
tional Tail Expectation (CTE) which for the lossL is calculated as:

CTEα,T (L) = E[L | L > VaRα,T (L)].

3. THE BOND HEDGING PROBLEM

Analogously to Ahn et al. (1999), we assume that we have, at time zero, one bond with maturity
S and we will sell this bond at timeT , which is prior toS. In case of an increase in interest rates,
not hedging can lead to severe losses. Therefore, the company decides to spend an amountC on
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hedging. This amount will be used to buy one or part of a bond put option, so that, in case of a
substantial decrease in the bond price, the put option can beexercised in order to prevent large
losses. The remaining question now is how to choose the strike price. We will find the optimal
strike prices which minimize VaR and CVaR respectively for agiven hedging cost. An alternative
interpretation of our setup is that it can be used to calculate the minimal hedging budget the firm
has to spend in order to achieve a specified VaR or CVaR level. The latter setup was followed in
the paper by Miyazaki (2001).

3.1. Zero-coupon bond

Let us assume that the institution has an exposure to a bond,Y (0, S), with principalK = 1, which
matures at timeS, and that the company has decided to hedge the bond value by using a percent-
ageh (0 < h < 1) of one put optionP (0, T, S, X) with strike priceX and exercise dateT (with
T ≤ S).
Further, we assume that the distribution ofY (T, S) is known and is continuous and strictly in-
creasing. We will denote its cumulative distribution function (cdf) under the measure in which we
measure the VaR or the CVaR byFY (T,S)(·). For example when the short-rate model is one of the
following commonly used interest rate models such as Vasicek, one- and two-factor Hull-White,
two-factor additive Gaussian model G2++, two-factor Heath-Jarrow-Morton with deterministic
volatilities, see e.g. Brigo and Mercurio (2001), thenY (T, S) has a lognormal distribution.

Analogously to Ahn et al. (1999), we can look at the future value of the hedged portfolio that
is composed of the bondY and the put optionP (0, T, S, X) at timeT as a function of the form

HT = max(hX + (1 − h)Y (T, S), Y (T, S)).

In a worst case scenario — a case which is of interest to us — theput option finishes in-the-money.
Then the future value of the portfolio equals

HT = (1 − h)Y (T, S) + hX.

Taking into account the cost of setting up our hedged portfolio, which is given by the sum of the
bond priceY (0, S) and the costC of the position in the put option, we get for the value of the loss:

L = Y (0, S) + C − ((1 − h)Y (T, S) + hX), (4)

and this under the assumption that the put option finishes in-the-money.
Note that this loss function can be seen as a strictly decreasing functionf in Y (T, S):

f(Y (T, S)) := Y (0, S) + C − ((1 − h)Y (T, S) + hX). (5)

VaR minimization
We first look at the case of determining the optimal strikeX when minimizing the VaR under a
constraint on the hedging cost.

Recalling (1) and (4), the Value-at-Risk at anα percent level of a positionH = {Y, h, P}

consisting of a bondY andh put optionsP (which are assumed to be in-the-money at expiration)
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with a strike priceX and an expiry dateT is equal to1

VaRα,T (L) = Y (0, S) + C − ((1 − h)F
−1
Y (T,S)(α) + hX), (6)

whereF

−1
Y (T,S)(α) is the percentile of the cdfFY (T,S), i.e.Pr[Y (T, S) ≤ F

−1
Y (T,S)(α)] = α.

Similar to the Ahn et al. problem, we would like to minimize the risk of the future value of
the hedged bondHT , given a maximum hedging expenditureC. More precisely, we consider the
minimization problem

min

X,h
Y (0, S) + C − ((1 − h)F

−1
Y (T,S)(α) + hX)

subject to the restrictionsC = hP (0, T, S, X) andh ∈ (0, 1).
This is a constrained optimization problem with Lagrange function

L(X, h, λ) = VaRα,T (L) − λ(C − hP (0, T, S, X)),

containing one multiplicatorλ. Note that the multiplicators to include the inequalities0 < h and
h < 1 are zero since these constraints are not binding. Taking into account that the optimal strike
X

∗ will differ from zero, we find from the Kuhn-Tucker conditions





∂L

∂X

= −h + hλ

∂P

∂X

(0, T, S, X) = 0

∂L

∂h

= −(X − F

−1
Y (T,S)(α)) + λP (0, T, S, X) = 0

∂L

∂λ

= C − hP (0, T, S, X) = 0

0 < h < 1 and λ > 0

that this optimal strikeX∗ should satisfy the following equation

P (0, T, S, X) − (X − F

−1
Y (T,S)(α))

∂P

∂X

(0, T, S, X) = 0. (7)

By a change of numeraire, it is well known that the put option price equals the discounted
expectation under theT -forward measure of the the pay-off:

P (0, T, S, X) = Y (0, T )ET
[(X − Y (T, S))+].

Its first order derivative with respect to the strikeX gives the cumulative distribution function
F

T
Y (T,S) of Y (T, S) under thisT -forward measure, see Breeden and Litzenberger (1978):

∂P

∂X

(0, T, S, X) = Y (0, T )F
T
Y (T,S)(X). (8)

Hence, (7) is equivalent to

P (0, T, S, X) − (X − F

−1
Y (T,S)(α))Y (0, T )F

T
Y (T,S)(X) = 0.

1In case of an unhedged portfolio, takeC = h = 0 in (4) and in (6) to obtain the loss functionL with corresponding
VaRα,T (L).
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Important remarks

1. We note that the optimal strike price is independent of thehedging costC. This indepen-
dence implies that for the optimal strikeX∗, VaR in (6) is a linear function ofh (or C):

VaRα,T (L) = Y (0, S) − F

−1
Y (T,S)(α) + h(P (0, T, S, X

∗
) + F

−1
Y (T,S)(α) − X

∗
).

So, there is a linear trade-off between the hedging expenditure and the VaR level. It is a
decreasing function since in view of (8)∂P

∂X
(0, T, S, X

∗
) < 1 and thus according to (7)

X

∗
− F

−1
Y (T,S)(α) > P (0, T, S, X

∗
).

Although the setup of the paper is determining the strike price which minimizes a certain
risk criterion, given a predetermined hedging budget, thistrade-off shows that the analysis
and the resulting optimal strike price can evidently also beused in the case where a firm
is fixing a nominal value for the risk criterion and seeks the minimal hedging expenditure
needed to achieve this risk level. It is clear that, once the optimal strike price is known, we
can determine, in both approaches, the remaining unknown variable (either VaR, eitherC).

2. We also note that the optimal strike price is higher than the bond VaR levelF−1
Y (T,S)(α). This

has to be the case sinceP (0, T, S, X) is always positive and the change in the price of a put
option due to an increase in the strike is also positive. Thisresult is also quite intuitive since
there is no point in taking a strike price which is situated below the bond price you expect in
a worst case scenario.
When moreover the optimal strike is smaller than the forwardprice of the bond, i.e.

X

∗
<

Y (0, S)

Y (0, T )

,

then the price of put option to buy will be small.

3. The assumption of continuity and strictly monotonicity of the distribution ofY (T, S) can be
weakened. In that case we should work with the general definition (2) of VaR.

CVaR minimization
In this section, we demonstrate the ease of extending our analysis to the alternative risk measure
CVaR (3) by integration of (6):

CVaRα,T (L) = Y (0, S) + C − hX −

1

α

(1 − h)

∫ α

0

F

−1
Y (T,S)(β)dβ. (9)

We again seek to minimize this risk measure, in order to minimize potential losses. The procedure
for minimizing this CVaR is analogue to the VaR minimizationprocedure. The resulting optimal
strike priceX∗ can thus be determined from the implicit equation below:

P (0, T, S, X) − (X −

1

α

∫ α

0

F

−1
Y (T,S)(β)dβ)

∂P

∂X

(0, T, S, X) = 0, (10)

or, equivalently by (8), from

P (0, T, S, X) − (X −

1

α

∫ α

0

F

−1
Y (T,S)(β)dβ)Y (0, T )F

T
Y (T,S)(X) = 0.
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As for the VaR-case the optimal strikeX∗ is independent of the hedging costC and CVaR can be
plotted as a linear function ofC (or h) representing a trade-off between the cost and the level of
protection.
For the same reason as in the VaR-case, the optimal strikeX

∗ has to be higher than the bond CVaR
level 1

α

∫ α

0
F

−1
Y (T,S)(β)dβ.

4. COUPON-BEARING BOND

We consider now the case of a coupon-bearing bond paying cashflowsC = [c1, . . . , cn] at maturi-
tiesS = [S1, . . . , Sn]. Let T ≤ S1. The price of this coupon-bearing bond inT is expressed as a
linear combination (or a portfolio) of zero-coupon bonds:

CB(T,S, C) =

n∑

i=1

ciY (T, Si). (11)

As in the previous section, the company wants to hedge its position in this bond by buying a
percentage of a put option on this bond with strikeX and maturityT . In order to determine the
strike X, the VaR or the CVaR of the hedged portfolio at timeT is minimized under a budget
constraint. Comparing the results in the previous section for VaR and CVaR minimization for a
hedged position in zero-coupon bond we note that both cases can in fact be treated together.

We first have a look at the value of a put option on a coupon-bearing bond as well as at the
structure of the loss function.
Since the zero-coupon bondsY (T, Si) all depend on the same short rate atT , the vector(Y (T, S1),
. . . ,Y (T, Sn)) is comonotonic, see Kaas et al. (2000). By the properties of comonotonic vectors,
the coupon-bearing bond CB(T,S, C) (11) is a comonotonic sum with cumulative distribution
functionF

T
CB(·) under theT -forward measure. This implies that a European option on a coupon-

bearing bond decomposes into a portfolio of options on the individual zero-coupon bonds in the
portfolio, which gives in case of a put with maturityT and strikeX:

CBP (0, T,S, C, X) =

n∑

i=1

ciP (0, T, Si, Xi), with
n∑

i=1

ciXi = X. (12)

This result, now well-known as the Jamshidian decomposition, was found in Jamshidian (1989)
in case of a Vasicek interest rate model. Kaas et al. (2000) obtained this result in a more general
framework of stop-loss premiums and gave an explicit expression for theXi:

Xi = (F
T
Y (T,Si)

)
−1

(F
T
CB(X)). (13)

Repeating the reasoning of Section 3.1 we may conclude that in a worst case scenario the loss of
the hedged portfolio at timeT composed of the coupon-bearing bond (11) and the put option (12)
equals a strictly decreasing functionf of the random variable CB(T,S, C):

L = CB(0,S, C) + C − ((1 − h)CB(T,S, C) + hX) := f(CB(T,S, C)). (14)
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VaR and CVaR minimization
The VaR of this loss that we want to minimize under the constraints 0 < h < 1 and C =

hCBP (0, T,S, C, X), is given by

VaRα,T (L) = f(F
−1
CB (α)) = CB(0,S, C) + C − ((1 − h)F

−1
CB (α) + hX), (15)

whereF

−1
CB stands for the inverse cdf of the coupon-bearing bond under the measure in which VaR

(and CVaR) is measured.
By integrating this relation (15), after replacingα by β, with respect toβ between the integration
bounds 0 andα, we find for the CVaR of the loss:

CVaRα,T (L) = CB(0,S, C) + C − hX −

1

α

(1 − h)

∫ α

0

F

−1
CB (β)dβ. (16)

Also here we note the similarity in the expressions for the risk measures (RM) VaR and CVaR
which could be collected in one expression:

RMα,T (L) = CB(0,S, C) + C − hX − (1 − h)g(F
−1
CB (α)) (17)

with g(F
−1
CB (α)) =






F

−1
CB (α) if RM = VaR

1

α

∫ α

0

F

−1
CB (β)dβ if RM = CVaR.

(18)

Although the marginal distributionsFY (T,Si) are known, the distributionFCB of the sum can in
general not be obtained. However, in the case of a comonotonic sum we have, see again Kaas et al.
(2000),

F

−1
CB (p) =

n∑

i=1

ciF
−1
Y (T,Si)

(p) for all p ∈ [0, 1], (19)

and similarly for the inverse cdfs under theT -forward measure.
We now want to solve the constrained optimization problem

min

X,h
RMα,T (L) subjected to C = hCBP (0, T,S, C, X), 0 < h < 1.

From the Kuhn-Tucker conditions we find that the optimal strike priceX

∗ satisfies the following
equation

CBP (0, T,S, C, X) − (X − g(F
−1
CB (α)))

∂CBP

∂X

(0, T,S, C, X) = 0. (20)

Rewriting this equation in terms of the put options on the individual zero-coupon bonds cfr. (12),
invoking (19) and using the linearity of the functiong (18), leads to the following equivalent set of
equations:

n∑

i=1

ciP (0, T, Si, Xi) − (X −

n∑

i=1

cig(F
−1
Y (T,Si)

(α)))

n∑

i=1

ci

∂P

∂Xi

(0, T, Si, Xi)
∂Xi

∂X

= 0 (21)

n∑

i=1

ciXi = X (22)

n∑

i=1

ci

∂Xi

∂X

= 1, (23)
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whereXi is defined by (13).
We can further simplify relation (21) by applying relation (8) to the strikeXi given by (13), i.e.

∂P

∂Xi

(0, T, Si, Xi) = Y (0, T )F
T
Y (T,Si)

((F
T
Y (T,Si)

)
−1

(F
T
CB(X))) = Y (0, T )F

T
CB(X).

Hence, this derivative is independent ofi which implies in view of (23) that

n∑

i=1

ci

∂P

∂Xi

(0, T, Si, Xi)
∂Xi

∂X

= Y (0, T )F
T
CB(X)

n∑

i=1

ci

∂Xi

∂X

= Y (0, T )F
T
CB(X). (24)

We introduce the short hand notation

AX := F

T
CB(X). (25)

Substitution of (13), (22) and (24) in (21) leads to the following equation that we have to solve
for AX :

n∑

i=1

ciP (0, T, Si, (F
T
Y (T,Si)

)
−1

(AX))− Y (0, T )AX

n∑

i=1

ci[(F
T
Y (T,Si)

)
−1

(AX)− g(F
−1
Y (T,Si)

(α))] = 0.

(26)
Once, we knowAX we immediately have the optimal strikeX∗ from (22):

X

∗
=

n∑

i=1

ci(F
T
Y (T,Si)

)
−1

(AX). (27)

Remarks

1. We note that also in the case of a coupon-bearing bond the optimal strike price is independent
of the hedging cost and that one can look at the trade-off between the hedging expenditure
and the RM level, cfr. Section 3.1.

2. Also here we may weaken the assumption of continuity and strictly monotonicity of the
distribution functionsFY (T,Si). In that case we have to invoke Kaas et al. (2000) with a so-
calledη-inverse distribution of a random variableY which is defined as the following convex
combination:

F

−1(η)
Y (p) = ηF

−1
Y (p) + (1 − η)F

−1+
Y (p), p ∈ (0, 1) , η ∈ [0, 1],

F

−1
Y (p) = inf {y ∈ R | FY (y) ≥ p} , p ∈ [0, 1] ,

F

−1+
Y (p) = sup {y ∈ R | FY (y) ≤ p} , p ∈ [0, 1] .

Thus relation (12) holds with

Xi = (F
T
Y (T,Si)

)
−1(η)

(F
T
CB(X)),

whereη ∈ [0, 1] is determined from

n∑

i=1

ci(F
T
Y (T,Si)

)
−1(η)

(F
T
CB(X)) = X.
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5. APPLICATION: HULL-WHITE MODEL

As an application, we focus on the Hull-White one-factor model, first discussed by Hull and White
in 1990 (see Hull and White (1990)). We choose this model because it is still an often used model
in financial institutions for risk management purposes, (see Brigo and Mercurio (2001)).

Hull and White (1990) assume under the risk-neutral measureQ that the instantaneous interest
rate follows a mean reverting process also known as an Ornstein-Uhlenbeck process:

dr(t) = (θ(t) − γ(t)r(t))dt + σ(t)dZ(t) (28)

with Z(t) a standard Brownian motion underQ, and with time dependent parametersθ(t), γ(t),
andσ(t). The parameterθ(t) is the time dependent long-term average level of the spot interest
rate around whichr(t) moves,γ(t) controls the mean-reversion speed andσ(t) is the volatility
function. By making the mean reversion levelθ time dependent, a perfect fit with a given term
structure can be achieved, and in this way arbitrage can be avoided. In our analysis, we will keep
γ andσ constant, and thus time-independent. According to Brigo and Mercurio (2001), this is
desirable when an exact calibration to an initial term structure is wanted. This perfect fit then
occurs whenθ(t) satisfies the following condition:

θ(t) = F

M
t (0, t) + γF

M
(0, t) +

σ

2

2γ

(1 − e

−2γt
),

where,F M
(0, t) denotes the instantaneous forward rate observed in the market on time zero with

maturityt.
It can be shown (see Hull and White (1990)) that the expectation and variance of the stochastic

variabler(t) are:

E [r(t)] = m(t) = r(0)e
−γt

+ a(t) − a(0)e
−γt

, Var [r(t)] = s

2
(t) =

σ

2

2γ

(1 − e

−2γt
) (29)

with the expressiona(t) calculated as follows:

a(t) = F

M
(0, t) +

σ

2

2

(
1 − e

−γt

γ

)2

.

Based on these results, Hull and White developed an analytical expression for the price of a
zero-coupon bond with maturity dateS

Y (t, S) = A(t, S)e
−B(t,S)r(t)

,

where

B(t, S) =

1 − e

−γ(S−t)

γ

, A(t, S) =

Y

M
(0, S)

Y

M
(0, t)

e

B(t,S)F M (0,t)−σ2

4γ
(1−e−2γt)B2(t,S)

with Y

M the bond price observed in the market. SinceA(t, S) andB(t, S) are independent ofr(t),
the distribution of a bond price at any given time must be lognormal with parametersΠ andΣ

2:

Π(t, S) = ln A(t, S) − B(t, S)m(t), Σ(t, S)
2

= B(t, S)
2
s

2
(t),
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with m(t) ands

2
(t) given by (29). Thus under the risk neutral measure the inverse cdf ofY (T, S)

is given by
F

−1
Y (T,S)(p) = e

Π(T,S)+Σ(T,S)Φ−1(p)
, p ∈ [0, 1], (30)

and we can compute the (standard) integral
∫ α

0

F

−1
Y (T,S)(β)dβ = e

Π(T,S)

∫ α

0

e

Σ(T,S)Φ−1(β)
dβ = e

Π(T,S)+ 1

2
Σ2(T,S)

Φ(Φ
−1

(α) − Σ(T, S)). (31)

By a change of numeraire it can be shown thatY (T, S) remains lognormally distributed under the
T -forward measure but now with parametersΠ

T and(Σ
T
)
2 given by:

Π
T
(T, S) = ln

(
Y (0, S)

Y (0, T )

)
−

1

2

(Σ
T
(T, S))

2
, Σ

T
(T, S) = Σ(T, S). (32)

Hence, the inverse cdf ofY (T, S) under theT -forward measure is known explicitly:

(F
T
Y (T,S))

−1
(p) = e

ΠT (T,S)+Σ(T,S)Φ−1(p)
, p ∈ [0, 1], (33)

as well as the put option price and its derivative with respect to the strike:

P (0, T, S, X) = −Y (0, S)Φ(−d1(X)) + XY (0, T )Φ(−d2(X)),

∂P

∂X

(0, T, S, X) = Y (0, T )Φ(−d2(X)),

with, when taking (32) into account,

d1(X) =

1

Σ(T, S)

[
ln

(
Y (0, S)

Y (0, T )

)
− ln(X)

]
+

1

2

Σ(T, S) =

Π
T
(T, S) − ln(X)

Σ(T, S)

+ Σ(T, S)

(34)

d2(X) = d1(X) − Σ(T, S) =

Π
T
(T, S) − ln(X)

Σ(T, S)

. (35)

For thezero-coupon case, substitution of the relations above in (7) and in (10) givesthe fol-
lowing implicit relation for the optimal strikeX∗:

G(Φ
−1

(α)) =

Y (0, S)Φ(−d1(X))

Y (0, T )Φ(−d2(X))

,

with

G(Φ
−1

(α)) =

{
e

Π(T,S)+Σ(T,S)Φ−1(α) if VaR

1
α
e

Π(T,S)+ 1

2
Σ2(T,S)

Φ(Φ
−1

(α) − Σ(T, S)) if CVaR.

(36)

For thecoupon-bearing bond case, the above relations for the distribution and the put option
price hold but withS andX replaced bySi andXi. The expressions (34) and (35) ford1(Xi) and
d2(Xi) can further be simplified in view of (13),(25) and (31):

d1(Xi) = Σ(T, Si) − Φ
−1

(AX), d2(Xi) = −Φ
−1

(AX).
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In this way, the set of equations (26)-(27) to find the optimalstrikeX

∗ is equivalent with:

n∑

i=1

ci

[
−Y (0, Si)Φ(Φ

−1
(AX) − Σ(T, Si)) + Y (0, T )AXe

ΠT (T,Si)+Σ(T,Si)Φ−1(AX)
]

= Y (0, T )AX

n∑

i=1

ci

[
e

ΠT (T,Si)+Σ(T,Si)Φ−1(AX)
− Gi(Φ

−1
(α))

]

X

∗
=

n∑

i=1

cie
ΠT (T,Si)+Σ(T,Si)Φ

−1(AX)
,

whereGi(Φ
−1

(α)) is defined by (36) when replacingS by Si.
For a complete numerical example we refer to Deelstra et al. (2005) and Heyman et al. (2006).

6. CONCLUSIONS

We provided a method for minimizing the risk of a position in abond (zero-coupon or coupon-
bearing) by buying (a percentage of) a bond put option. Taking into account a budget constraint,
we determine the optimal strike price, which minimizes a Value-at-Risk or Conditional Value-at-
Risk criterion. Alternatively, our approach can be used when a nominal risk level is fixed, and the
minimal hedging budget to fulfil this criterion is desired. From the class of short rate models which
result in lognormally distributed future bond prices, we have selected the Hull-White one-factor
model for an illustration of our optimization.
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Abstract

Several two-sided exit problems for a Lévy process are considered in the present paper. We
obtain the integral transforms of the joint distribution ofthe first exit time from a fixed interval
and the value of the overshoot through boundaries at the instant of the first exit. The Laplace
transform is found of the joint distribution of the number ofupward and downward intersec-
tions. Finally, the joint distribution of the first entry time into a given interval and the value of
the process at that instant is obtained.

1. INTRODUCTION

During the last decades Lévy processes have become very popular as modeling tools in insurance
and mathematical finance (see i.e. Boyarchenko and Levendorskii (2002), Schoutens (2004), As-
mussen et al. (2004)). Some specific types of Lévy processesproved to be appropriate as models
of stock prices (Geman (2002), Rydberg (1997), Schoutens (2001), Asmussen et al. (2005)). It has
been recognized that Lévy models give a much better fit to thefinancial data and lead to significant
improvement with respect to the Black & Scholes model, see Schoutens (2003). Along with the
applications aspect, the theory of Lévy processes itself has faced with a lot of developments (As-
mussen and Rosinski (2001), Bertoin (1997), Pistorius (2004), Kadankov and Kadankova (2005),
Kyprianou and Pistorius (2003), Avram et al. (2002) and manyothers). Many interesting problems
in applied probability and in finance, in particular, are related to determining of the distribution of
the first exit time and the value of the process at the epoch of exit. However, other boundary char-
acteristics of the process are also of interest. Motivated by this fact, in this framework we consider
several other boundary problems. The first problem we deal with is the so-called two-sided exit
problem, which plays a crucial role in options pricing. We obtain the integral transforms of the
joint distribution of the exit from the interval and the value of the overshoot through the bound-
aries. Further, employing these results we derive the exactformulae for the integral transforms
of the joint distribution of the supremum, the infimum and thevalue of the Lévy process. The
distribution of the number of intersections of the intervalby a general Lévy process is obtained
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in terms of the integral transforms of the joint distribution of the exit from the interval and the
value of the overshoot through the boundary, the first passage time and the value of the overshoot
through the level. Finally, the joint distribution of the first entry time into the interval and the value
of the process at this instant are determined in terms of integral transforms. Note however, that the
exact formulae for the integral transforms of the mentionedfunctionals are obtained but not the
distributions themselves, which we are primarily interested in. Thus, we are faced with a problem
of inverting the integral transforms which is of high dimension. An alternative is the use of Monte
Carlo simulations, which is not a simple task. Further simplifications of the obtained formulae is
the subject of ongoing research.

2. DEFINITIONS AND AUXILIARY RESULTS

Let (Ω, F, {Ft}, P ) be a filtered probability space, where the filtration{Ft} satisfies the usual
conditions of right-continuity and completion. We assume that all random variables and stochastic
processes are defined on this probability space. A Lévy process is aF-adapted stochastic process
{ξ(t); t ≥ 0} which has independent and stationary increments whose paths are right-continuous
with left limits (see i.e. Sato (1999) or Bertoin (1996)). Under the assumption thatξ(0) = 0, the
Laplace transform of the process{ξ(t); t ≥ 0} has the formE[e

−pξ(t)
] = e

t k(p), Rep = 0, where
the functionk(p) is called the Laplace exponent and is given by the formula (Skorokhod (1971),
p.110)

k(p) =

1

t

ln E[e
−pξ(t)

] =

1

2

p

2
σ

2
− αp +

∫
∞

−∞

(
e

−px
− 1 +

px

1 + x

2

)
Π(dx). (1)

Hereα, σ ∈ R andΠ(·) is a measure on the real line, such that
∫ 1

−1
x

2
Π(dx) < ∞. The introduced

process is a space homogeneous, strong Markov process. Let us fix B > 0 and define the variable

χ(y) = inf{ t : y + ξ(t) /∈ [0, B] }, y ∈ [0, B]

the first exit time from the interval[0, B] by the processy + ξ(t). The random variableχ(y) is a
Markov time andP [ χ(y) < ∞ ] = 1. Exit from the interval[0, B] can take place either through the
upper boundaryB, or through the lower boundary0. Introduce events:AB

= {w : ξ(χ(y)) > B },
i.e. the exit takes place through the upper boundary;A0 = {w : ξ(χ(y)) < 0 }, i.e. the exit takes
place through the lower boundary. Define

X(y) = (ξ(χ(y))− B) IA B + (−ξ(χ(y))) IA0
, P [ A

B
+ A0 ] = 1

the value of the overshoot through one of the boundaries at the epoch of the exit, whereIA = IA(ω)

is the indicator of the eventA. To determine the joint distribution of{χ, X} we will employ one-
boundary characteristics of the process. Forx ≥ 0 introduce the random variables

τ

x
= inf{t : ξ(t) > x}, T

x
= ξ(τ

x
) − x, τx = inf{t : ξ(t) < −x }, Tx = −ξ(τx) − x

the first passage time of the levelx and the value of the overshoot through this level at the instant
of the first passage, the first passage time of the level−x and the value of the overshoot this level
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at that instant. Integral transforms of the joint distribution of { τ

x
, T

x
}, { τx, Tx } for s > 0,

Rep ≥ 0 satisfy the following equalities [Pecherskii and Rogozin (1969) or Zolotarev (1964)]

E [ e
−sτx

−pT x

] =

(
E[ e

−pξ+(νs)
]

)
−1

E [ e
−p(ξ+(νs)−x)

; ξ

+
(νs) > x ],

E [ e
−sτx−pTx

] =

(
E[ e

pξ−(νs)
]

)
−1

E [ e
p(ξ−(νs)+y)

; −ξ

−
(νs) > x ],

whereξ

+
(t) = sup

u≤t

ξ(u), ξ

−
(t) = inf

u≤t
ξ(u), νs is an exponential variable with parameters > 0,

independent of the process,P [ νs > t ] = exp{−st}, and

E[e
−p ξ±(νs)

] = exp

{∫
∞

0

1

t

e

−st
E [ e

−pξ(t)
− 1; ± ξ(t) > 0 ] dt

}
, ±Rep ≥ 0.

3. THE FIRST EXIT FROM THE INTERVAL

Theorem 3.1 Let {ξ(t); t ≥ 0}, ξ(0) = 0 be a real-valued Ĺevy process with Laplace exponent
(1), B > 0, y ∈ [0, B], x = B − y, and

χ(y) = inf{ t > 0 : y + ξ(t) /∈ [0, B] }, X(y) = (ξ(χ(y)) − B) IA B + (−ξ(χ(y))) IA 0

the instant of the first exit by the processy + ξ(t) from the interval[0, B] and the value of the
overshoot through a boundary at the epoch of the exit from theinterval by the given process.
The Laplace transforms of the joint distribution of{χ(y), X(y) } for s > 0 satisfy the following
formulae

E [ e
−sχ(y)

; X(y) ∈ du, A

B
] = f

s
+(x, du) +

∫
∞

0

f

s
+(x, dv) K

s
+(v, du),

E [ e
−sχ(y)

; X(y) ∈ du, A 0 ] = f

s
−
(y, du) +

∫
∞

0

f

s
−
(y, dv) K

s
−
(v, du), (2)

where

f

s
+(x, du) = E [ e

−sτx

; T

x
∈ du ] −

∫
∞

0

E [ e
−sτy

; Ty ∈ dv ] E [ e
−sτv+B

; T

v+B
∈ du ],

f

s
−
(y, du) = E [ e

−sτy
; Ty ∈ du ] −

∫
∞

0

E [ e
−sτx

; T

x
∈ dv ] E [ e

−sτv+B
; Tv+B ∈ du ];

andK

s
±
(v, du) =

∞∑
n=1

K

(n)
±

(v, du, s), v ≥ 0 are the series of the successive iterations;

K

(1)
±

(v, du, s) = K±(v, du, s), K

(n+1)
±

(v, du, s) =

∫
∞

0

K

(n)
±

(v, dl, s) K±(l, du, s) (3)
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are the successive iterations(n ∈ N = {1, 2, . . .}) of the kernelsK±(v, du, s), which are given by
the defining equalities

K+(v, du, s) =

∫
∞

0

E [ e
−sτv+B

; Tv+B ∈ dl ] E [ e
−sτ l+B

; T

l+B
∈ du ],

K−(v, du, s) =

∫
∞

0

E [ e
−sτv+B

; T

v+B
∈ dl ] E [ e

−sτl+B
; Tl+B ∈ du ]. (4)

4. SUPREMUM, INFIMUM AND THE VALUE OF THE PROCESS

In this section we determine the joint distribution of{ inf

t≤νs

ξ(t), ξ(νs), sup

t≤νs

ξ(t) } for a general

Lévy process (i.e. at an exponential timeνs). Further we will use the following notation:ξ−(t) =

inf

u≤t
ξ(u), ξ

+
(t) = sup

u≤t

ξ(u).

Let {ξ(t); t ≥ 0} be a Lévy process with Laplace exponent (1),x, y ≥ 0 , x + y = B ,
ξ(0) = 0 and

χ = inf{ t : ξ(t) /∈ ([−y, x] }, X = (ξ(χ) − x) IA x + (−ξ(χ) − y) IA y

the first exit time from the interval[−y, x] by the processξ(t), whereA

x
= { ξ(χ) > x },

Ay = { ξ(χ) < −y } are the events on which the exit from[0, B] can occur. Here, unlike in the
previous section we shifted the processy + ξ(t) and the interval[0, B] down byy. Note, that due
to the space homogeneity of the process the integral transforms of the joint distribution of{χ, X }

for the Lévy process with Laplace exponent (1) satisfy formulae (2) of Theorem 2.1.
Observe that,

P [χ > t] = P [−y < inf

u≤t
ξ(u), sup

u≤t

ξ(u) < x].

Therefore, we can employ the results of Theorem 2.1 to derivethe integral transform of the joint
distribution of{ ξ

−
(νs), ξ(νs), ξ

+
(νs) } :

Q

s
(p) =

∫ x

−y

e

−up
P [−y ≤ ξ

−
(νs), ξ(νs) ∈ du, ξ

+
(νs) ≤ x ] = E [ e

−p ξ(νs)
; χ > νs ]. (5)

Theorem 4.1 Let{ξ(t); t ≥ 0} be a Ĺevy process with Laplace exponent (1),x,y ≥ 0, x+y = B,
ξ(0) = 0.
The integral transform (5) of the joint distribution of{ ξ

−
(νs), ξ(νs), ξ

+
(νs) } satisfies the equality

Q

s
(p) = U

s
p (x) − e

yp

∫
∞

0

e

vp
E [ e

−sχ
; X ∈ dv, A y ] U

s
p (v + B), Rep ≤ 0, (6)

where(Rep ≤ 0)

U

s
p (x) = E [ e

−p ξ(νs)
; ξ

+
(νs) ≤ x ] = E[ e

−pξ−(νs)
] E [ e

−p ξ+(νs)
; ξ

+
(νs) ≤ x ]
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the integral transform of the joint distribution of{ ξ(νs), ξ

+
(νs) } is given in terms of the Wiener-

Hopf factors by the following formula

E [ e
−pξ(νs)

; ξ

+
(νs) ≤ x ] = E[ e

−pξ−(νs)
]E [ e

−pξ+(νs)
; ξ

+
(νs) ≤ x ], Rep ≤ 0;

and the integral transforms of the joint distribution of{χ, X} are given by (2) of Theorem 2.1.

For particular classes of Lévy processes formula (6) of Theorem 4.1 takes a simplified form. Let
us illustrate it by an example.

Corollary 4.2 Let {w(t); t ≥ 0 } be a Wiener process with Laplace exponentk(p) =
1
2
σ

2
p

2 and
χ = inf{t > 0 : w(t) /∈ [−y, x]} be the first exit time from the interval[−y, x], x + y = B by the
process{w(t); t ≥ 0}.

Then

1) the distribution¯
Q

t
(−y, α, β, x)

def
= P [−y ≤ inf

u≤t
w(u), w(t) ∈ (α, β), sup

u≤t

w(u) ≤ x] is

given by formula:

P [−y ≤ inf

u≤t
w(u), w(t) ∈ (α, β), sup

u≤t

w(u) ≤ x]

=

4

π

∞∑

ν=1

1

ν

exp

(
−

1

2

t(πνσ/B)
2

)
sin

(
x

B

πν

)
sin

(
2x − α − β

2B

πν

)
sin

(
β − α

2B

πν

)
,

P [χ > t] =

4

π

∞∑

ν=0

1

2ν + 1

exp

(
−

1

2

t(π(2ν + 1)σ/B)
2

)
sin

(
x

B

(2ν + 1)π

)
,

2) the moments of the first exit timeχ are of the following form

E[χ] =

1

σ

2
xy, E[χ

2
] =

1

3σ
4
xy(x

2
+ 3xy + y

2
), V ar[χ] =

1

3σ
4
xy(x

2
+ y

2
),

in particular, whenx = y

E[χ
n
] =

1

(2n − 1)!!

(
x

σ

)2n

En, n > 0,

whereEn, n > 0 are the Euler numbers,E1 = 1, E2 = 5, . . . .

3) the probability ¯
Q

t
(−y, α, β, x) = P [−y ≤ inf

u≤t
w(u), w(t) ∈ (α, β), sup

u≤t

w(u) ≤ x]

satisfies the formula

¯
Q

t
(−y, α, β, x) =

1

σ

√

2πt

β∫

α

(
∞∑

k=−∞

e

−(2Bk+u)2/2σ2t
−

∞∑

k=−∞

e

−(2Bk+2x−u)2/2σ2t

)

du.



102 T. Kadankova and N. Veraverbeke

5. NUMBER OF INTERSECTIONS

The objective of this section is to determine the joint distribution of the number of upward and
downward intersections of the interval[−y, x] by the Lévy process{ξ(t); t ≥} 0 with Laplace
exponent (1). Assuming thatξ(0) = −(v + y), v > 0 we denote byiv = inf{ t : ξ(t) > x } the
instant of the first upward intersection of the interval(−y, x). Assuming thatξ(0) = v + x, v > 0

we denote byiv = inf{ t : ξ(t) < −y } the instant of the first downward intersection of the
interval[−y, x]. Now let ξ(0) = 0 and introduce:

• α

+
t i.e. the number of the upward intersections of the interval[−y, x] up to the instantt;

• α

−

t i.e. the number of the downwards intersections of the interval [−y, x] up to the instantt.

Theorem 5.1 Let {ξ(t); t ≥ 0}, ξ(0) = 0 be a Ĺevy process with Laplace exponent (1),B > 0,
x ∈ [0, B], y = B − x.
Then the joint distribution of the number of upward and downward intersections{α

+
νs

, α

−

νs
} of the

interval [−y, x] for n ∈ N ∪ {0} satisfies the following equalities

P [ α
+
νs

= n, α

−

νs
= n + 1 ]

=

∞∫

0

E[ e
−sχ

; X ∈ dv, A

x
]

∞∫

0

K

(n)
+ (v, du, s)

∞∫

0

E[ e
−sτu+B

; Tu+B ∈ dl ]

(
1 − E[e

−sτ l+B

]

)
;

P [ α
+
νs

= n + 1, α

−

νs
= n ]

=

∞∫

0

E[ e
−sχ

; X ∈ dv, A y ]

∞∫

0

K

(n)
−

(v, du, s)

∞∫

0

E[ e
−sτu+B

; T

u+B
∈ dl ]

(
1 − E[e

−sτl+B
]

)
,

P [ α
+
νs

= n = α

−

νs
] = I{n=0}−

− I{n=0}




∞∫

0

E[ e
−sχ

; X ∈ dv, A

x
]E[ e

−sτv+B
] +

∞∫

0

E[ e
−sχ

; X ∈ dv, A y ]E [e
−sτv+B

]





+ I{n∈N}

∫
∞

0

E[ e
−sχ

; X ∈ dv, A

x
]

∫
∞

0

K

(n)
+ (v, du, s)

(
1 − E[e

−sτu+B
]

)

+ I{n∈N}

∫
∞

0

E[ e
−sχ

; X ∈ dv, A y ]

∫
∞

0

K

(n)
−

(v, du, s)

(
1 − E[e

−sτu+B

]

)
;

where K

(0)
±

(v, du, s)

def
= δ(v − u) du, and the functionsE [ e

−sχ
; X ∈ dv, A

x
], E [ e

−sχ
; X ∈

dv, A y ], and the successive iterationsK(n)
±

(v, du, s),n ∈ N of the kernelsK±(v, du, s) are given
by the formulae (3) of Theorem 2.1.
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As an example, consider a Wiener process{w(t); t ≥ 0} with Laplace exponentk(p) =
1
2
σ

2
p

2,

i.e. P [w(t) ∈ (a, b)] =
1

σ
√

2πt

b∫
a

e

−u2/2σ2t
du.

Then

P [α
+
t = n + 1, α

−

t = n] = 2

∞∑

k=2(n+1)

(−1)
k
P [w(t) ∈ (−x + kB, x + kB)];

P [α
−

t = n + 1, α

+
t = n] = 2

∞∑

k=2(n+1)

(−1)
k
P [w(t) ∈ (−y + kB, y + kB)];

P [α
+
t = α

−

t = n]

= 2(1 − δn0)

∞∑

k=2(n+1)

(−1)
k
P [w(t) ∈ (−x + kB, x + kB)]

+ 2(1 − δn0)

∞∑

k=2(n+1)

(−1)
k
P [w(t) ∈ (−y + kB, y + kB)]

+ δn0

(
1 − 2

∞∑

k=0

(−1)
k
{P [w(t) > x + (k + 1)B] + P [w(t) > y + (k + 1)B]}

)
.

6. FIRST ENTRY TIME

In this section we determine the integral transforms of the joint distribution of the first entry time
into the interval[0, B] and the value of the Lévy process at this instant. Observe, that the first entry
of the interval (after leaving it) can take place either fromabove (position of the process:v + B),
or from below the interval (−v), or from the starting point (ξ(0) = 0).

Theorem 6.1 Let ξ(t) ∈ R, t ≥ 0, ξ(0) = 0 be a Ĺevy process with Laplace exponent (1),B > 0,

χ(y)

def
= 0, for y /∈ [0, B], and

χ(y) = inf { t > χ(y) : y + ξ(t) ∈ [0, B] }, X(y) = y + ξ(χ(y)) ∈ [0, B], y ∈ R

the first entry time of the processy + ξ(t) into [0, B] and the value of the processy + ξ(t) at the
epoch of the entry.
Then the integral transforms of the joint distribution of{χ(y), X(y)}, y ∈ R for s > 0 satisfy the
formulae

b

v
(du, s) =E [ e

−sχ(v+B)
; X(v + B) ∈ du ]

=

∫
∞

0

Q

s
+(v, dl) E[ e

−sτl
; B − Tl ∈ du ]

+

∫
∞

0

Q

s
+(v, dl)

∫
∞

0

E[ e
−sτl

; Tl − B ∈ dν ] E[ e
−sτν

; T

ν
∈ du ], v > 0
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bv(du, s) =E [ e
−sχ(−v)

; X(−v) ∈ du ]

=

∫
∞

0

Q

s
−
(v, dl) E[ e

−sτ l

; T

l
∈ du ]

+

∫
∞

0

Q

s
−
(v, dl)

∫
∞

0

E[ e
−sτ l

; T

l
− B ∈ dν ] E[ e

−sτν
; B − Tν ∈ du ], v > 0,

b(y, du, s) =E [ e
−sχ(y)

; X(y) ∈ du ]

=

∫
∞

0

E [ e
−sχ(y)

; X(y) ∈ dv, A

B
] b

v
(du, s)

+

∫
∞

0

E [ e
−sχ(y)

; X(y) ∈ dv, A 0] bv(du, s), y ∈ [0, B],

whereδ(x), x ∈ R is the delta function,

Q

s
±
(v, du) = δ(v − u) du +

∑

n∈N

Q

(n)
±

(v, du, s), v > 0,

are the series of the successive iterationsQ

(n)
±

(v, du, s), andn ∈ N,

Q

(1)
±

(v, du, s) = Q±(v, du, s), Q

(n+1)
±

(v, du, s) =

∫
∞

0

Q

(n)
±

(v, dl, s)Q±(l, du, s),

are successive iterations of the kernelsQ±(v, du, s), which are defined by the following formulae

Q+(v, du, s) =

∫
∞

0

E[e
−sτv

; Tv − B ∈ dl] E[e
−sτ l

; T

l
− B ∈ du],

Q−(v, du, s) =

∫
∞

0

E[e
−sτv

; T

v
− B ∈ dl] E[e

−sτl
; Tl − B ∈ du].

Remark 6.1 The proofs of all stated theorems can be found in Kadankov andKadankova (2005).
Examples of the stated results for particular classes of Lévy process are also given in Kadankova
and Veraverbeke (2006), Kadankova (2003).

Remark 6.2 Although we obtained rather sophisticated expressions forintegral transforms of the
two-boundary characteristics of the Lévy process, we hopethat the results presented can be of use
in further investigation of Lévy processes and give some fruitful ideas for further applications in
finance.
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towards simulation.Journal of Applied Probability, 38(2):482–493., 2001.

S. Asmussen, F. Avram, and M.R. Pistorius. Russian and American put options under exponential
phase-type Lévy models.Stochastic Processes and their Applications, 109:79–111, 2004.



Several two-boundary problems for Lévy processes 105
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interval. Annals of Applied Probability, 1:156–169, 1997.

S. Boyarchenko and S. Levendorskii. Barrier options and touch-and-out options under regular
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Abstract

Since the capital structure affects the performance of financial institutions confronted to liquid-
ity constraints, theEconomic Capitalis determined by the maximisation of value. Allowing
economic decisions to be characterised by adistortedprobability distribution — so assessing
the attitude towards risk as well as information and knowledge — the optimal surplus is ex-
pressed as aValue-at-Risk— as recommended by the Basel Committee. Thus, demanding
more capital than regulatory requirements accounts for different expectations about risks. The
optimal surplus is allocated to the lines of business of a conglomerate according to the borne
risk and the type of divisional managers. Full allocation isassured and no covariances are
required. Further, a mechanism is provided, which allows for the distribution of equity in a
decentralised organisation.

1. INTRODUCTION

In a seminal paper, Modigliani and Miller (1959) claimed that in perfect markets the capital struc-
ture of financial institutions does not matter for at any timeit is possible to raise or release funds
if required. Accordingly, the optimal plan when the objective is maximising value, is to attract
as much debt as possible. Since this fact is not observed in practice, Modigliani and Miller gave
several explanations in subsequent papers, even questioning the skills of decision makers, as in
Miller (1998). However, averse-to-risk customers are sensible to fluctuations and then the perfor-
mance of intermediaries depends on providing guarantees that assumed liabilities are default-free,
see Merton (1997). This situation leads manager’s decisions to be determined also by risk aversion
— as long as their reputation depends on performance.

Usual practices to protect against default risk arehedging, re-insuringandcapital cushions.
By Economicor Risk Capitalwe mean an amount of money invested in non risky assets that
serves as a buffer in order to prevent insolvency. Since a price has to be paid for raising capital,
there is a level of surplus which properly combines the two conflicting objectives: maximisation
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of shareholder’s value and minimisation of default risk. Within a multibusiness environment, the
problem of allocation arises due to the gain acquired — through diversification — when merging
the activities of the firm. Such benefit should be distributedfairly among the subsidiaries —
i.e. according to the risk borne. In this context, many of theallocation principles present in the
literature are based on covariances. Full allocation is also considered as a desirable property — for
the aggregate surplus maintained by divisions should be equal to the level regarded as appropriate
for the conglomerate1.

In Merton and Perold (1993) a capital allocation principle is developed based on the incre-
mental risk of subsidiaries, which is obtained by subtracting the capital required after suppressing
a line of business to the surplus demanded by the whole portfolio. Then the sum of individual
surplus might be lower than the capital hired by the conglomerate — the difference is explained
by the gains in efficiency due to the knowledge of divisional managers. On this basis, Merton and
Perold argue that it is inappropriate to full allocate the capital — for doing so incentives may be
distorted. Myers and Read Jr. (2001) consider instead the marginal capital requirement, defined as
the marginal change in the total surplus in response to a small increment in the equity demanded by
a certain line of business. They prove that full allocation is guaranteed by this principle, provided
that some conditions on the valuation function of capital are satisfied.

Stoughton and Zechner (1999) propose a model to deal with firms that are not able to continu-
ously raise funds — see also Froot et al. (1993) and Jensen (1986). Thus, equity is distributed in
order to maximise theEconomic Value Added (EVA)by the lines of business, and capital allocation
is justified as a mechanism that stimulates the exchange of information inside the institution. In
the process, the attitude towards risk is considered, whichis supposed to depend on the ability to
apply and transfer skills — as well as the effort expended to accumulate information. Thus, an
optimal mechanism is advanced based on the internal price ofcapital. Distortions are allowed in
the form of under and overinvestment.

In the following, an allocation principle is proposed which, instead of accounting for stochastic
dependencies, focuses on agency costs due to discrepanciesin the expectations kept by central and
divisional managers. Actually, the case of perfect correlation is considered — when no diversifica-
tion is possible — in this way modelling the situation when the failure in any division may damage
the credit quality of the whole conglomerate.Section 2is devoted to the determination of the opti-
mal amount of economic capital. The attitude towards risk isdetermined by a single — functional
— parameter, which in imperfect markets accounts for differences in expectations among decision
makers. Thus, the demanded surplus depends on the risk profile — or the informational type —
of decision makers, as well as on the risk involved. The problem of capital allocation within a
multibusiness setting is addressed inSection 3. A centralisedsolution is obtained depending on
individual exposures. InSection 4thestand aloneallocation is attained by letting subsidiaries to
act on their own. Finally, the problem of agency costs is addressed by establishing anoptimal
contract. When the types are not accessible — a situation most probably found in practice — a
mechanism can be designed by fixing the cost of raising capital inside the conglomerate. In this
way, subsidiaries are forced to reveal their type.Section 5concludes.

1See Albrecht (2004), Hallerbach (2003) and Saita (2004).
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2. ECONOMIC CAPITAL AS THE OPTIMAL LEVEL OF SURPLUS

Consider a financial institution holding assets and liabilities for total market values ofA andL

respectively. The net — random — loss suffered each period isthen given byX = L−A. Merton
(1977) defines the fair price of insuring liabilities — at anytime before the maturity date — as the
present value of the liability claim less the value of a put option on assets with strike price equal
to the value of liabilities2. In the same way, it follows that shareholders are the ownersof a call
option on the portfolio of assets whose exercise price is thevalue of liabilities. From thePut-Call
Parity Theorem, the following relation must hold:

A = C(A, L) + Le

−r0T
− P (A, L).

Thus, though both the market value of assets and equity are functions of leverage, by the
Put-Call Paritytheir sum is independent of it. Hence, the market value of thefirm, i.e. the market
value of the portfolio of assetsA, is independent of the capital structure, as stated in the Modigliani
Miller proposition, see Miller (1998). However, this reasoning holds true in perfect markets, i.e.
when no restrictions are to be found when borrowing and lending. Moreover, the hedged portfolio
remains non risky only a short period of time ahead, assumingthat during a short period of time
market conditions remain unchanged. Thus, continuous rebalancing is needed. Under these condi-
tions, the conglomerate will be indifferent between hedging and reinsurance. But decision makers
confronted to liquidity constraints might be interested inreplacing — or complementing — their
hedging strategy.

By now, assume that central managers know the distribution function of lossesFX and that
funds may be hired at the interest raterk, with rk ≥ r0, wherer0 denotes the risk free interest
rate. Decisions are affected by thenet cost of capitalηk = rk − r0. Moreover, notice the firm
simultaneously acts in two markets. So whenever a loss occurs cash is demanded to avoid default,
while in the case a gain is obtained, the surplus can be used tobuy more assets or to pay liabilities.
Assuming that investors keep different expectations aboutrisk — as long as they own different
information, knowledge, social contacts and capabilities— and denoting respectively byϕ andβ

the types for lending and borrowing,corporate EVAis given by:

EVA = Eϕ

[
(X + k)

−

]
− Eβ

[
(X − k)+

]
− ηkk.

The term Eϕ
[
(X + k)

−

]
denotes the value of the firm when the portfolio is solvent, i.e. when

X < −k, which is diminished by raising the level of surplus. On the other hand, the term
Eβ

[
(X − k)+

]
represents thecost of bankruptcy— or more properly, the cost ofassumingbank-

ruptcy. Demanding more capital leads to a reduction of the burden of default. Thus, financial
intermediaries are able to create value to shareholders as long as the cost of insuring the aggregate
exposure — which can be related to the credit quality, as perceived by lenders — plus the cost of
raising capital is less than expected gains. Notice how crucial is the role played by the differences
in expectations and the symmetry of risks. Under homogeneous expectations and symmetric risks,
keeping a surplus produces a total loss and so no capital should be hired — the value of the firm in

2WheneverA ≥ L the firm can afford the debt, but whenA < L the guarantor suffers a loss equal toL − A.
Consequently, the guarantor’s claim equalsmin(A − L, 0) which is identical to that of a put option — where the
promised paymentL corresponds to the exercise price and the value of assets corresponds to the common stock’s
price. See also Cummins and Sommer (1996).
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this case is zero, which is a reasonable claim in a competitive setting. In this way, the result of the
Modigliani and Miller proposition is obtained, see Stiglitz (1972).

The Wang’s risk principleallows for a characterisation of the mathematical expectation with
respect to adistortedprobability distribution, which is obtained by applying adistortiontransfor-
mation — i.e. a continuous, strictly increasing function, defined on the unit intervalϕ : [0, 1] →

[0, 1] such thatϕ(0) = 0 andϕ(1) = 1 — to thedecumulative distribution functionSX(x) =

1 − FX(x) = P[X > x] in the following way3:

Eϕ [X] =

∫
xdFϕ,X(x) =

∫
[1 − Fϕ,X(x)] dx =

∫
ϕ(SX(x))dx.

The traditional expectation operator is obtained when theneutral distortion, equal to the iden-
tity operatorϕ(x) = x, ∀ x, is introduced. Further, Wang and Young (1998) state the properties:

ϕ concave⇒ ϕ(y) ≥ y ∀y ∈ [0, 1] ⇒ Eϕ [X] ≥ E [X]

ϕ convex ⇒ ϕ(y) ≤ y ∀y ∈ [0, 1] ⇒ Eϕ [X] ≤ E [X] .

Therefore,concavedistortion functions characterise the decisions ofaverse-to-riskinvestors —
who overestimates risks — andconvexdistortions the behaviour ofrisk lovers— who underesti-
mates risks. Moreover, applying aTaylor seriesaround zero leads to:

Eϕ

[
(X + k)

−

]
≈ Eϕ [X−] +

[
∂ Eϕ

[
(X + k)

−

]

∂k

(k = 0)

]
· k.

Let us accordingly define:

rϕ,X := −

∂ Eϕ

[
(X + k)

−

]

∂k

(k = 0) = Fϕ,X(0).

The coefficientrϕ,X corresponds to apremium for solvency— specifically, it expresses the mar-
ginal reduction of the insured return when hiring an additional unit of equity. When the risk
accumulates more probability in gains — remember the variable X represents an aggregated loss
— a higher premium has to be paid. On this basis, the level ofEconomic Capitalis determined in
order to maximise corporate EVA4:

Maxk Eϕ [X−] − Eβ

[
(X − k)+

]
− (rϕ,X + ηk)k.

Applying Lagrange optimisationyields the first order condition:

−

∂

∂k

Eβ

[
(X − k)+

]
− (rϕ,X + ηk) = Sβ,X(k

∗
) − (rϕ,X + ηk) = 0.

3The distorted probability principle is extended to real-valued random variables as, see Wang et al. (1997):
Eϕ [X ] =

∫ 0

−∞
[ϕ(SX(t)) − 1] dt +

∫
∞

0
ϕ(SX(t))dt. Hence, after performing a change of variables, we can write:

Eϕ [X ]+Eϕ [X−] = Eϕ [X+]. The right-hand-side of the equation shows the price of a portfolio containing an insured
version of the asset, while the left-hand-side shows the price of a fund containing the asset and a guarantee to pay the
loss incurred by X. Both portfolios have the same value at theend of period, and hence both should be assigned the
same market price. Therefore the condition is consistent with the no-arbitrage principle.

4A raising principle is presented in this fashion by Dhaene etal. (2003) though they propose to minimise the total
capital cost, see also Goovaerts et al. (2005), Laeven and Goovaerts (2004) and Froot et al. (1993).
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Hence, the firm attracts debt until the marginal benefit equals the total cost of capital and the
optimal level of surplus is given by:

k

∗
= F

−1
β,X(1 − rϕ,X − ηk) = S

−1
β,X(rϕ,X + ηk) = S

−1
X

(
β

−1
(rϕ,X + ηk)

)
.

The term(rϕ,X + ηk) accounts for thetotal costof holding an additional unit of capital. When
this index is high — i.e. when a high premium is asked for solvency or a high cost is confronted
when attracting liabilities — less equity is provided. The contrary occurs when the total cost is low
— i.e. when the premium for solvency or the price of capital islow. Whenever(rϕ,X + ηk) ≥ 1

and (rϕ,X + ηk) ≤ 0, the minimum and the maximum level of cash are preferred respectively.
There is an additional motivation to demand as much surplus as possible in the later case, for the
deterioration in the credit quality of the firm might raise the net costηk. Moreover, averse-to-risk
investors, for whom the distortion function is concave, so thatϕ−1

(η) < η, underestimate the price
of equity.

The optimal amount of capital — or theEconomic Capital— is thus expressed as aValue-at-
Riskunder a transformed probability measure. This criterion coincides with the capital requirement
established by the Basel Capital Accord5. Accordingly, theRegulatory Capitalis obtained by
applying theneutral distortionand introducing alevel of confidenceα — in this way implicitly
determining the premium for solvency as well as the cost of capital by lettingα = rϕ,X + ηk.
Typically, α = 5% or α = 1%. Since the same confidence level is asked for every company,
the most efficient — which are asked a higher premium for they hold better investments — are
forced to keep more surplus than the optimal level. This lossin efficiency makes sense from the
perspective of the regulator, as long as the social losses produced because of the simultaneous
default of many firms in the industry might be huge — by affecting the economic activity and the
aggregate demand. But on the other hand, the minimum level required for the intermediaries that
perform badly might be underestimated.

3. OPTIMAL ALLOCATION OF ECONOMIC CAPITAL AMONG LINES OF BUSINESS

In order to hold the viewpoint of central managers, or a regulatory authority, confronting a multi-
business environment, let us suppose thatX denotes the aggregate loss of a financial conglomerate
consisting ofn ∈ N subsidiaries, or lines of business, such thatX equals the sum of individual
risks:

X = X1 + · · ·+ Xn.

Marginal distributions(F1, . . . , Fn) are assumed to be known and since a failure in any division
may damage the reputation of the whole conglomerate, thecomonotonic dependence structureis
considered6. When capital decisions are centralised, the cost of the guarantee can be diminished by
merging the individual losses7, for in this way funds can be assigned only to insolvent divisions —

5See Basel Committee on Banking Supervision 1996 and Basel Committee on Banking Supervision 2004.
6Comonotonicity characterises an extreme case of dependence, when no benefit can be obtained from diversifica-

tion, see Dhaene et al. (2002).
7Mathematically, this result is sustained by the fact that the distorted probability principle preserves the first sto-

chastic order, defined byX ≤ Y ⇔ SX(t) ≤ SY (t), ∀t . Therefore, Eϕ
[
(X − k)

+

]
≤ Eϕ

[∑n

i=1
(Xi − ki)+

]

when
∑n

i=1
ki = k. See Goovaerts et al. (2005) and Laeven and Goovaerts (2004).
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and no idle surplus is maintained. Accordingly, let us establish an allocation principle based on the
minimisation of the sum of exposures — the value of the firm is already maximised by choosing
the levelk∗ as the total surplus kept by the conglomerate:

Minki
Eϕ

[
n∑

i=1

(Xi − ki)+

]

subject to
n∑

i=1

ki = k

∗
.

Therefore, a diversification effect exists, but it depends on liquidity constraints — and not
on covariances. The only condition imposed is full allocation — as long as capital decisions on
business units are taken by central managers, no other concerns are needed. For theLagrange
multiplier γ the first order conditions are the following:

∂

∂ki

Eϕ

[
n∑

i=1

(Xi − ki)+

]
+ γ = −Sϕ,Xi

(k
∗

i ) + γ = 0 ∀ i = 1, . . . , n

n∑

i=1

k

∗

i = k

∗
.

Let us denote byFXc the probability distribution of thecomonotonic sumXc
= X

c
1 + · · ·+X

c
n,

where(X
c
1, . . . , X

c
n) represents thecomonotonic random vectorwith same marginal distributions

as(X1, . . . , Xn). Since the inverse distribution of the comonotonic sum is given by the sum of the
inverse marginal distributions, see Dhaene et al (2002), weget thatγ is determined such that:

F

−1
ϕ,Xc(1 − γ) =

n∑

i=1

F

−1
ϕ,Xi

(1 − γ) =

n∑

i=1

k

∗

i = k

∗
.

Thus, the optimal risk capitals allocated to the business units are given by:

k

∗

i = F

−1
ϕ,Xi

(Fϕ,Xc (k
∗
)) ∀ i = 1, . . . , n.

These levels of equity determine thecentralised solution— for both the raising and the al-
location principles have been established according to therisk attitude and knowledge of central
managers.

4. OPTIMAL DECENTRALISED MECHANISM

Full allocation suffices for centralised organisations. But divisions are run by managers who access
better information about investment opportunities, a situation that leads shareholders to incur in
agency costs, see Jensen (1986). So let us consider subsidiaries as separate units that maximise
value but do not assume the reduction of the insured return — and hence do not internalise the
premium for solvency in decision making. By putting the burden of bankruptcy on their shoulders,
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central managers attain a gain due to the diversification of the liquidity constraint, as stated in
Section 3. Accordingly, as long as subsidiaries hire capital from central management at the net
internal costη, divisional EVAis defined in the following way:

EVA = Eϕi

[
(Xi)−

]
− Eϕi

[
(Xi − ki)+

]
− ηk.

Therefore, divisions maximise value by minimising the total loss Eϕi

[
(Xi − ki)+

]
+ ηk. After

the first order condition, thestand alone risk capitalis determined by:

ki(η) = F

−1
ϕi,Xi

(1 − η) ∀ i = 1, . . . , n.

By means of the net costη, the capital decisions of subsidiaries may be distorted — forcing
them to internalise bankruptcy according to the interest ofthe conglomerate. So in order to en-
courage averse-to-risk managers to raise less capital, itscost might be overcharged. A return over
the market raterk should be assigned in this situation such thatη > ηk. On the contrary, risk
lovers might be subsidised so thatη < ηk — for giving them incentives to hire more capital. The
optimal levels of economic capital and internal cost are simultaneously determined by introducing
the following allocation principle, see Diamond and Verrecchia (1982):

Maxk,η Eϕ [ X−] − Eϕ

[
(X − k)+

]
− (rϕ,X + ηk) · k

subject to ki = ki(η) and
n∑

i=1

ki = k.

Applying Lagrange optimisationleads the solution to be characterised by:

Sϕ,X (k
∗
) = rϕ,X + ηk and

n∑

i=1

k

∗

i = k

∗
.

Hence, the same optimal surplus ofSection 2is obtained for the conglomerate, while the inter-
nal cost of capital is determined such that full allocation is assured:

n∑

i=1

F

−1
ϕi,Xi

(1 − η

∗
) = k

∗
.

Therefore, ifFϕ1,..., ϕn,Xc =

(∑n
i=1 F

−1
ϕi,Xi

)
−1

denotes the distribution function of the comonotonic
sum when marginal distributions are given by(Fϕ1,X1

, . . . , Fϕn,Xn
), then the optimal level of the

net internal cost of capital is given by:

η

∗
= 1 − Fϕ1,..., ϕn,Xc (k

∗
) .

In this way, adecentralisedallocation is determined — the same benefit as under thecen-
tralisedprescription is obtained and so no efficiency is lost. When the types of subsidiaries are not
observable, central managers may calibrate their estimations by comparing the preferred amounts
of equity with the optimal levelsk∗

i . Therefore, by letting divisional managers to act independently
they are forced to reveal their type. We can then say the proposed mechanism provides a basis to
measure the disagreement between central management and business units.
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5. CONCLUSIONS

According to the Modigliani and Miller (1959) proposition,the capital structure of a financial in-
stitution does not affect its value for it is always possibleto raise or release funds in the market.
However, this is not a suitable assumption for imperfect markets. Actually, after Merton (1997),
the level of surplus matters for averse-to-risk lenders whoare sensible to the possibility of bank-
ruptcy of the borrower. Accordingly, the decisions of managers, whose reputation depends on
performance, are also affected by risk aversion. In this context, the value of the firm depends on its
capital structure, and theEconomic Capitalis defined such that theEconomic Value Added (EVA)
is maximised.

TheWang’s principle, see Wang et al. (1997), allows expressing thecost of bankruptcyas an
expectation with respect to adistorted probability distribution. The — functional — distortion type
simultaneously accounts for risk attitude and knowledge, and investors are supposed to maintain
different expectations — an approach already adopted by Stiglitz (1972). The optimal level of
surplus is then a function of the total cost of equity — definedas the premium for solvency plus
the net capital cost — as well as the risk involved, and since no restrictions are imposed on the
distribution functions of returns, the model is suitable both to financial and insurance applications.
Thus, decision makers internalise the price of equity, though it is underestimated by risk averse
investors who apply a concave transformation to the probability distribution, and consequently
demand more capital.

Specifically, theEconomic Capitalis expressed as aValue-at-Riskunder a distorted probability
measure, at the time theRegulatory Capitalis obtained by applying no distortion and fixing a
confidence levelα — which in this way plays the same role as the total equity costand hence
in the model both coefficients are given the same meaning. Capital decisions over the minimum
regulatory requirement are then explained by risk aversion— for payments are overestimated in
this case. However, risk lover investors may overestimate exposures as well, as long as the type
also accounts for information and knowledge. In this context, the excess of surplus induces a gain
in efficiency, and not the opposite.

A centralisedallocation of equity is determined by maximisingcorporate EVAand minimising
bankruptcy costsaccording to the expectations of central managers. For a decentralised organi-
sation, anoptimal mechanismis proposed whose instrument is the internal cost of capital. The
same level of surplus is maintained by the conglomerate under both principles. When central man-
agers do not know the types of subsidiaries, the estimationsmay be calibrated a posteriori — by
looking for the functional types which are consistent with the preferred levels of equity. Thus, the
mechanism promotes transparency within the institution. Moreover, the burden of arithmetic op-
erations may be reduced if the distortion function is parametrically determined, such that a single
real number accounts for the informational type8.

Finally, the mechanism can be useful for regulatory purposes by determining the types which
are consistent with the levels of risk capital observed in the industry. Institutions demanding the
minimum capital requirement might be expecting a higher performance from their investments,
than suggested byaverageknowledge. Moreover, though it is not possible to know when compa-
nies are underestimating their risk, as long as some information is private, rational decision makers
reveal their type — for they maximise value.

8In Mierzejewski (2006) the model is presented in these terms, see also Wang (1995).
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Abstract

In this review paper we discuss a nonlinear model of Black-Scholes type for pricing derivative
securities in the presence of both transaction costs as wellas the risk from a volatile portfolio.
The model is derived by following the Risk Adjusted Pricing Methodology approach proposed
by Kratka (1998). It turns outs that prices of plain vanilla options can be computed from a
solution to a fully nonlinear parabolic equation in which a diffusion coefficient representing
volatility nonlinearly depends on the asset price and option’s Gamma. It gives rise to explain
several striking phenomena in option pricing analytically, including, in particular, the volatility
smile behavior of the implied volatility.

1. INTRODUCTION

According to the classical theory due to Black, Scholes and Merton the price of an option in an
idealized financial market can be computed from a solution tothe well-known Black-Scholes linear
parabolic equation (see e.g. Black and Scholes (1973), Kwok(1998), Dewynne et al. (1993), Hull
(1989)). Assuming that the underlying asset follows a geometric Brownian motion one can derive
a governing partial differential equation for the price of an option. We remind ourselves that the
equation governing time evolution of the priceV (S, t) of an option is the following parabolic PDE:

∂tV + (r − q)S∂SV +

1

2

σ̂

2
S

2
∂

2
SV − rV = 0 (1)

whereσ̂ is a constant volatility of the underlying asset price process,r > 0 is the interest rate of
a zero-coupon bond,q ≥ 0 is the dividend yield rate. A solutionV = V (S, t) represents the price
of an option at timet ∈ [0, T ] if the price of an underlying asset isS > 0. If the volatility σ̂ is
assumed to be constant the above equation is called the Black-Scholes equation derived by Black
and Scholes (1973), and, independently by Merton (c.f. Kwok(1998)). The linear Black-Scholes
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equation has been derived under restrictive assumptions like e.g. perfect replication of a portfolio,
frictionless, liquidity, complete markets, etc. Following this theory we can find a value of an option
over moderate time intervals assuming transaction costs and the risk from a volatile portfolio are
negligible. A solution to the linear Black-Scholes equation then provides a perfectly replicating
hedging portfolio.

In recent years, some of these restrictive assumptions havebeen relaxed in order to model,
for instance, the presence of transaction costs (Hoggard etal. (1994)), imperfect replication and
investor’s preferences (Barles and Soner (1998)), introduction of a given stock-trading strategy of
a large trader (Frey and Patie (2002), Frey and Stremme (1997)), risk from unprotected portfolio
(Kratka (1998), Jandačka andŠevčovič (2005)). These models lead to a generalized Black-Scholes
equation for the price of an option in which the volatility need not be necessarily constant and it
may depend on the asset price as well as the option price. Moreprecisely, in these models the
volatility has the general form:

σ

2
= σ

2
(S

2
∂

2
SV, S, T − t) . (2)

For instance, if transaction costs are taken into account then the classical Black-Scholes theory
is no longer applicable. In order to maintain the delta hedgeone has to make frequent portfolio
adjustments yielding thus a substantial increase in transaction costs. The effect of nontrivial trans-
action costs can be described by the so-called Leland model (cf. Hoggard et al. (1994)). In this
model the volatilityσ is given byσ2

= σ̂

2
(1 − Le sgn(∂2

SV )) whereσ̂ > 0 is a constant historical
volatility of the underlying asset price process and Le≥ 0 is the so-called Leland constant given
by Le =

√
2/πC/(σ̂

√

∆t). HereC ≥ 0 is a constant round trip transaction cost per unit dollar of
transaction in the assets market and∆t > 0 is the time-lag between portfolio adjustments. Since
S > 0 we have

σ

2
(S

2
∂

2
SV, S, T − t) = σ̂

2
(1 − Le sgn(∂2

SV )) . (3)

By assuming that investor’s preferences are characterizedby an exponential utility function, Barles
and Soner (1998) derived a nonlinear Black-Scholes equation with the volatilityσ given by

σ

2
(S

2
∂

2
SV, S, T − t) = σ̂

2
(
1 + Ψ(a

2
e

r(T−t)
S

2
∂

2
SV )

)2

wherea > 0 is the risk-aversion coefficient andΨ is a solution to the ODE:Ψ′
(x) = (Ψ(x) +

1)/(2

√
xΨ(x) − x), Ψ(0) = 0. Another popular model has been derived for the case when the

asset dynamics takes into account the presence of feedback effects. Frey and Stremme (1997) (see
also Frey and Patie (2002)) introduced directly the asset price dynamics in the case when the large
trader chooses a given stock-trading strategy. The volatility σ is nonconstant and it is given by:

σ

2
(S

2
∂

2
SV, S, T − t) = σ̂

2
(
1 − ̺S∂

2
SV

)
−2

whereσ̂, ̺ > 0 are constants.
The last example of a nonlinear Black-Scholes equation is the so-called Risk Adjusted Pricing

Methodology model proposed by Kratka (1998), revisited andmodified by Jandačka anďSevčovič
(2005). The idea of derivation of this model is simple: in order to maintain (imperfect) replication
of a portfolio by the delta hedge one has to make frequent portfolio adjustments yielding thus a
substantial increase in transaction costs. On the other hand, rare portfolio adjustments may lead
to the increase of the risk from a volatile (unprotected) portfolio. Minimization of the sum of the
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measure of transaction costs and the risk from unprotected portfolio yields the optimal time lag
between two consecutive portfolio adjustments. The resulting model is again a nonlinear Black-
Scholes type equation with the volatility of the form

σ

2
(S

2
∂

2
SV, S, T − t) = σ̂

2
(
1 − µ(S∂

2
SV )

1

3

)
(4)

for T − t > 0 large enough whereµ ≥ 0 is a coefficient proportional to the risk from volatile
portfolio and transaction costs measures. In the next section we recall key steps and ideas of
derivation of the Risk Adjusted Pricing Methodology (RAPM)model. We will furthermore present
explanation of the volatility smile based on the RAPM model.We also discuss calibration of the
RAPM model to real market data. We also introduce two new implied quantities: the implied
RAPM volatility and implied RAPM risk coefficients. Finally, we will present results of calibration
of these new implied quantities to real option and stock market data.

2. RISK ADJUSTED PRICING METHODOLOGY MODEL

In this section we recall key steps of derivation of the RAPM model. The original model was
proposed by Kratka (1998). In Jandačka andŠevčovič (2005) we modified his approach (we chose
a different measure for risk from unprotected portfolio) inorder to construct a model which is scale
invariant and mathematically well posed. These two important features were missing in the original
model of Kratka. The model is based on the Black-Scholes parabolic PDE in which transaction
costs are described by the Hoggard, Whalley and Wilmott extension of the Leland model (cf.
Hoggard et al. (1994), Kwok (1998), Hull (1989)) whereas therisk from a volatile portfolio is
described by the average value of the variance of the synthesized portfolio. Transaction costs as
well as the volatile portfolio risk depend on the time-lag between two consecutive transactions. We
define the total risk premium as a sum of transaction costs andthe risk cost from the unprotected
volatile portfolio. By minimizing the total risk premium functional we obtain the optimal length
of the hedge interval. It also gives us a new strategy for hedging derivative securities based on
option’s Gamma parameter.

Concerning the dynamics of an underlying asset we will assume that the asset priceS =

S(t), t ≥ 0, follows a geometric Brownian motion with a driftρ, standard deviation̂σ > 0 and it
may pay continuous dividends, i.e.

dS = (ρ − q)Sdt + σ̂SdW (5)

wheredW denotes the differential of the standard Wiener process andq ≥ 0 is a continuous
dividend yield rate. This assumption is usually made when deriving the classical Black-Scholes
equation (see e.g. Hull (1989), Kwok (1998)).

Similarly as in the derivation of the classical Black-Scholes equation we construct a synthesized
portfolio Π consisting of a one option with a priceV andδ assets with a priceS per one asset:

Π = V + δS . (6)

We recall that the key idea in the Black-Scholes theory is to examine the differential∆Π of equa-
tion (6). The right-hand side of (6) can be differentiated byusing Itô’s formula whereas portfolio’s
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increment∆Π(t) = Π(t + ∆t) − Π(t) of the left-hand side can be expressed as follows:

∆Π = rΠ∆t + δqS∆t (7)

wherer > 0 is a risk-free interest rate of a zero-coupon bond. In the real world, such a simplified
assumption is not satisfied and a new term measuring the totalrisk should be added to (7). More
precisely, the change of the portfolioΠ is composed of two parts: the risk-free interest rate part
rΠ∆t and the total risk premium:rRS∆t whererR is a risk premium per unit asset price. It means
that∆Π = rΠ∆t + rRS∆t. The total risk premiumrR consists of the transaction risk premium
rTC and the portfolio volatility risk premiumrV P , i.e. rR = rTC + rV P . Hence

∆Π = rΠ∆t + δqS∆t + (rTC + rV P )S∆t . (8)

Our next goal is to show how these risk premium measuresrTC , rV P depend on the time lag and
other quantities, like e.g.̂σ, S, V, and derivatives ofV. The problem can be decomposed in two
parts: modeling the transaction costs measurerTC and volatile portfolio risk measurerV P .

2.1. Modeling transaction costs and volatile portfolio risk measures

In practice, we have to adjust our portfolio by frequent buying and selling of assets. In the presence
of nontrivial transaction costs, continuous portfolio adjustments may lead to infinite total transac-
tion costs. A natural way how to consider transaction costs within the frame of the Black-Scholes
theory is to follow the well known Leland approach extended by Hoggard, Whalley and Wilmott
(cf. Hoggard et al. (1994), Kwok (1998)). In what follows, werecall crucial lines of the Hoggard,
Whalley and Wilmott derivation of Leland’s model in order toshow how to incorporate the effect
of transaction costs into the governing equation. More precisely, we will derive the coefficient of
transaction costsrTC occurring in (8).

Let us denote byC the round trip transaction cost per unit dollar of transaction. Then

C = (Sask − Sbid)/S (9)

whereSask andSbid are the so-called Ask and Bid prices of the asset, i.e. the market price offers
for selling and buying assets, respectively. HereS = (Sask + Sbid)/2 denotes the mid value.

In order to derive the termrTC in (8) measuring transaction costs we will assume, for a moment,
that there is no risk from the volatile portfolio, i.e.rV P = 0. Then∆V + δ∆S = ∆Π = rΠ∆t +

δqS∆t + rTCS∆t. Following Leland’s approach (c.f. Hoggard et al. (1994)),using Itô’s formula
and assumingδ-hedging of a synthetised portfolioΠ one can derive that the coefficientrTC of
transaction costs is given by the formula:

rTC =

Cσ̂S

√

2π

∣∣
∂

2
SV

∣∣ 1

√

∆t

(10)

(see (Hoggard et al. 1994, Eq. (3)) and also formula (3)).
Next we focus our attention to the problem how to incorporatea risk from a volatile portfolio

into the model. In the case when a portfolio consisting of options and assets is highly volatile an
investor usually asks for a price compensation. Notice thatexposure to risk is higher when the
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time-lag between portfolio adjustments is higher. We shallpropose a measure of such a risk based
on the volatility of a fluctuating portfolio. It can be measured by the variance of relative increments
of the replicating portfolioΠ = V + δS, i.e. by the termvar((∆Π)/S). Hence it is reasonable to
define the measurerV P of the portfolio volatility risk as follows:

rV P = R

var

(
∆Π
S

)

∆t

. (11)

In other words,rV P is proportional to the variance of a relative change of a portfolio per time
interval∆t. A constantR is the so-calledrisk premium coefficient. It can be interpreted as the
marginal value of investor’s exposure to a risk. If we apply Itô’s formula to the differential∆Π =

∆V + δ∆S we obtain∆Π = (∂SV + δ) σ̂S∆W +
1

2
σ̂

2
S

2
Γ(∆W )

2
+ G whereΓ = ∂

2
SV and

G = (∂SV + δ)ρS∆t + ∂tV ∆t is a deterministic term, i.e.E(G) = G in the lowest order∆t-term
approximation. Thus

∆Π − E(∆Π) = (∂SV + δ) σ̂Sφ

√

∆t +

1

2

σ̂

2
S

2
(φ

2
− 1)Γ∆t

whereφ is a random variable with the standard normal distribution such that∆W = φ

√

∆t. Hence
the variance of∆Π can be computed as follows:

var(∆Π) = E

(
[∆Π − E(∆Π)]

2
)

= E

(
[(∂SV + δ)σ̂Sφ

√

∆t +
1

2
σ̂

2
S

2
Γ

(
φ

2
− 1

)
∆t]

2
)

.

Similarly, as in the derivation of the transaction costs measurerTC we assumeδ-hedging of port-
folio adjustments, i.e. we chooseδ = −∂SV . SinceE((φ

2
− 1)

2
) = 2 we obtain an expression for

the risk premiumrV P in the form:

rV P =

1

2

Rσ̂

4
S

2
Γ

2
∆t . (12)

Notice that in our approach the increase in the time-lag∆t between consecutive transactions leads
to a linear increase of the risk from a volatile portfolio where the coefficient of proportionality de-
pends on the asset priceS, option’s Gamma,Γ = ∂

2
SV , as well as the constant historical volatility

σ̂ and the risk premium coefficientR.

2.2. Risk adjusted Black-Scholes equation

The total risk premiumrR = rTC + rV P consists of two parts: transaction costs premiumrTC and
the risk from a volatile portfoliorV P premium defined as in (10) and (12), respectively. We assume
that an investor is risk averse and he/she wants to minimize the value of the total risk premiumrR.
For this purpose one has to choose the optimal time-lag∆t between two consecutive portfolio
adjustments. As bothrTC as well asrV P depend on the time-lag∆t so does the total risk premium
rR. In order to find the optimal value of∆t we have to minimize the following function:

∆t 7→ rR = rTC + rV P =

C|Γ|σ̂S

√

2π

1

√

∆t

+

1

2

Rσ̂

4
S

2
Γ

2
∆t .
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The unique minimum of the function∆t 7→ rR is attained at the time-lag∆topt = K

2
/(σ̂

2
|SΓ|

2

3 )

whereK = (C/(R

√

2π)

1

3 . For the minimal value of the function∆t 7→ rR(∆t) we have

rR(∆topt) =

3

2

(
C

2
R

2π

) 1

3

σ̂

2
|SΓ|

4

3
. (13)

Taking into account both transaction costs as well as risk effects from a volatile portfolio, we have
shown that the equation for the change∆Π of a portfolioΠ reads as:

∆V + δ∆S = ∆Π∆t = rΠ + δqS∆t + rRS∆t

whererR represents the total risk premium,rR = rTC+rV P . On the other hand, by the no-arbitrage
principle the change∆Π in the portfolioΠ is equal to the changerΠ∆t of secure bonds with the
interest rater > 0. Applying Itô’s lemma to a smooth functionV = V (S, t) and assuming the
δ-hedging strategy for the portfolio adjustments we finally obtain the following generalization of
the Black-Scholes equation for valuing options:

∂tV +

σ̂

2

2

S

2
∂

2
SV + (r − q)S∂SV − rV − rRS = 0 .

By taking the optimal value of the total risk coefficientrR derived as in (13), the option priceV is
a solution to the following nonlinear parabolic equation:

(Risk adjusted Black-Scholes equation)

∂tV +

σ̂

2

2

S

2
(
1 − µ(S∂

2
SV )

1

3

)
∂

2
SV +(r− q)S∂SV − rV = 0 , where µ = 3

(
C

2
R

2π

) 1

3

. (14)

In the case there are neither transaction costs (C = 0) nor the risk from a volatile portfolio (R = 0)
we haveµ = 0. Then equation (14) reduces to the original Black-Scholes linear parabolic equation
(1). We note that equation (14) is a backward parabolic PDE ifand only if the functionβ(H) =

σ̂2

2
(1 − µH

1

3 )H is an increasing function in the variableH := SΓ = S∂

2
SV . Hence, in order to

verify parabolicity of (14), we have to assume the followingcondition:

S∂

2
SV (S, t) < κ :=

(
3

4µ

)3

. (15)

If we consider prices of either Call or Put options computed from a solution to the classical
Black-Scholes equation (1) then the termSΓ = S∂

2
SV (S, t) becomes infinite atS = E for t → T

−

and the (15) condition is violated. The same feature is present in the generalized equation (14)
yielding thus the change of the sign of the diffusion coefficient of (14) close to expiration time
T . This is why we have to modify the model equation (14) near theexpiration time, i.e. for
0 < T − t ≪ 1. The idea of modified early exercise behavior was introducedby Jandačka and
Ševčovič (2005). It consists in determining the so-called switching timet∗ < T such that the
RAPM model is modified as follows: the price of an option is given by a solutionV (S, t) to the
following problem:

1. V (S, t) is a solution to equation (14) on the time interval0 < t < t∗; whereas
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Figure 1: Explanation of the volatility smile based on RAPM.The implied volatility surface
(S, t) 7→ σ̄(S, t).

2. V (S, t) is a solution to the linear Black-Scholes equation (1) on thetime intervalt∗ < t < T

and satisfying the prescribed pay-off diagram at expiryt = T ;

3. functionV (S, t) is continuous int = t∗.

The switching timet∗ < T is chosen as nearest time to expiryT for which the value ofSΓ = S∂

2
SV

is less or equal to the threshold valueκ. Now if we compute the quantitySΓ for plain Call or Put
options by using the original Black-Scholes model (1) we obtainmaxS>0 SΓ(S, t∗) =

1
√

2πσ̂2(T−t∗)
.

Then we can deduce

T − t∗ =

C

Rσ̂

2
. (16)

As t∗ must be positive we haveT − t∗ < T it also turns out that we have to require the following
structural condition

0 ≤ C < σ̂

2
RT . (17)

to be satisfied (see Jandačka andŠevčovič (2005) for details).

3. CALIBRATION OF THE RAPM MODEL TO REAL MARKET DATA

The purpose of this section is to discuss application of the RAPM model to real market option
price data. We also introduce a concept of the so-called implied RAPM volatilityσRAPM and the
implied risk premium coefficientR. First we discuss capability of RAPM model to explain the
so-called volatility smile analytically.

3.1. Volatility smile and RAPM model

One of the most striking phenomena in the Black-Scholes theory is the so-calledvolatility smile
phenomenon. Notice that derivation of the classical Black-Scholes equation (1) relies on the as-
sumption of a constant value of the volatilityσ. On the other hand, as it might be documented by
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Figure 2: Intra-day behavior of Microsoft stocks (April 4, 2003) and shortly expiring Call op-
tions with expiry date April 19, 2003. Computed implied volatilities σ̂RAPM and risk premium
coefficientsR.

many examples observed in market options data sets such an assumption is often violated. More
precisely, the implied volatilityσimpl is no longer constant and it may depend on the asset priceS,
the strike priceE as well as the timet.

In the RAPM approach we are able to explain the volatility smile analytically. The Risk ad-
justed Black-Scholes equation (14) can be viewed as an equation with a variable volatility coeffi-
cient, i.e.∂tV +

1

2
σ̄

2
(S, t)∂

2
SV +(r−q)S∂SV −rV = 0 whereΓ = ∂

2
SV and the volatilitȳσ2

(S, t)

depends itself on a solutionV = V (S, t) as follows:

σ̄

2
(S, t) = σ̂

2
(
1 − µ(SΓ)

1/3
)

. (18)

In Fig. 1 we show the dependence of the functionσ̄(S, t) on the asset priceS and timet. It should
be obvious that the functionS 7→ σ̄(S, t) has a convex shape near the exercise priceE. We have
used the RAPM model in order to compute values ofΓ = ∂

2
SV . We choseµ = 0.2, σ̂ = 0.3, r =

0.011, andT = 0.5. In Fig. 1 we show the dependence of the functionσ̄(S, t) on the asset priceS
and timet. It should be obvious that the functionS 7→ σ̄(S, t) has a convex shape near the exercise
priceE.

3.2. Implied volatility and risk premium in RAPM model

Let us denoteV (S, t; C, σ̂, R) the value of a solution to (14) with parametersC, σ̂, R. Suppose
that the coefficient of transaction costsC is known from and is given by (9). In real option market
data we can observe different Bid and Ask prices for an option, Vbid < Vask, respectively. Let us
denote byVmid the mid value, i.e.Vmid =

1

2
(Vbid + Vask). By the RAPM model we are able to

explain such a Bid-Ask spread in option prices. The lower Bidprice corresponds to a solution to
the RAPM model with some nontrivial risk premiumR whereas the mid valueVmid corresponds to
a solutionV (S, t) for vanishing risk premiumR = 0, i.e. to a solution of the linear Black-Scholes
equation (1).
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Figure 3: One week behavior of Microsoft stocks (March 20 - 27, 2003) and Call options with
expiration date April 19, 2003. Computed implied volatilitiesσ̂RAPM and risk premiumsR.

In order to calibrate the RAPM model we are seeking for a couple (σ̂RAPM , R) such that
Vbid = V (S, t; C, σ̂RAPM , R) andVmid = V (S, t; C, σ̂RAPM , 0). It means that we have to find a
solution to a nonlinear problem:

F (σ̂, R) = (Vbid, Vmid) (19)

where the mappingF : R
2
→ R

2 is defined as:F (σ̂, R) = (V (S, t; C, σ̂, R), V (S, t; C, σ̂, 0)).
It can be solved numerically by means of the Newton-Kantorovich iterative method for solving
algebraic equations. A solutionV (S, t; C, σ̂, R) can be computed from the Risk adjusted Black-
Scholes equation by means of finite difference (see Jandačka andŠevčovič (2005) for details).

As an example we considered sample data sets for Call optionson Microsoft stocks. We
considered a flat interest rater = 0.02, a constant transaction cost coefficientC = 0.01 estimated
from (9), and we assumed that the underlying asset pays no dividends, i.e.q = 0. In Fig. 2
we present results of calibration of implied couple(σ̂RAPM , R). Interestingly enough, two Call
options with higher strike pricesE = 25, 30 had almost constant implied risk premiumR. On the
other the risk premium of an option with lowestE = 23 was fluctuating and it had highest average
of R.

Finally, in Fig. 3 we present one week behavior of implied volatilities and risk premium coef-
ficients for the Microsoft Call option onE = 25 expiring atT = April 19, 2003. In the beginning
of the investigated period the risk premium coefficientR was rather high and fluctuating. On the
other hand, it tends to a flat value ofR ≈ 5 at the end of the week. Interesting feature can be
observed at the end of the second day when both stock and option prices went suddenly down. The
time series analysis of the implied volatilitŷσRAPM from first two days was unable to predict such
a behavior. On the other, high fluctuation in the implied riskpremiumR during first two days can
send a signal to an investor that sudden changes can be expected in the near future.
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4. CONCLUSIONS

In this paper we discussed the Risk Adjusted Pricing Methodology model for for pricing derivative
securities in the presence of both transaction costs as wellas the risk from unprotected portfolio.
We showed that the option price can be deduced from a solutionto a nonlinear parabolic PDE.
The governing equation extends the classical Black-Scholes equation and Leland’s equation to the
case when the risk from unprotected portfolio is taken into account. We have performed extensive
numerical testing of the model and compared the results to real option market data. Furthermore,
we introduced a concept of the so-called implied RAPM volatility and implied risk premium co-
efficients. We have computed these implied quantities for sample option data sets and we have
indicated how these implied factors can be used in qualitative analysis of option market data sets.

References

G. Barles and H.M. Soner. Option pricing with transaction costs and a nonlinear Black-Scholes
equation.Finance and Stochastics, 2(4):369–397, 1998.

F. Black and M. Scholes. The pricing of options and corporateliabilities. Journal of Political
Economy, 81:637–654, 1973.

J.N. Dewynne, S.D. Howison, J. Rupf, and P. Wilmott. Some mathematical results in the pricing
of american options.European Journal of Applied Mathematics, 4:381–398, 1993.

R. Frey and P. Patie. Risk management for derivatives in illiquid markets: A simulation study.
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De “4th Actuarial and Financial Mathematics Day” is een vaste waarde geworden als contactforum. Niet alleen 
academici maar ook heel wat collega's uit de bank- en verzekeringswereld blijven de weg vinden naar dit 
jaarlijkse evenement. Het is de gelegenheid bij uitstek om op de hoogte te blijven van het recente onderzoek op 
het vlak van financiële en actuariële wiskunde in België en van nieuwe uitdagingen die ons te wachten staan 
zoals in het kader van Basel II. Naast twee gastsprekers kwamen doctoraatsstudenten, postdocs en mensen uit de 
bedrijfswereld aan bod. In deze publicatie vindt u een neerslag van de voorgestelde onderwerpen. Alle 
onderwerpen kunnen gesitueerd worden in het ruime gebied van financiële en actuariële toepassingen van 
wiskunde, maar met een grote variatie: de bijdragen betreffen “capital allocation” problemen, modellen voor 
kredietrisico, voor stop-loss premies en voor basket- en spreadopties, risicomanagement van coupon bonds, etc. 


	4TH ACTUARIAL AND FINANCIAL MATHEMATICS DAY
	February 10, 2006

	4TH ACTUARIAL AND FINANCIAL MATHEMATICS DAY
	February 10, 2006
	 
	VOOR WETENSCHAPPEN EN KUNSTEN
	( Copyright XXXX KVAB
	Niets uit deze uitgave mag worden verveelvoudigd en/of openbaar gemaakt door middel van druk, fotokopie, microfilm of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming van de uitgever.



