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4™ Actuarial and Financial Mathematics Day

PREFACE

The Contactforum *“Actuarial and Financial Mathematics Day” was organized for the fourth
time. It started four years ago with a modest meeting but since then, this event attracted every
year more and more participants.

The main purposes of this event is twofold. Firstly, we want to bring people together from
two fields with a lot in common, namely the actuarial field and the financial field. This is
important seen the recent evolution on a company level but also by looking at the nowadays
battery of interrelated products such as equity-linked insurances and credit risk. Secondly, our
aim is to bring practitioners and academics closer together in order to create a stimulating
interaction for both of them. This edition welcomed as many practitioners as academics.

This contactforum gives on one hand young and promising researchers the opportunity to
present their recent work to a broad audience and to have their paper published in these
proceedings. On the other hand, renowned practitioners were programmed as main speakers
in order to give them a forum to talk about the needs, the problems, the hot topics in their
fields. The invited paper about Solvency Il is included in these transactions.

We thank all our speakers, without their effort the organization of the contactforum wouldn't
be possible. We are also extremely grateful to our sponsors: the Royal Flemish Academy of
Belgium for Science and Arts, and Scientific Research Network “Fundamental Methods and
Techniques in Mathematics” of the Fund for Scientific Research - Flanders. They made it
possible to spend the day in a very agreeable and inspiring environment.

The success of the meeting encourages us to continue with this yearly initiative. We are
convinced that it provides a great opportunity to facilitate the exchange of ideas; it certainly
stimulates the research in actuarial and financial mathematics in Belgium.

Ann De Schepper
Jan Dhaene
Huguette Reynaerts
Wim Schoutens
Paul Van Goethem
Michele Vanmaele
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SOLVENCY Il :
AS SIMPLE AS POSSIBLE, AS COMPLEX AS NECESSARY
(THE STORY OF A PASSIONATE CHALLENGE FOR ACTUARIES)

René Dhondt

Assuralia, De Meg@ssquare 29, 1000 Brussels, Belgium & Universiteit AntwargFaculty of
Applied Economics, Prinsstraat 13, 2000 Antwerp, Belgium
Email: r ene. dhondt @ssur al i a. be

Abstract

The need to redefine prudential standards according to #heisks insurance companies are
exposed to, has proven to be much more than pure intelleatorid. Indeed, trading off be-
tween policyholders protection and optimal capital altmrais no easy task (neither technical
nor political). The European Commission has to manage quit@mplex project, taking into
account many divergent point of views: 25 national supergi®f as many different domestic
insurance markets (trying to coordinate within CEIOPS)resentatives of insurance under-
takings (also coordinating their points of views within CEBASAM, CFO/CRO-Forumes, ...),
consumers, accountants, auditors and ... last but not leasictuaries whose advice is ex-
pected from the “Groupe Consultatif Actuariel Européeifhe Swiss Solvency Test could
prefigure some major parts of the output of the Solvency ljgmto one of them concerning
the “Standard Models” that CEA means to be “As simple as ptsssas complex as neces-
sary”.

1. INTRODUCTION

In order to operate, an insurance company requires a nurhlddfeyent ‘resources’ (the descrip-
tion given here is simplified and limited in scope):
e An approach to the risks it has to deal with (not only insuearedated risks, but also various
business and financial risks).

e An extensive historical knowledge of the frequency and nitage of these risks, as they
actually materialise.

o Staff with the necessary knowledge and experience (to teidcethe various sub-activities-
product development, marketing, distribution, produttamd loss management, legal and
insurance-related support, management of all the abavg, et
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4 R. Dhondt

e The necessary financial resources - the only raw materitlrikarers use. These financial
resources may be provided by shareholders, obtained om#resfal or reinsurance markets
or derived from the company’s annual business activities.

Available capital is far and away the most important elenfi@mén insurance company. Capital
is a basic commodity for insurers, allowing them to accegksi It must be used effectively and in
an optimum way. If the necessary capital has to be borrowdéaoght, it has a price, as have all
goods handled on a supply and demand market. This price,lkasnbe capacity of the financial
markets, are not defined at national level, not even at Earofavel, but globally.

Identifying the precise capital needs of an insurance comga complex exercise. The main
reason for this is that the normal production cycle is res@rsn other words the real cost of the
insurance product is only calculated when the risk maisga) not when the insurance contract is
drawn up. Indeed, it is highly likely that the price (or ‘preeim’) asked for an insurance contract
will differ greatly from the real (average) cost of the ingnce guarantee.

European legislators, realising from the outset that a mumn degree of harmonisation was
necessary to the development of the single market, develapénitial set of rules known as Sol-
vency |. Solvency I, which came into being at the time of thestfgeneration’ directives and still
officially applied by national supervisors, is purely qutative in nature; solvency requirements
are expressed as a fixed percentage of the earned premiuros nedoss provisions. Naturally,
this makes it impossible to properly study the solvency okHifferent insurance companies and
how this risk is influenced by, say, the legal form of the conypdts investment policy and its
product definition and price setting mechanisms. FurtierSolvency | rules provide for inade-
guate harmonisation, so that insurers operating fromreiffeMember States cannot be considered
in the same framework of reference. Finally, these rulesewdeawn up in the 1970s and so ob-
viously take no account of new concepts such as asset arnlityiaanagement, alternative risk
transfer or the existence of derivatives offering finanpraltection.

In view of this, a new project, Solvency Il, was launched bg Buropean Commission in
the late 1990s. This project is about providing the capitded to guarantee the continuity of
insurance companies and giving near-certainty to bengésighat the payments will be executed
in due time.

Calculating the Solvency Il margin for the insurance induss one of the greatest adven-
tures in the financial world at the start of the third millemmi. It is a voyage of discovery for
commodities, as important as those undertaken in the lakeatts early 16th century.

2. THE SOLVENCY OF THE BELGIAN INSURANCE MARKET

Let us now examine the solvency of the Belgian insurance etarkreal terms. What can be
legitimately expected from a solvency model?

First of all, the Solvency | rules, as applied in Belgium,ede be effective, since there has
been no bankruptcy in the Belgian market in the last 30 ydhesiisurance Companies Super-
vision Act, drawn up in response to the first-generationdatives, dates from July 1975). This
cannot be pure chance, since a number of companies in neighba@ountries have gone under
in the recent past: the Belgian market clearly has a findgaalid foundation.
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Evolution of the Ratio Available Solvency Margin | Required Solvency Margin
{(Explicit and Implicit Parts) source: cera
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Figure 1: Evolution of the Ratio Available Solvency MargiRéquired Solvency Margin

Let's take a more detailed look at the Belgian market sinc@519

Figure 1 illustrates, over the period from 1995 to 2004, thorbetween the real overall
available solvency margin of the Belgian direct insuran@ek®t (not including reinsurance) and
the margin imposed by the Solvency | rules. The Belgian nianks seen its solvency margin
decline slightly from 300% to 250%, but it remains comfolyabutside the danger zone. The
solid ‘explicit’ part of this margin (i.e. the part based dretmarket value of underlying assets)
has fallen slightly more markedly than the more volatilegirit’ part (unrealised gains, expected
profits, etc.).

Implicit
part/Regulatory
margin

Figure 2: Dispersion of Solvency Margins

This positive overall situation gives us no definite indicatabout the solvency of individual
companies. For clarification on this, we need to look at tlmeabof individual margins (figure 2).
The horizontal axis shows the explicit part (as a percentdglee regulatory margin, with maxi-
mum value 300%), the vertical axis shows the implicit padt @ach circle represents one insurance
company. The line passing through the 100% level on the tws eepresents the regulatory mini-
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mum. No company is beneath this level, which means that es@npany possesses at least the
minimum required solvency capital. The dotted line shovesaterage margin actually available.
The companies are spread out around this average valueibuhieresting to note that several
companies have a solvency capital, or equity, over threedihgher than the required capital
level.

Non-Life and Life Insurance : Evolution of Net Results
{Source: CBFA)
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Figure 3: Evolution of Net Results

The increase in solvency capital is financed by annual fimhnevenues from underlying in-
surance transactions. Figure 3 shows how, following a me&lease in companies’ net results
which lasted until 1998, there ensued a period of declingially, until 2000, results remained
very positive, but then came two successive years of lossmrlife insurance and — for the first
time ever — a year of overall loss for life-insurance compar2002).

Accounting results remained positive until the turn of thdldhnium, but the continual de-
struction of economic value in the insurance industry saazaime apparent.

In 2000, the industry’s professional organisation joineatés with McKinsey & Company to
lead an awareness-raising campaign on ‘economic capBaline companies were already very
aware of the concept and had firmly embedded it in their bgsipelicies; for others, it was still
relatively unfamiliar.

Few of them had already integrated a model centred arouridrtiieedded value’ of the portfo-
lio, and there was too little awareness of the danger of westienating the risk of value destruction.
Strong competition (inadequate pricing in non-life bussdoo high interest rates guaranteed in
life business) led to a decrease in profits and later, as @&qoesce of the tumbling stock markets
(from 2000), gave negative results, thus affecting thelalba capital and the solvency margins.

A look at the combined equity of the Belgian insurance induisétween 1998 and 2004 (figure
4) shows that the book value remained roughly the same bldskes sustained by insurers in 2001
and 2002 had major repercussions on this value, which leajtibed injections for many companies
in 2003 (in total betweere550 and 600 million). The collapsing capital markets cledidd a
destructive impact on companies’ equity, but other factooscontributed to the loss, in the space
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Figure 4: Evolution of Equity Capital (in mio euro)

of four years, of over a half of the previously amassed egquityasured in market value terms,
from €20.5 to 8.8 billion. The trend was broken in 2003 when sigaiftcpositive results were
again recorded, leading to the recovery of over half of tisé éguity. The sector would therefore
seem to be resilient enough to ensure its own financial coitgirHowever, the volatility that has
been displayed raises questions about the capital regamsmmposed on companies and about
the imminent reform of the financial reporting system, bdtiwbich could amplify this effect.

Evolution of the overall Profitability and Solvency of the Belgian Insurance Sector
(1996-2004)

Return on ASHM (%)

Available Solvency Margin / Required Solvency Margin (%)

Figure 5: Evolution of Profitability and Solvency

Figure 5 summarises how the profitability and solvency obigel insurance companies have
changed over the past nine years. The year 1998 stands outeasrd year for the Belgian
insurance industry, as regards the ratio between the alaitmlvency margin and the required
solvency margin and as regards the return on equity (retmravailable solvency margin). The
years from 1999 onwards saw a sharp decline in profitability) a negative return in 2002. This
meant that the established solvency margin fell markedIgdf62 and 2003, without however
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approaching the required minimum.

Solvency and Return on Available Solvency Margin (September 2005)

40%

Return on ASW

Available Solvency Margin / Required Selvency Margin

Figure 6: Solvency and Return on Available Solvency Margin

A look at the market situation gives an indication, althongi a definite one, of the situation
of individual companies. In figure 6, the same data are spltbuishow the position of individual
companies. As before, each circle represents one insumpany. The ratio between the
available margin and the required solvency margin (showrthenX-axis) is capped at 600%,
while the return on the available margin (Y-axis) goes ndarghan 30%.

Like figure 2, this diagram shows that all insurance comEpiessess a solvency margin
deemed to be adequate (i.e. greater than 100% of the requaegin). The return on this margin
— a reliable indicator of a company’s equity — is positive floost companies, but varies greatly
from one to another.

In some situations, there may be a degree of doubt as to tlpiaideallocation of capital or
the profitability of the underlying business. Or both. On ¢me hand, a high solvency margin
might lead to a very positive quotation by the rating agen¢®&andard & Poor’s, etc.) and will
give access to interesting contracts, especially for tearamce of industrial risks. On the other
hand, high capital requirements may frighten stakeholdedslead them to prefer investments in
other services, industry areas, or other commodities.

3. WHAT ARE THE (BELGIAN) INSURANCE INDUSTRY’'S NEEDS WITH RE SPECT
TO SOLVENCY?

Belgian insurance companies possess sufficient equitydodially offset major discrepancies be-
tween the actual loss frequency and the theoretical exppgatae. Indeed, they have a comfortable
surplus, measured in terms of the required solvency mangposed by the Solvency | rules. This

surplus is present at market level, but even individual canmgs seem in no immediate danger of
encountering problems.
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The existing solvency requirements are principally conedrwith insurance-related diver-
gences from the expected values resulting from statisticdlactuarial calculations based on his-
toric claims. Other ‘accidents’ resulting from, say, digamting financial income (downturn on
the share markets, long-term interest) or a prolongedruni&on to activity, are not taken into
account in the scenarios that managers or supervisors usedsure the business’s risk sensitiv-
ity so as to augment capital requirements accordingly. Agcated above, the absence of such
calculation methods often means that insurance compaadsre overcapitalised, which in turn
damages shareholders’ interests and may induce them tweksi Furthermore, these solvency
requirements are not harmonised throughout the EU, whinhropact on competition between
insurers from different Member Sates.

Take, for example, the recent demand made by some EU MemiexsSo create ‘guarantee
schemes’. The necessity of such schemes depends heaviig gmudent evaluation rules these
Member States initiated: much of the financial protectiolh & provided by correctly calculated
liabilities (reserves), a surplus of covering assets ananaount of unrealised gains; however, the
home country’s legislation demands that each businesshoald be profitable (this is the case
in Belgium, but may not be in some other Member States). Trogiges additional protection
vis-a-vis foreign companies, which are only required teeh¢otal account equilibrium’. Another
guestion one might raise is whether the new solvency reapgings will take into account existing
guarantee schemes for determining the capital required.

In view of this, there is everything to be said for encourggmuch greater harmonisation of
supervisory rules, thus creating a level playing field befwmmsurance companies competing on
the single European insurance market.

This means that new calculation methods for solvency requents are necessary. These
methods must take account of increasingly diverse ruinat@nand also factor in, amongst other
things, the management itself and the soundness of the mgpakid production methods instigated
by the insurer. The time is therefore ripe for a new set ofsuolvency Il. There is now a strong
need for robust models to define suitable solvency marginsdefs based on in-depth financial,
statistical, actuarial and economic research.

Likewise, there is a strong need for a solid framework, goteing continuity for these
models: after all, insurers cannot alter their strategaisiens every few years.

4. HOW TO MOVE FROM SOLVENCY | TO SOLVENCY I1?

As stated above, the Solvency Il project was launched by tiregean Commission in the late
1990s. It was designed to assess the financial solidity afréns on a more prospective basis,
incorporating all the risks an insurance company may fadepaoposing a harmonised system at
European level.

The objectives were ambitious but reasonable: to provieatgr protection of policyhold-
ers’ and claimants’ interests whilst boosting economiavgindoy optimising the allocation of risk
capital in the financial sector.

Various stakeholders, such as the Comité Européen dasas®s (CEA), have launched
studies and projects to help ensure that the insurancetmdakes an active role in developing the
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new rules. Before starting the actual discussions, somdiciion work was clearly necessary
to try to reach a common understanding and consensus on dotine major issues related to
Solvency Il. This ongoing project, launched in early 200% dontinuing this year and possibly
also next year, will help the insurance industry to develommon views on objectives, the way
to meet them and the solvency models that will help insurancgpanies to deal with the various
risks they face.

The insurance industry has shown strong support for a Sopéframework with the follow-
ing aims:
e Enable an institution to absorb significant unforeseerel®ssd offer reasonable insurance
to policyholders (Framework for Consultation on Solvengy |

e Contribute to a “better managed and more competitive imarandustry that can better
perform its key function of accepting and spreading riskdif@nissioner McCreevy).

e Encourage a single European market for financial services.

The industry has also formulated some general principlestwdhould be taken into consider-
ation:

1. Insurers should be able to measure the risk to which theygposed — which has reper-
cussions on the requirement of risk-based capital — andéke@ccount the insurance risks
they have underwritten.

2. There should be maximum harmonisation across the Eumopsarance markets. This
means that individual Member States or local supervisothiaities would not be able to
develop requirements that are more stringent than thoseediedit a European level.

3. The current solvency capital requirement should be cepleby a twofold requirement.
Firstly, in relation to minimum capital, i.e. the level belavhich insurance activity should
be put in run-off and, secondly, with regard to solvency tgsometimes referred to as
target capital), which defines the capital needs for an ‘orggbusiness’ and below which
intervention may be required from the supervisory autliorithis would not necessarily
result in new equity being injected, but would encouragériegarance company’s managers
to review and monitor the company’s procedures and methods.

4. The new approach to calculating the solvency requireméhmake existing hidden re-
serves (the result of an occasionally over-cautious aghjoaore transparent when deter-
mining provisions, unrealised capital gains etc.

In the meantime, the re-working of the existing rules on sup®n of insurers’ solvency
should take into account the lack of harmonisation betweemties and insurance markets, the
rigidity of the current rules, which focus on a merely quative approach and penalise compa-
nies with a prudent provisions policy, and, finally, the podegration of risks and opportunities
associated with technical and financial innovations (sscAlaM, ART and derivatives).

The first phase of the Solvency Il project led to an integratbthe Basel 1l requirements into
the insurance environment, adopting but also adapting tixétim a series of regulations for:

1. financial resources;
2. the prudential supervision process;
3. market discipline;
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Figure 7: What Does the Solvency Il Three-Pillar Approactakie

thus creating a three-pillar approach. The Pillar | Solyasapital requirements should be based on
a total balance sheet approach, reflecting market-consigidue. This means measuring assets,
capital and liabilities on a market value (if available othise they should be measured on the
best estimate for projected future cash flow), see Figure &ufficient level of harmonisation
is necessary to ensure that solvency requirements arardeést by the nature and scale of the
activity and its risks rather than the location (or struejuwf the company. Solvency rules should
be designed for both financial groups and stand-alone coegand also require a lead supervisor
to be appointed for the group.

A ‘total balance sheet’ approach involves evaluating altlsi of risks, taking into consideration
not only statistical risk (probability of ruin due to unfeeen frequency or intensity of insured
risks) but also financial risks, the risk of malfunctioningproper product development, fraud
etc.) and so forth. Each risk should be evaluated in a proispegay, on the basis of a stochastic
evaluation of all future incoming premiums and payments.

The market value of the liabilities should be determinechveihough certainty to ensure that
no additional prudence is required to cover the risk of vemeagainst the current market value.
Although International Financial Reporting Standard®R@y have been incorporated into the ac-
counting principles and rules used by insurance compaanesrisk and capital management dis-
closures are part of this financial reporting system, IFR$Swivency Il clearly continue to differ
considerably (IFRS equity versus regulatory capital assaltef the treatment of available-for-
sale investments, scope of the group and its levels of coladimin as a result of the different
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understanding of the nature of insurance activities batviaking and insurance). Accounting
considerations must not affect the definitions used foresaty calculations.

The valuation of assets and liabilities and solvency chmguirement can be based on either
an internal model, accepted by the supervisor, or a stamadudtry model. The standard approach
will need to be more approximate and closer to the existimmédas. Insurers who don’'t have
enough staff to develop their own internal solvency modetsifd find the approach easy to apply.
Moreover, it should also incorporate the recognition okdsification and risk mitigation.

Both methods should lead to the definition of two levels ofiggeapital requirements:
¢ A minimum capital requirement (MCR), calculated using diefprmulas. This might even
be the actual solvency margin and will also serve as an aéwaect indicator.

e A target or solvency capital requirement (SCR) to reduceptiobability that the company
is bankrupted by a predefined level (e.g. 0.5% for a one-yeaog).

Internal models would lead to a reduction in capital requigats as regards the standard mod-
els and insurance companies or groups would only be allowedé them under strict conditions
(various aspects would be monitored, for example, the deweént and the quality of the models,
the way in which they are used by the management, audit,tthésprocedures followed and the
level of compliance).

The standard model (a common insurance industry model)ldth@ubased on the same eco-
nomic principles as an internal model but be simplified asafpossible. Each of the companies,
even those using the standard model, should be encouragegrove their risk management ca-
pacity. The practical limitations of the current ‘one-si#s-all’ solvency requirement or of the
Solvency Il requirements could be avoided by using an amprdlaat is more clearly based on
principles rather than a traditional rules-based approach with respect to investment rules (no
arbitrary restrictions on investment flexibility neededcg market, credit and liquidity risks are
taken into account).

The total balance sheet approach, which incorporatestsesaim either a standard or an in-
ternal model, is outlined in Figures 8 and 9. This still lea@ewide range of options available, as
discussed below and in the definitions of the terms used ifighees.

Technical provisions are composed of:

¢ the actuarial best estimate: discounted provisions, withrccorporated margin, decreased
(for life provisions) with deferred acquisition costs anlihzerized, taking into account all
options and guarantees;

¢ the market value margin, based on either:

o the International Accounting Standards Board (IASB)'ddaéxe definition or;
o the cost of transfer to a third party;

e a prudence margin, which might be either:
o a specific percentage (function of the class of business$)edbést estimate or;

o a multiple of the standard error or;
o a percentile of the probability distribution of the final t©60/75 or 90%).
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Reported Economic Balance Sheet View (Scales are not respected 1)

Unrealized Available capital =
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Figure 8: Total balance sheet approach (a)
Reported Economic Calculations for Solvency View
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Figure 9: Total balance sheet approach (b)

Available capital (at market consistent value of net a3setsalculated by subtracting technical
provisions from net assets:

available capita: net assets- technical provisions
with
net assets- assets- debts
where:

e assets and debts are calculated at market consistent vehigh) is the market value or
marked to model (IASB’s fair value?);
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e intangibles are taken into account if they are not deduatad the liability side (goodwill,
present value of future profits, net deferred taxes etc.).

Covering assets are reported either within the balance sinessparately (separate annex to
the supervisor?) and should always be superior to techpioalsions and, if necessary, subject to
harmonised (qualitative only?) investment rules.

Furthermore
free assets- net assets- covering assets

where a distinction could be made between assets repnegeMitCR, SCR, free surplus and
prudent-person principles could be adopted in relationtestment of some of these assets.

Measuring the economic value of liabilities requires chdtian of the market-consistent value.
This assumes that either market-consistent standardd beutlefined or robust internal models
should be developed.

This process is not an easy one.

Almost all national insurance industries have started t@higp market standards: new models
that aim to issue an adequate total appraisal of the baldrext appear every two months (e.g.
Swiss Solvency Test, GDV models, FSA models, FFSA model ttabeched or the Belgian
model for workman’s compensation insurance which is culydieing developed).

Certain ‘rules of thumb’ could also be used, for example, @ t®nfidence level for the best
estimate of the technical provisions. (This means thaetiei75% probability that the technical
provisions would at least equal the pay-off for all liabdg in the portfolio).

Another possibility could be a predefined percentile (75kad} for this reason that the Quan-
titative Impact Study (part 1 - QIS1), launched by natiomaluirance supervisors on behalf of the
CEIOPS (Committee of European Insurance and Occupaticradiéhs Supervisors), includes
testing for the plus and minus 15% percentile, in order tm gathorough understanding of the
relation between the confidence level and the volume of ieahprovisions.

A predefined percentile does not give the competitive adypnthat some insurance compa-
nies or groups aimed for when they set the development oftamia model as one of their key
priorities. Other companies might not have of the necesgalyme of technical data available to
enter into the model.

Consequently, insurance associations like Assuralia akerg preparations to help the market
collect and collate this technical data.

As for matching assets with technical provisions, contrdns will obviously be made by the
International Accounting Standards Board (IASB) which wledi the IFRS standards. So far, the
insurance industry has been critical of the IFRS-standatdsh offered a disparate approach to
liabilities and assets. The new IFRS rules (IFRS4 and IASB6)ld allow a more consistent view
on both sides of the balance sheet.

Figure 9 shows the possible outcome of the process as rethardisvel of the technical pro-
visions (which will probably be lowered because the prugamargins would disappear) and sol-
vency capital (where SCR would probably be less than theabatailable solvency margin which
would lead to a free surplus).



Solvency Il 15

2004 20068 | 2007 | 2008 | 2009 | 2010 | ?(]11>

LTI s e I8, Directive adopted? implementation?
(Commission) (Council & Parliament) {Member States)

CEIOPS works on
Wave il Calls for
Advice

Qis1 Qis 2 Further QIS

Key decisions likely to be made during 20086, it is crucial
that the industry has an impact now

Implementation date still uncertain
Significant resources required for implementation

Figure 10: Solvency Time Table for the Following Years

5. WHEN DO WE HAVE TO UNDERTAKE THIS VAST PROJECT?

Figure 10 gives an indication of the timetable for the next years:

e After examining the input of the two planned quantitativgamnt studies, the European Com-

mission will prepare a directive during 2006, taking inte@ent the advice submitted by
CEIOPS.

e This preliminary text will be examined by all stakeholderslgpresented to the European

Council and the Parliament for official adoption in 2008 (20D
e Member states will then have one or two years to implememéhedirective.

European insurers appreciate the way in which Europearoati#is are undertaking this vast
project and calling for advice at several points during tteepdure. The definition of new solvency
regulations, necessary due to the inadequacy of curreme®oy) | regulations and the evaluation

of the real risks taken by an insurer, will serve as the firditpe illustration of the European
Commission’s new approach whereby impact studies arescaonit before policy is defined.
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Abstract

The purpose of this paper is twofold. On the one hand, it iscatsverview of our recent

work on the use of mixed model methodology in actuarial stias, which covers topics from
credibility, claims reserving and non-life ratemaking. @we other hand, opportunities and
challenges for future research are sketched.

1. INTRODUCTION

We discuss how mixed models can be applied in the analysissofance data and the decision
making process following it. Starting point for the use ofxed models in actuarial statistics
are traditional credibility models and their connectiorthwinear mixed models. The credibility
ratemaking problem concerns the prediction of future ctaoha risk class, given past claims of
that and related risk classes. Traditional credibilityniafas can be reconstructed using the ex-
plicit expressions for the maximum likelihood estimatighH_E) of the fixed effects and the best
linear unbiased predictor (BLUP) for the random effects Imaar mixed model. This appealing
analogy was presented in Frees et al. (1999) and is a first@tgpds the interpretation of tradi-
tional credibility schemes in the framework of generalitegar models, using the methodology
of generalized linear mixed models.

Next to the credibility ratemaking problem, examples frasd reserving and non-life ratemak-
ing with mixed models are discussed. Using the concept oédchirodels, their connection with
smoothing methods and their implementation with Bayesiatissics, we present some new and
promising alternatives for the techniques that are cuiyrémuse.

Section 2 contains a brief overview of the statistical ceehat are involved. In Section 3
some concrete examples are discussed and possibilitiésrtber research are sketched. More
details regarding the material presented here, are givéntonio et al. (2006), Antonio and
Beirlant (2006a) and Antonio and Beirlant (2006b).
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2. STATISTICAL DETAILS

2.1. Linear mixed models (LMMSs): specification and estimatn

Linear mixed models extend classical linear regressionaisdaly incorporating random effects in
the structure for the mean. Assume the data set at hand t006/8 subjects. Let; denote the
number of observations for subjecandY’; its vector of observationd (< 7 < N). The general
linear mixed model is given by

Y, = X8+ 2Zb; +e. 1)

B (p x 1) contains the parameters for théixed effects in the model; these are fixed, but unknown,
regression parameters, common to all subjdgté; x 1) is the vector with the random effects for
thei* subject in the data set. The use of random effects refleckslied that there is heterogeneity
among subjects for a subset of the regression coefficients iX; (n; x p) and Z; (n; x q)
are the design matrices for thefixed andg random effects.¢; (n; x 1) contains the residual
components for subjec¢t Independence between subjects is assumeainde; are also assumed
to be independent and we follow the traditional assumptianthey are normally distributed with
mean vecto0 and covariance matrices, s&¥y (¢ x ¢) andX; (n; x n;), respectively. Different
structures for these covariance matrices are possibleyanview of some frequently used ones
can be found in Verbeke and Molenberghs (2000). It is easgealsatY’; then has a marginal
normal distribution with meaX ;3 and covariance matri¥’; = Var(Y’;), given by

V.=2Z,DZ,+ %, (2)

In this interpretation it becomes clear that the fixed effeetter only the mean[E;|, whereas the
inclusion of subject-specific effects specifies the stnecti the covariance between observations
on the same unit.

Denote the unknown parameters in the covariance mafsixvith . Conditional onc, a
closed form expression for the maximum likelihood estimaftq3 exists, namely

N N
B=0_x VX)X V,'Y, (3)

=1 =1
To predict the random effects, the mean of the posterioriligton of the random effects given
the datap;|Y;, is used. Conditional oax, we have

bi=DZ V. '(Y,- X.B), (4)

which can be proven to be the Best Linear Unbiased PrediBtddP) of b; (where ‘best’ is in the
sense of minimal mean squared error). For estimati@nmmfaximum likelihood (ML) or restricted
maximum likelihood (REML) is used. The expression maxirdiby the ML (L), respectively
REML (L»), estimates is given by

N N
1 1 I
Ll(O‘;yu---,yN) = 01—52110g|vi‘_5217'ivz r; (5)

N N N
' 1 1 1 1 I
La(osy,...yy) = C2—§;1og|vi|—§i§;log|xivi Xi|—§;frivi ri, (6)
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wherer; = y;, — X (ZL X;VZ-XZ) 1 (ZL X;V;lyi> andc,, ¢, are appropriate constants.

Equations (5) and (6) are maximized using iterative nunaétechniques such as Fisher scoring
or Newton-Raphson. In (3) and (4) the unknowvris then replaced witl,,;, or &rg 1, leading

to the empirical BLUE for3 and the empirical BLUP fob,. For inference regarding the fixed

and random effects and the variance components, appmikalihood ratio and Wald tests are

explained in Verbeke and Molenberghs (2000).

2.2. Generalized linear mixed models (GLMMSs): specificatio and estimation

GLMMs extend generalized linear models (GLMs) by allowing fandom, or subject-specific,
effects in the linear predictor. These models are usefuiwthe interest of the analyst lies in the
individual response profiles rather than the marginal me&|EThe inclusion of random effects
in the linear predictor reflects the idea that there is nhheterogeneity across subjects in (some
of) their regression coefficients. Diggle et al. (2002) andlénberghs and Verbeke (2005) are
useful references for full details on GLMMs.

Say we have a data set at hand consistingy &fubjects. For each subjec(l < i < N), n;
observations are available. Given the vedipwith the random effects for subject (or cluster)
the repeated measuremeits, . . .,Y;,, are assumed to be independent with a density from the
exponential family

Yiibi; — ¥ (0i)
o

Similar to a GLM, the following (conditional) relations ftbl

f(yilbs, B, ) = exp < +C(Z/z‘j,¢))7 Jj=1...,n;: (7)

pi; = E[Yi;|bi] = ¢'(6;;) and VafYy;|b] = ¢y (0;5) = ¢V (i) (8)

whereg(u;;) = x;;8 + z;;b;. As before,g(-) is called the link and/(-) the variance function.
B (p x 1) denotes the fixed effects parameter vectorgng x 1) the random effects vectos;;
(p x 1) andz;; (¢ x 1) contain subject’s covariate information for the fixed and random effects,
respectively. The specification of the GLMM is completed Bguwaming that the random effects,
b; i = 1,...,N), are mutually independent and identically distributedhwdensity function
f(b;la). Herebya denotes (again) the unknown parameters in the density. ititnaally, one
works under the assumption of (multivariate) normally ilsited random effects with zero mean
and covariance matrix determined by Correlation between observations on the same subject
arises because they share the same random ebiects

The likelihood function for the unknown parametgds o and ¢ then becomes (withy =

(Yo yn))
N
LB, e, ¢iy) = |]fyile.B,9)
=1

<
=TI/ T/ tlbB.0) ). ©
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where the integral is with respect to thedimensional vectob,. When both the data and the
random effects are normally distributed (as in the lineatadimodel), the integral can be worked
out analytically and closed-form expressions exist for rieximum likelihood estimator of8
and the BLUP forb; (see (3) and (4)). For general GLMMs, however, approxinmetito the
likelihood or numerical integration techniques are regdito maximize equation (9) with respect
to the unknown parameters. Restricted pseudo-likelihndB&)PL) (Wolfinger and O’Connell
(1993)) and (adaptive) Gauss-Hermite quadrature (Liu aecc® (1994)) are two widely used
techniques to perform the maximum likelihood estimatiomtiBtechniques are available in the
commercial software package SAS and their use will be st in Section 3. The pseudo-
likelihood technique corresponds with the penalized gliksiihood (PQL) method of Breslow
and Clayton (1993). Since maximum likelihood techniquestandered by the integration over
the g-dimensional vector of random effects, a Bayesian implaatem of GLMMs is considered
as well. Hereby random numbers are drawn from the relevastépgor and predictive distributions
using Markov Chain Monte Carlo (MCMC) techniques.INBUGS allows easy implementation
of these models. lllustrative code for both SAS and\BUGS is available on the weh

2.3. Smoothing with mixed models

To provide some background for smoothing with mixed modethme@ology, let us start from
the simple example of scatterplot smoothing. Datay;) (i = 1,...,n) are given and the model
Y = f(x;)+e (i = 1,...,n)isfitted. To estimate the unknown functigft), a linear combination
of some basis functions is used. Possible basis functi@iswarcated power basis functions-
splinesor radial basis functionsamong others. For truncated power basis functions of éggre

with K knotsk, ..., xx 2, define the design matri as
1oz 23 .0 ) (mp—r)h . (w1 — k)L
B=|: : =+ = : : : . (10)
1w, 22 ... 2k (v, —r)h o (@ —RE)L

The unknown functiorf(-) is then estimated aﬁ(x) = B(x)fi’ whereB(x) is a row vector, simi-
lar to a row fromB, andg is the solution of the least-squares probbeing > | (y; — B(z;)3)?,
subjecttothe constrai@,f:1 ﬁgk < C'to obtain a smooth fit. Hereb@ = (5o, 51, .- ., By, Bp1, - - -

B,x) and thus the penalized coefficients correspond with theaited power functions. Using a
Lagrange multiplier argument, this optimization problesmawritten as

min Z(y — B(z,)8)* + o PB, (11)

whereq is the so-called smoothing parameter dAe penalty matrix given by

_ 0p+1Xp+1 0p+1xK
P_ |: OKXp+1 IK><K ) (12)

see http://www.econ.kuleuven.be/katrien.antonio

2The truncated linéz — xy ). is zero, when: < xj and equals: — x;, elsewhere(x — lik)ﬁ_ has to be interpreted
as{(z— k)4 }*. The basis function§l, z, z2, ..., 2%, (x—r1)%, ..., (x— kK )% } span the vector space of piecewise
functions of degree with knots atx1, ..., k.
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Ruppert et al. (2003) (among others) rewrite the argumenhefoptimization problem in (11),
after dividing bys?, as

1 1
=y — XB — Zu|’ + | lul?, (13)
JE UU
whereo? = o2/a,y = (y1,---,yn) B = (Bo, B1,-- -, 5,) (i-e. the regression parameters for the
basis functions, z, 22,..., 27),u = (B, - - -, Borc) »
1z 22 ... af (1 — k)% oo (x1— k)Y
X=|: : : : i |andz= 5 : : . a9
1z, 22 ... 2P (xp, — 1) oo (zn — k)L

By consideringu as random effects with ~ N (0, 021k« x), (13) reduces to minus two times the
log-likelihood of (Y, u) in the linear mixed modeY = X3 + Zu + €, under the assumptions
Y|u~ N(XB+ Zu,0I),u ~ N(0,02I) ande ~ N(0,0>I).

A similar reasoning leads to the penalized splines formutabf a GAM, whereYy,...,Y,
are independent random variables with a dengity from the exponential family and an additive

predictorn; = 22:1 fu(zin) (@ =1,...,n). Construct the design matriX as

2 P 2 P
I oy 27y o0 2y |- | Tu Ty ... @y
X=|: : +oroi |l (15)

D 2 . p
T nl ' xnl

2
1 7 @ ol

nl Tny T

In the above specification thidlocks specify the unpenalized basis functions for estomaif the
unknown functionsf; (-), ..., fi(-). As in the scatterplot smoothing example, a smooth fit result
by putting constraints on the coefficients of the truncatasisfunctions. This is done by treating
them as random effects in a mixed model formulation. Define

(1 — w8 o (@ —R)h || (= sD)E o (= KRR
= = : : : : : . (18)
) LA (S o el I N G A s
whereK; denotes the number of knots to estim@te) (: = 1, ...,[). In case of a GAM, the log-

likelihood is considered as a function of the additive pceatin and, using penalized regression
splines;p = X8 + Zu, whereg is obtained from the following penalized log-likelihood

I
mﬁax{y/(Xﬁ +Zu)—1Y(XB+ Zu)} — % Z Czju;uj, (17)

j=1

andu from E[u|y| where — for ease of notation — a canonical link is assungets the column

vector with the parameters for the unpenalized basis fanstin (15) (one parameter per column
of X). u; = (uji,...,ujx;) (G = 1,...,0), a; (j = 1,...,1) is the smoothing parameter for
function f;(-) and sayu = (u;, ..., ;). The optimization problem in (17) is equivalent to the
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optimization problem in a generalized linear mixed mode&(Breslow and Clayton (1993)) with
the GLMM specified as

flylu) = exp(y (XB+ Zu) —1Y(XB + Zu) +1'c(y)),

u ~ N(0,A),
U%IleKl 0 ... 0
andA = : o 5 ) (18)
0 0 ... UZQIKZXKZ
Whereaj? =1/a; ( =1,...,1) and —again — a canonical link is used in (18) for ease of iwtat

Both (17) and (18) are easily generalized to the case of acaapnical link.

In line with the previous specifications, a GAMM for longitndl data can be rewritten as
a GLMM as well. LetY;; denote thej®" observation for subject, wherei = 1,..., N and
j = 1,...,n,. Conditional on the random effects (¢ x 1) for subjecti (andb; ~ N (0, D)),
Y, ..., Y, are independent with a density from the exponential familgt a predictor);; =
22:1 fn(@in) + z;jbi. Specify the design matrice¥; and Z; for subject; (: = 1,...,N) as

U owgn oy oo 2by | 2, o 2l
D T O (19)
1 xini 1 :CZQTh 1 xfnl 1 xinil x?nll xfnﬁ
and
(xz'll — /‘i%)ﬁ_ c. (xill — /@}(1 )Z_?_ c. (xill — ’%ll)}—?l— c. (xill — HZKZ)}—?I—
Z" = : - : : : - : . (20)
(Ting — Rt o @i = mg )5 || @ana = BDY o (@i — Rl

Together with the ‘classical’ design matrix for the randdife&s forb; (i = 1,..., N),

Zill .- Zilg
e e ! 1)

Zingl -+ Ringg

the contribution of subjedtto the GLMM specification of the GAMM is given by

f(ys|ri) = exp (y;<Xz/8 + Z;r;) — 1/1/1(Xzﬂ +Zr;) + 1/0(%))7
r, = (u/, b;), ~ N(0,A,),

U%IleKl 0 ... 0 0

andA, — : e e (22)
0 0 ... UZQIKZXKZ 0
0 0 ... 0 D

The assumption of independence among subjects completepéhification of the GLMM repre-
sentation of the GAMM.



Actuarial Statistics And Mixed Models: Applications and @ptunities 25

3. APPLICATIONS AND OPPORTUNITIES

3.1. Credibility

Using linear mixed models Frees et al. (1999) already gawvegitudinal data analysis interpreta-
tion of the well-known credibility models of Buhimann (1B6 Buhlmann (1969), Buhlmann and
Straub (1970), Hachemeister (1975) and Jewell (1975). ‘Explained how to specify the fixed
and random effects for every subject or risk clags= 1, ..., V) and useg3 andb; (as in (3) and
(4)) to derive the Best Linear Unbiased Predictor for thedttional mean of a future observation
(E[Y:n,+1]b:]). For the above mentioned credibility models, this BLUPresponds with the clas-
sical credibility formulas.

However, the normal-normal model (normality for both rasges and random effects) will
not always be plausible for the data at hand (which can ben&ance, counts, binary or skewed
data). Therefore itis useful to revisit the credibility nedglin the context of GLMs and to consider
their specification as a GLMM. In this way, estimators anddpters will be used that take the
distributional features of the data into account.

Interpreting traditional credibility models in the contet GLMMs implies that the additive
regression structure in terms of fixed and subject-spedifidgk class specific) effects is specified
on the scale of the linear predictor, namely

9pig) = mij = ;8 + z;;bi. (23)

Hereby: (: = 1,..., N) denotes the subject, for instance a policy(holder) orciaks, ang refers
to its j* measurement, unless it is stated otherwise. The link fangti-) and variance function
V(-) are determined by the chosen GLM. More details are given ito#ino and Beirlant (2006a).

3.2. Claims reserving

We illustrate how information on claim counts and claim amtsiwcan be combined in a semipara-
metric regression model for claims reserving. Using a Bayesnplementation of the smoothers
from Section 2, the data considered in de Alba (2002) areatgaed. A generalized additive
model is constructed that combines data on claim numbersland intensities. We illustrate
that, by using Bayesian statistics, simulation from thelfmtése distributions in this more compli-
cated model is possible without many additional effortsll &etails are in Antonio and Beirlant
(2006b).

Denote withY;; the aggregate payment for céll j) and letN;; be the corresponding num-
ber of claims. Thus};; = Z],fjl Y.k, with Y;;; the payments composing the aggregate claim
Y;;. Following de Alba (2002), a model is considered which cambiinformation on the number
of claims registered and the total amount paid out for thésiens, per arrival/development year
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combination. LetZ;; := Y;,/N;; be the average payment for cgll j) and model

Zi' ~ F(V,,uf}”/y),
where log (,u?}v) = a{w * [(2 = 1) 4.4 &11401) * ](Z — 10) + fAU(j)

Ni’ ) £Y1Lm
and—~% ~ Poisson "7 ,
¢ ¢

wherelog (") = af""*I(i=1)4---+ay"" « (i = 10) + fY"(j).  (24)

Furthermore, theZ;;'s andN;;’s are assumed to be independent.

Based on an inspection of the scatterplots and residua fstmih an analysis with Proc Glim-
mix in SAS (not shown), 4 knots in the direction of developtngsars, with position$2, 3,5, 7)
(for claim counts and average payments), are used. Resultsd reserves from this model are
summarized in Table 1 (claim counts) and Table 2 (total paym@btained by multiplying claim
numbers and average payments).

Mean Mean St.Dev. 5% 50% 97.5%
Poisson o0-Poisson Bayes. Bayes. Bayes. Bayes.

AY 2 2 2 4.36 0 0 17

AY 3 7 5 7.424 0 0 25
AY 4 13 9 10.372 0 8 34
AY 5 22 19 14.418 0 17 51
AY 6 41 40 21.06 8 34 85
AY 7 97 96 33.702 34 93 169
AY 8 149 147 47.275 68 144 246
AY 9 240 240 84.071 102 229 432
AY 10 332 322 215.339 42 279 855
Total 902 879 248.871 500 847 1,465

Table 1: Predictive distribution for the number of claims: resultsrh a Bayesian analysis with
truncated line basis functions for smooth function overetigwment years. A burn-in of 50,000
simulations was used, followed by another 450,000 simanatto which a thinning factor of 10
was applied.

3.3. Non-life ratemaking

We consider a data set from Frees et al. (2001). These adtiooised on the longitudinal character
of the data and modelled the logarithmic transformatiorPéf=Loss/Payroll’, using linear mixed

models. Our analysis as well takes the longitudinal charaaftthe data into account and considers
inference and prediction regarding individual risk class&Jse is made, however, of a gamma
GLMM; in this way no transformation of the data is requiredoss’ is the response variable and
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Mean St.Dev. 25% 50% 97.5%
Bayes. Bayes. Bayes. Bayes. Bayes.

AY 2 165 500 0 0 2
AY 3 372 742 0 0 2
AY 4 606 909 0 312 3

AY5 1,038 1,127 0 726 3,963
AY6 1562 1,306 111 1,239 4,908
AY7 2473 1,612 523 2,103 6,510
AY8 3,802 2,328 947 3,288 9,694
AY9 5503 3,522 1,344 4,673 14,507
AY 10 5,983 5,937 495 4,242 21,772
Total 21,503 8,990 9,513 19,753 43,903

Table 2: Predictive distribution of the reserves (data displayedhousands): results from a
Bayesian analysis with truncated line basis functions foosth functions over development pe-
riod. A burn-in of 50,000 simulations was used, followed bgtaer 450,000 simulations to which
a thinning factor of 10 was applied.

‘Payroll’ is used as an offset. The following models are ¢deed

Yijlbs ~ (v, pi;/v)

wherelog (1;;) = log (Payroll;j) + Bo + big (25)
VerSUSlOg (sz) = 10g (Payrollij) —+ ﬁo + ﬁlYearl-j + b@o (26)
andlog (p;;) = log(Payrolly;) + B + f1Year;j + bio + b;1Year;;. (27)
The gamma density function is specified fdg) = ﬁ (%)V exp (’T”y) i The specification in

(27) did not lead to convergence of the SAS procedures. tBei€26) is the preferred choice for
the linear predictor. Table 3 contains the results of a maxirtikelihood and Bayesian analysis,
where non-informative priors were used. Fitted valuesregjaieal observations are plotted in
Figure 1. More details and related examples are in AntontbBeirlant (2006a).

PQL adaptive G-H Bayesian

Est. SE Est. SE Mean 90% Cred. Int.

Bo -4.172 0.091 -4.148 0.091 -4.147 (-4.298,-3.996)
B, 0.042 0.012 0.042 0.012 0.042 (0.022,0.062)
& 0915 0.128 0912 0.127 0.938 (0.741,1.174)

Table 3:Workers’ compensation data (Losses): results of maximketitiood and Bayesian analy-
sis. REML is used in PQL.
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Workers’ Compensation Insurance: Losses

Fitted
1.5*10"7 2*10"7
L L

10M7
L

5*10"6
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o
o

0
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T T T T
0 5*10"6 10°M7 1.5*10"7 2%10M
Observed

Figure 1:Workers’ compensation data (Losses): observed versud Vidkeies.

3.4. Discussion

We presented some new statistical approaches for the anafyactuarial data related to claims

reserving and credibility. To illustrate further possiigls in this framework, we mention three

interesting topics of our current research. Firstly, itngeresting to compare the mixed model
approach with a copula construction to model the dynamigsairel data (as in Frees and Wang
(2005)). Secondly, the joint modelling of longitudinal dain claim numbers and claim amounts
through a mixed model, can be considered and contrasted~atiain — a copula construction.

Thirdly, instead of working in the framework of the exponahdlistribution, regression models for

heavy-tailed data are of interest for actuaries. In this,\@ayombination of the models discussed
above with heavy-tailed regression models, can be usefaldtarial applications.
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Abstract

This paper is an overview of recent results by Kolodko andoSnmakers (2006), Bender
and Schoenmakers (2006) on the evaluation of options witly e&ercise opportunities via
policy improvement. Stability is discussed and simulatiesults based on plain Monte Carlo
estimators for conditional expectations are presented.

1. INTRODUCTION

The evaluation of American style derivatives on a high disi@mal underlying is an important and
challenging problem. Typically these derivatives canr®pliced by the classical PDE methods,
as the computational cost rapidly increases with the dimeraf the underlying. This problem is
known as the ‘curse of dimensionality’. Only in recent yeseseral approaches have been pro-
posed to overcome this problem. These methods basicajlyoreMonte Carlo simulation and
can be roughly divided into three groups. The first groupatiyeemploys a recursive scheme for
solving the stopping problem, known as backward dynamiggmmming. Different techniques
are applied to approximate the nested conditional expentat The stochastic mesh method by
Broadie et al. (2000) and the least square regression methiarhgstaff and Schwartz (2001) are
among the most popular approaches in this group. An aligentt backward dynamic program-
ming is to approximate the exercise boundary by simulaser,e.g. Andersen (1999), Ibaiez and
Zapatero (2004). The third group relies on a dual approaebldped in Rogers (2002), Haugh
and Kogan (2004), and in a multiplicative setting by Jamisimd1997). For a numerical treatment
of this approach, see Kolodko and Schoenmakers (2004). 8ytgluight price upper bounds may
be constructed from given approximative processes.

In this paper we survey a new policy iteration for discrediZemerican options which was
recently introduced in Kolodko and Schoenmakers (2006)Bamtler and Schoenmakers (2006).

1Supported by the DFG Research CentextMEON ‘Mathematics for Key Technologies’ in Berlin.
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The method is mending one of main drawbacks of backward dimpmgramming: Suppose
exercise can take place at one outiofime instances. Then, in order to obtain the value of
the optimal stopping problem via backward dynamic programgmone has to calculate nested
conditional expectations of ordér No approximation of the timé value is available prior to
the evaluation of théth nested conditional expectations. This prevents the tipéan Monte
Carlo simulations for approximating the conditional exp#ions and requires more complicated
approximation procedures for these quantities. For imgtaio employ the procedure of Longstaff
and Schwartz (2001), one has to choose the number of basisdng and the basis functions
themselves, i.e. the approximation procedure must bereiftly tailored to different derivatives.
Contrary, our policy iteration yields approximations oéttime0 value of the value function for
every iteration step, which monotonically increase to thellSenvelope. This allows to calculate
some approximations of the Snell envelope by plain MontddcCsimulations. The algorithm
converges in the same number of steps as backward dynangi@aprming does. So theoretically,
the algorithm is as good as backward dynamic programming.

After recalling the optimal stopping problem in section 2 wtroduce our policy iteration
in section 3.1. Note, the policy iteration is different fradoward (1960) policy iteration for
backward dynamic programming and can be shown to yield baferoximations. Stability of
the policy improvement is discussed in section 3.2. It tuis that the shortfall of the perturbed
policy improvement under the theoretical policy improvermsonverges to zero. Surprisingly, the
distance need not convergence, so that the perturbed it can even perform better than the
theoretical. Section 4 is devoted to simulations. We evaltiee price of basket-put and maximum-
call on five assets, which has become a benchmark problencémtrgears. The examples show
that tight approximations of the option prices can be aadevith a plain Monte Carlo simulation.

2. OPTIMAL STOPPING IN DISCRETE TIME

It is well known that by the no arbitrage principle the prgiof American options is equivalent to
the optimal stopping problem of the discounted derivativeear a pricing measure. We now recall
some facts about the optimal stopping problem in discrete.ti

Suppos€Z(i): i = 0,1,..., k) is a nonnegative stochastic process in discrete time oola pr
ability spacg(2, F, P) adapted to some filtratiof¥; : 0 < i < k) which satisfies

ZE|Z(@')| < 00.

We may think of the process as a cashflow, which an investor may exercise once. The ongst
problem is to maximize his expected gain by choosing thewgdttime for exercising. This prob-
lem is known as optimal stopping in discrete time.

To formalize the stopping problem we defi§gas the set ofF; stopping times taking values
in {i,...,k}. The stopping problem can now be stated as follows:

Find stopping times*(i) € S; such that fol) < i <k

E7 [Z(7*(i)] = esssup.s B [Z(7)]. (1)
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The process on the right hand side is calledShell envelopeof Z and we denote it by ™ (7).
We collect some facts, which can be found in Neveu (1975)xan®le.

1. The Snell envelop&™ of Z is the smallest supermartingale that dominateslit can be
constructed recursively by backward dynamic programming:

Y*(k) = Z(k)

Y*(i) = max{Z(i), B [Y*(i+1)]}.
2. A family of optimal stopping times is given by

@) =inf{i <j<k: Z(H) >Y"()}

If several optimal stopping families exist, then the abaraify is the family of first optimal
stopping times. In that case

) =if{i <j<k: Z(j) > Y*()}

is the family of last optimal stopping times.

3. THE POLICY ITERATION

3.1. Definition of the improvement procedure

Suppose the buyer of the option chooses ad hoc a family opstggimes(7(i) : 0 < i < k)
taking values in the sd0), .. ., k}. We interpretr (i) as the time, at which the buyer will exercise
his option, provided he has not exercised prior to timehis interpretation requires the following
consistency condition:

Definition 3.1 A family of integer-valued stopping timés(i) : 0 <1 < k) is said to beconsis-
tent if

i <71(i) <k, 7(k) =k,
(1) >i=71(1) =7( + 1), 0<i<k.

Indeed, suppose(i) > i, i.e. according to our interpretation the investor has netased the
first right prior to timei + 1. Then he has not exercised the first right prior to timeither. This
means he will exercise the first right at timgg) andr (i + 1), which requires (i) = 7(i + 1). A
typical example of a consistent stopping family can be olgéiby comparison with the still-alive
European options

7(i) := inf {j L i<j<k Z()> max E’i [Z(p)]} (2)

~ jH1<p<k

Given some consistent stopping familyve define a new stopping family by

7(i) o= inf {j <<k Z() > max E5(Z(r(p)) 3)

= j+1<p<k } '
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Note, the stopping family" is consistent. In particulaf(k) = k, sincemax() = —oco. We
call 7 aone-step improvemenf 7 for the following reason: denote ly(i; 7) the value process
corresponding to the stopping famity namely

Y(iy7) = E7 [Z(7(0))].
Then the one-step improvement yields a higher value thagitlea family,
Y(§;7) > Y (i;7).

This will be proved in theorem 3.2 below. We note that, forrapée, the stopping family based
on the maximum of still alive Europeans in (2) is the one-st@provement of the trivial stopping
family 7(i) = 1.

It is natural to iterate this policy improvement: suppegé some consistent stopping family.
Define, recursively,

Tm = Tm-1

Yi(i) = Y(i57m)-

It can be shown that,,(i) coincides with the time value of the Snell envelope when >

k — . This means the policy improvement algorithm is theordices good as backward dynamic
programming, but admits to calculate increasing approtiona of the Snell envelope at every
iteration step.

Remark 3.1 Given a consistent stopping famity Y (0; 7) is always a lower bound of *(0).
From this lower bound an upper bound can be constructed byditgiumethod developed by
Rogers (2002) and Haugh and Kogan (2004). Define,

Yulr) = B [max (Z() - M()] . (@)

0<j<k
whereM (0) = 0 and, forl < i <k,

i

M(i) =Y (Y(pir) = EP Y (pi7)])

p=1

Remark 3.2 Whenr* is some optimal stopping family, the supermartingale priypef the Snell
envelope yields,

max E5 [Z(7*(p))] = B [Y*(i +1)].

i+1<p<k

Thus, the one-step improvementrbdfs the family of first optimal stopping times. This shows, the
latter family is the only fixed point of the one-step improgetn
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3.2. Stability

In practice, we cannot expect to know analytical expresstdnhe conditional expectations on the
right hand side of the exercise criterion in (3), but can adlculate approximations. Therefore, a
stability result is called for.

Given a consistent stopping famityand a sequence d¢f;-adapted processes") (i) define

7N (i) := inf {j pi<j<k Z(j) > jf@;kiafj [Z(7(p))] + e(N)(j)} .

The sequence™ accounts for the errors when approximating the conditiemglectation. We
suppose throughout this section that

lim ™ (i) =0, P-a.s.

N—oo
We will first show by some simple examples that we must neigxeect
7W(3) — 7(i) in probability
nor
Y (0; 7MY = Y(0; 7).
Example (i) Suppos€y is a sequence of independent binary trials Wittty = 1) = P(éy =
0) = 1/2. We define the proces< (i) : ¢ =0,1) by Z(0) = Z(1) = 1. Theo-field 7y = F; is
the one generated by the sequence of trials. Moreover, thueesee of perturbations is defined by
™M (0) = &x/N ande™) (1) = 0. Then, starting with any consistent stopping familywe get
7M(0) = &
In particular, no subsequence®f') (0) converges in probability.

(i) Let 2 = {wo,w }, F the powerset of2 and P({w,}) = 1/4 = 1 — P({wo}). We define the
process Z(i) : i =0,1,2) by Z(0) = Z(2) = 2andZ(1l,wp) = 1, Z(1,w;) = 3. F; is the
filtration generated by . We start with the stopping family(i) = i. As E[Z(1)] = 3/2, we have
Z(0) = 2 > max{3/2, 2} = max{E[Z(1)], E[Z(2)]} = Y (0,7).
Therefore,
7(0)=0

and
Y(0;7) =2.

The perturbation sequene€") is defined to be™) (1) = ™ (2) = 0 ande¢™(0) = 1/N. A
straightforward calculation shows, fof > 2,

7M(0,w0) =2, 7N (0,w1) = 1.
Thus,

Y (0;7™M) =9/4 > 2 =Y(0;7),

which is the claimed violation of stability.

The example paints a rather sceptical picture of the stalofi the one-step-improvement.
Indeed, the best we can now hope for, is
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(ia) there is a sequencé") of stopping families such that
7M@) = 7M@) -0 P-as.
and, for allN, 7V) is at least as good &S i.e.

Y (i; 7N > Y (4 7).

(iia) The shortfall ofY (i; 7)) belowY (i; 7) converges to zeré-a.s.

Note, however, that the convergence of the shortfall asga) ig the relevant question, not of the
distance as in example (ii), page 35: the shortfall corredpdo a change for the worse Bf")
compared ta. As we are interested in an improvement it suffices to guagatitat such a change
for the worse converges to zero. An additional improvemémt® compared t& due to the error
processes”) may be seen as a welcome side effect.

In the remainder of this section we sketch the proof of (ia) @ia).

Theorem 3.1 The one-step improvement is stable in the sense of (ia) &)d (i

Remark 3.3 It clearly suffices to prove (ia). Indeed,
(Y(i; T — Y (i; '7:))_ < (Y(i; W) — Y (i; f(N)))_ + (Y(i; 7MY — Y (i '7:))_ )
By (ia) the second term vanishes and the first converges ¢odzer to dominated convergence.

In order to construct an appropriate family) we first derive a criterion for a consistent stopping
family 7 to be at least as good as To this end define,

Obviously,

Theorem 3.2 Suppose, T are consistent stopping families and
(1) < 7(i) < 7(0). 5)

Then,
Y (i;7) > Y (i;7) > max {Z(z’), m>afoi [Z(T(p))]} > Y (i;7).
p-t
Proof. The lastinequality is trivial, sinc€ (i; 7) = E7 [Z(7(i))]. To prove the other inequalities
we begin with a preliminary consideration. Define

Y(im) = maxE™[Z(r(p))

P>t

(57) = max E7 [Z(7(p))].

p>i+1

~D
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Then,
)7(2'; T) = 1{T(i)>i}?(i; 7) + 1{7()=i) max {}/}(z, T), Z(z)} , (6)
since, by the consistency of
EZ [ Z(r(i))] = E7 [1po=nZ(0)] + BT L@ Z((i + 1))]
= L= Z(i) + Lpsa BT [2(r(i +1))].
Step 1:
Y (i;7) > max {Z(i), max F7 [Z(T(p))]} (7

p>i

by backward induction over The induction base is obvious, sineg:) = 7(k) = k. Suppose
now( < i < k—1, and that the assertion is already provedifpt. Note {7 (i) = ¢} C {7(:) = i}
by (5). Hence, we obtain on the get(i) = i},

Y(i:7) = Z(i) > Y (i; 7).
However, or{7(i) > i} the induction hypothesis yields,
Y(is7) = B [Z(7(i+ 1)) = B Y (i+157) > B V(i +1;7)]
= 7|, B 200D 2 e, B 1260)
= Y(i,7).
Property (5) implie7(i) > i} C {7(¢) > ¢}. Thus, or{7 (i) > i},
Y (i,7) > Z(i)

and, by (6),

o~ ~

Vi, 7)=Y(i,7) on{i(i)>i}.

This completes the proof of step 1. The second inequalityfotiaws from (7) with the particular
choicer = 7.

Step 2:1t remains to show that
Y(i;7) > Y (45 7).

Fori = k even equality holds. Suppo8e< ¢ < k — 1 and the inequality is proved fér- 1. Then,
on{7(i) > i} N{7(i) > i},

Y(i,7)=E5 Y6+ 1,7)]>E5[Y(i+1,7)]=Y(,7)
by induction hypothesis. Ofir (i) > i} N {7(i) =i}
Y(i,7) > Z(i) =Y (i,7)

by step 1. Finally, the s€tr (i) = i} N {7(i) > i} is evanescent by (5).
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Suppose, for the time being, the sequefde (i) convergesP-a.s. to some stopping tinTes).
Clearly, 7 is, as a limit of consistent stopping families, itself a dstent stopping family. It can
be shown by backward induction overthat7 satisfies (5). Indeed, the basic idea is as follows.
Assumer (i) = i. Then, forN > Ny(w) sufficiently large

7N (i) =4,

Z(i) > max E%7[Z(1(p))] + ™M (i).

i+1<p<k
We can now send to infinity and obtain

. fj

2(0) 2 max E°[Z(r(p))],
le.
7(i) = 1.
Thus, or{7(i) =i},
7(1) < 7(1) <7(2).

A similar argument, making use of the induction hypothegidds the inequalities ofi7 (i) > i}.

We can now defingY) = 7 and (ia) is satisfied.

Unfortunately, example (page 35) shows that we may not éxp&¢(i) to converge in gen-
eral. Nonetheless, the previous considerations pointeitiht path. Fors such that™)(i; w)
converges, we defing™) (i; w) as this limit for all V. Otherwise, we define™) (i; w) = 1, if and
only if a subsequence 6" (i;w) converges ta and7™) (i; w) = 4. The intuition is, that in the
latter case we are free to choose the limit of any subsequemeder to obtain (5). So we choose
7N (i; w) as close as possible #") (i; w).

This reasoning can be formalized as follows. Define,

FN(k) =k
and
M@ =i = (FM () > i for only finitely manyM)
v (7™M (4) = i for infinitely many M and7™) (1) = i)
MG £i = FNE) =7N (G 1),
We have:

Lemma 3.3 7V) satisfies (ia).

The details of the proof can be found in Bender and Schoens4R606), theorems 4.2 and 4.3.
Stability of the algorithm, not only of one improvement sig@lso proven in this paper.

Remark 3.4 Sincer™) (i) < 7(4), we obtain,
limsup 7™ (i) < 7(4).

N—oo

On the other hand, the supermartingale property of the Sielelope yields

i) <) =it {j: i<j<k ZG)> EBY(+1)]}.
AsT* is the family of ‘last optimal stopping times’, we may coulguthat the sub-optimality of
7(N) (for large N) basically stems from exercising to early.
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4. NUMERICAL EXAMPLES

We now illustrate our algorithm with two examples: Bermudssket-put and maximum-call
options on 5 assets. We assume, that each asset is govederdhmrisk-neutral measure by the
following SDE:

dSi(t) = (r — 8)Si(t)dt + oSi(t)dWi(t), 1<i<5,

where(W; (%), ..., Ws(t)) is a standard 5-dimensional Brownian motion. Suppose thapéon
can be exercised at+ 1 datesTy, . . ., Ty, uniformly distributed betweel, = 0 andT}, = 3(yr).
The discounted price of the option is given by (1) with

Z(Z) — e—rTi(K o Sl(ﬂ) + 5 -+ S5(ﬂ))+

Z(i) = e " (max{S,(T;), ..., S5(T;)} — K)* for the maximum-call option

for the basket-put option and

For our simulation, we take the following parameter values,

r=0.05, 0=02, S;(0)=...=S550)=5,, K =100,
0 = 0 for basket-put option ¢ = 0.1 for maximum-call option

We consider options ‘out-of-the-money’, ‘at-the-moneydadin-the-money’ at = 0. For an initial
stopping family(7(i) : 0 < i < k), we construct the lower bound(0; 7), an improved lower
boundY (0; 7) with 7 given by (3), and the dual upper bouing,(0; 7) given by (4). A natural
‘intuitively good’ initial exercise rule is to exercise, wh the cashflow is larger than the maximal
value of all still-alive European options:

(i) =inf{j >4 : Z(j) > max E77Z(p)},

p>j+1

which is in fact a one-step improvement of the trivial exeecpolicy(i) = i. For our exam-
ples, however, a closed-form expression for still-alivedpeanst”’ Z(p), p > j does not exist.
Fortunately, a good closed-form approximation is avadaiolr the basket-put option. For the
maximume-call option we improve upon the exercise rule, sstgd by Andersen (1999), Strategy
1. We will show that in all examples our method gives Bermupiaces with a relative accuracy
better than 1%.

4.1. Bermudan basket-put

In this example we approximate still-alive European oiby a moment-matching procedure.
Let us definef (T}) := (Si(T}) + --- + S5(1;))/5 for 0 < j < k and takej, p with j < p < k.
First, we approximatg (7,,) by

1

T) = F) e (1 = 30D, = T) + 0, (5) = W(T) )
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where the parameters ando; are taken in such a way that the first two momentg @f,) and
[;(1,) are equal conditionaF;:

'FJ' =T,
5
1 3 80(1)S.(T) exp(l-0™(T, - T,)
0'] e ln mn 9
T, — T, 5
P (Zﬁ1 Sm(T5))?

see, e.g., Brigo et al. (2004), Lord (2005). Then, we appnaxé £77 Z(p) by E%ife " (K —
1;(T,))*] using the Black-Scholes formula,

E]:j [eier(K - fj(Tp))Jr] = eirTjBS(f(Tj)v Ty 04, K> Tp - T])?
and define the initial stopping family
(i) :={j<i: Z(j) > e "™ max BS(f(1};),r,0;, K, T, —T})},

0<i<k.
jH1<p<k - -

Note that the initial stopping familyr (i) : 0 <i < k) leads already to a reasonable lower ap-
proximationY (0; 7) of the Bermudan price (less then 5% relative). The gap betweeimproved
lower boundY (0; 7) and dual upper bount,,(0; 7) does not exceeds 1% relative. See table 1,
where we used(0” Monte Carlo trajectories fo¥ (0; 7) and 2000 trajectories (with 1000 nested
trajectories) forY,,(0; 7). To simulateY (0; 7) we usel0° outer and 500 inner trajectories. An
obvious variance reduction is obtained by simulafifag(0; 7) — Y (0;7) andY (0;7) — Y'(0;7)
rather thart’,,,(0; 7) andY (0; 7).

| k] So | Y(0;7)(SD) | Y(0;7) (SD) | Y.(0;7) (SD) |

3

90
100
110

10.000(0.000
2.156(0.001)
0.537(0.001)

10.000(0.000
2.158(0.002)
0.537(0.001)

10.000(0.002)
2.162(0.001)
0.538(0.001)

90
100
110

10.000(0.000
2.361(0.001)
0.571(0.001)

10.000(0.000
2.395(0.004)
0.578(0.002)

10.000(0.002)
2.406(0.003)
0.578(0.001)

90
100
110

10.000(0.000
2.387(0.001)
0.579(0.001)

10.000(0.000
2.471(0.005)
0.594(0.002)

10.001(0.002)
2.490(0.006)
0.596(0.002)

4.2. Bermudan maximum-call

In contrast to the previous example, no good approximaaomgnown for the still-alive maximum-
call Europeans. For this example we take as initial stopfangly strategy | of the Andersen

method (see Andersen (1999)):
7(i) =inf{j >i: Z(j) > H,}.

Table 1: Bermudan basket-put on 5 assets
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The sequence of constarifs is pre-computed using- 10° simulations. Note that the gap between
Andersen’s lower bound(0; 7) and its dual upper bounH,,(0; 7) varies from 2% to 4%, see
columns 3 and 5 in table 2 (we use 10° Monte Carlo trajectories fo¥ (0; 7) and 500 Monte
Carlo trajectories (with 1000 inner simulations fBy,(0; 7) — Y'(0;7)). Further, we construct
the improvement’ (0; 7) of Andersen’s lower bound usinig? outer and 1000 inner simulations.
The results are compared with the 90% confidence intervalrofdie and Glasserman (2004)
computed by the stochastic mesh method, see table 2. Weatde &tmost all cased; (0; 7) and
Y.,(0; 7) is within the 90% confidence interval, and that the gap betvieem does not exceed
1%.

Remark 4.1 The cross-sectional least square algorithm by Longstadf &@chwartz (2001) yields
results consistent with B-G: The lower bound reported indsiaff and Schwartz (2001) fdr= 9
and 19 basis functions are 16.657, 26.182, and 36.812, otispdy. Slightly lower values are
reported in Andersen and Broadie (2004) with 13 basis fomsti

90% Confidence
k| So

Y(0;7) (SD)

Y(0;7) (SD)

Y.,(0; 7) (SD)

interval by BG

90
3 (100
110

15.702(0.008
24.716(0.009
34.856(0.011

16.026(0.033
25.244(0.044
35.695(0.056

15.986(0.021)
25.333(0.031)
35.745(0.037)

15.995, 16.016]
25.267, 25.302
35.679, 35.710

90
6 | 100
110

16.064(0.007
25.171(0.009
35.399(0.010

16.394(0.080
25.751(0.107
36.329(0.131

16.462(0.054)
25.978(0.066)
36.523(0.079)

16.438, 16.505

90
91100
110

16.202(0.007
25.343(0.009
35.605(0.010

16.681(0.079
26.118(0.110
36.652(0.134

16.734(0.063)
26.333(0.083)

37.028(0.100)

16.602, 16.710
26.101, 26.211
36.719, 36.842

[

[ ]
[ ]
[ ]
[25.889, 25.948]
[36.466, 36.527]
[ ]
[ ]
[ ]

Table 2: Bermudan maximum-call on 5 assets

Concluding remarks

The iterative Monte Carlo procedures for pricing callakieictures reviewed in this paper are
quite generic as in principle it only requires a Monte Carfawdation mechanism for an under-
lying Markovian system, for instance a Markovian system DES. Moreover, by incorporating
information obtained from another suboptimal method, f@ameple Andersen’s method (see An-
dersen (1999)) or the method of Longstaff and Schwartz (R@@4 may improve upon this method
to obtain our target results more efficiently.

The iterative procedures can be easily adapted to a large ofapath-dependent exotic in-
struments where a call generates a sequence of cash-flotws fattire. For these products one
may construct ‘virtual cash-flows’ which are basically gneisvalues of future cash-flows speci-
fied in the contract. An important example is the (cancefpshowball swap, an exotic interest
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rate product with growing popularity. In Bender et al. (2P@%s product is treated in the context
of a full-blown Libor market model (structured as in Schoeaters (2005)). From this treatment
it will be clear how to design Monte Carlo algorithms for tteld callable path-dependent Libor
products.
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Abstract

In Borovkova et al. (2006), a new approach to valuation ardbimg of basket options
was developed, based on a generalized family of lognhormabajpmating distributions. This
approach copes with possible negative values and negatvnsss of a basket, and provides
closed formulae for the option price and the greeks. Thiep&pdevoted to a comparative
simulation study of spread option pricing methods. We shmat the Borovkova et al. (2006)
approach performs well in terms of the option pricing andadeédging, compared to other ex-
isting approximation approaches. Moreover, it is suitebaskets with several assets and with
negative weights: a situation where other analytical agpration methods are not applica-
ble. The analysis of the option’s vegas shows that the pffieespread option is a decreasing
function of the correlation and can decrease with the irserezf individual volatilities — a
seemingly paradoxical phenomenon of negative vegas.

1. INTRODUCTION

A basket option is an option whose payoff depends on the wafl@ebasket, i.e., a portfolio of
assets. A basket value is the weighted sum of individuak gssees, and, even when these prices
have lognormal distribution, the basket value does not.s Téads to difficulties in valuing and
hedging basket options, similar to those arising in valulis@n options.

Studies from many other areas of science (see e.g. AitcltasdnBrown (1957), Mitchell
(1968), Crow and Shimizu (1988), Limpert et al. (2001)) sesjgd to approximate the sum of
lognormal random variables by the lognormal distributiangd have confirmed the high accu-
racy of such approximation. These results motivated thecsah introduced in Borovkova et al.
(2006), which is based on a generalized lognormal appraxamaf the basket value. Such an ap-
proximation makes it possible to apply the Black-Scholemida to get a closed form expression
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for the value of a basket option.

There is a major obstacle to approximating a general basteitdition by the lognormal dis-
tribution: a basket with negative weights can have negatiees and negative skewness, some-
thing that the regular lognormal distribution cannot apprate. To overcome this obstacle, in
Borovkova et al. (2006) the basket distribution was appnated using the generalized family of
lognormal distributions: regular, shifted, negative fegwr negative shifted lognormal. We shall
call this new approach th@eneralized Lognormal approach (GLNIhese distributions approx-
imate the basket distribution remarkably well and capthee features of general baskets, such
as negative values and negative skewness, which cannopheea using the regular lognormal
distribution.

Using these approximating distributions, the Black-Sebkdbrmula can be applied to obtain
the option price and the greeks. The approach is easily mgadable and it can deal with options
on baskets with several assets and negative weights: &aitudere most other existing analytical
approximation approaches for pricing basket options celbpaapplied.

A simplest basket with negative weights is a so-calipcead i.e., a difference between two
asset prices. Several analytical approximation methadprfoing options on spreads were pro-
posed: the Bachelier's method (applied by Shimko (1994)the Kirk's method (inspired by the
classical paper of Margrabe (1978). A relatively new anedytapproximation approach was pro-
posed by Carmona and Durrleman (2003a). In Carmona anddbuari (2003b) a possibility to
extend their method to options on a linear combination oésEhassets was mentioned. However,
nowadays it can only deal with spread options.

In Borovkova et al. (2006), the GLN approach was compareldeg®achelier and Kirk methods
for spread options. A simulation study showed the GLN apgrgzerforms better than either of
these methods in terms of both option pricing and delta-imgdcA simulation study in Carmona
and Durrleman (2003b) also demonstrated the superioritii@fCarmona method over the Kirk
and Bachelier methods. In this paper we are concerned witipaang the performance of the
GLN approach to the Carmona method.

In the next section, we review the GLN approach. Section 8gyasshort review of three other
analytical approximation approaches. Empirical analggmnalytical approximation approaches
is given in Section 4.

We consider baskets of futures on different (but related)roodities. Such basket options are
very common in commodity markets. We also assume that tiedsiin the basket and the basket
option mature at the same time. In practice, different comtitgdutures have different expiration
schedules, and a typical basket option matures just bdieredrliest expiring futures or forward
contract in the basket.

2. THE MODEL

Consider a basket @f futures, whose priceg;(t) follow correlated Geometric Brownian Motions.
The basket value at times given by

N

B(t) = Z aiE(t)a

=1
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wherea; is the weight corresponding to the asset

A general basket with negative weights can have negativeesalaind the basket distribution
can be negatively skewed. Because of these features, thertogl approximating distribution
cannot be used directly.

In Borovkova et al. (2006), we propose to approximate thé&dtadistribution using the gen-
eralized family of lognormal distributions: regular, gk, negative regular or negative shifted
lognormal. Recall that the probability density functiondj.) of the regular log-normal distribu-
tion is given by

1

1 2
f(x):sx 2Wexp(—§(logx—m) ),x>0. (2)

If a random variableX has the (regular) log-normal distribution, then the rand@mableY =
X + 7 has the shifted lognormal distribution and the random eizZ = — X has the negative
regular lognormal distribution. The combination of thefsand the reflection to thg-axis gives
rise to thenegative shifted log-normal distributiom is the scales is the shape and is the shift
parameter.

Recall that, under the risk-adjusted probability meadinesfutures prices are martingales. Un-
der the assumption of Geometric Brownian Motion dynamictheffutures prices (and hence the
lognormality), the first three moments of the basket valuthenmaturity datd” can be calculated.
In terms of the first three moments, the skewness of basket is

3
S E[B(T) - EB(T)] | -
SB(T)

wherespry = /EB2(T) — (EB(T))? is the standard deviation of the basket value at tifne

For shifted and negative shifted lognormal distributioms,can derive the first three moments
in terms of the parameters, s, 7. The parameters of the appropriate approximating didiahu
are estimated by matching the first three moments of the basttethe first three moments of the
appropriate log-normal distribution. This amounts to saj\a nonlinear system of three equations
with three unknownsr, s andr).

The skewness of basket distribution and the shift paranpdégrthe key role in choosing the
appropriate approximating distribution. Table 1 sumnegithe choice of the approximating dis-
tribution for different parameter combinations.

Skewness n>0 | n>0| n<0 n<0
Shift parameter 7T>0 | 7<0 T7>0 T<0
Approximating distribution| regular| shifted | negative| neg.shifted

Table 1: Choice of the approximating distribution

Note that in the case > 0, 7 > 0 our approach reduces to the Wakeman method (Turnbull
and Wakeman (1991)), who approximate the distribution ohskbt with positive weights by the
lognormal distribution. If the basket distribution is assd to be regular lognormal, then the
basket option can be valued using the Black-Scholes forifoulan our case Black (1976)). For
general baskets, the problem of pricing an option must becetito that simple case.
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Let the basket 1B, (t)) be (regular) log-normally distributed with parametets s. Further-

more, suppose that the baskdt/(¢)) has the following relationship with the basket 1:

By(t) = By(t) + 7

wherer is a constant. The distribution of basket 2 must be shiftgdnormal with parameters

m,

s, 7. On the maturity dat&, the payoff of a call option on basket 2 is
(Bo(T) = X)" = ((BUT) +7) = X)" = (By/(T) — (X — 7))

This is the payoff of a call option on the basket 1 with the sama¢urity dat€l’ and the strike price
(X — 1), and such a call option can be valued by the Black’s formula.

Using an analogous argument, we value a basket option usiegative lognormal distribution

(see Borovkova et al. (2006)). Valuation of a basket optismg a negative shifted lognormal
distribution can be considered as a combination of valnadioa basket option with the shifted
and negative regular lognormal distributions.

These arguments lead to the following closed form formutaetfe price of a call option on a

basket with the strike pric& and time of maturityl". EverywhereM,(T") and M, (T') denote the
first two moments of the basket on the maturity dét@(-) is the cumulative distribution function
of the standard normal distribution, adg= d;, — V.

¢ Using the shifted log-normal approximation

c=e"T[(M(T) —7)®(dy) — (X — 7)®(dy)] (3)
where d; — log(My(T) —7) — ;og (X —7)+5V?
. o MQ(T) — 27’M1 (T) + 7'2
LT \/1 (o)
e Using the negative log-normal approximation
c=e"T[ = XP(—ds) + My(T)®(—dy)] (4)

log(—My(T)) —log (—X) + 3V*
V

v = e (i)

e Using the negative shifted log-normal approximation
c= e_rT[(_X —7)®(=dy) + (M(T) + T)qD(—dﬁ} (5)

where d; =

log(—M:(T) — 7) — log (=X — Ly
wnere 4, = BT =) g (X 1)+ 3

Vo= \/log (MQ(T) + 27 Mi(T) +T2)

(My(T) +7)?

In Borovkova et al. (2006), the closed formulae for the gsesie also derived.
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3. OTHER ANALYTICAL APPROXIMATIONS

We shall compare the GLN approach to several analyticalcqpiation approaches for spread
option valuation. Note, however, that the GLN approach isrestricted to spread options, while
other methods are.

Under the risk adjusted probability measure , the call prioa a spread F»(t) — Fi(t)) at
time 0, with time of maturityl” and strikeX, is given by :

c=e¢"TE (FQ(T) — F(T) — X) +.

Several methods have been introduced to value spread eplibe Bachelier method assumes the
distribution of the spread can be approximated by the nodms&ibution. This allows for negative
spread values, but not for a negative skewness. As a reptitingrices obtained by the Bachelier
method are often significantly different from the real optjarices or those obtained by Monte
Carlo simulation. The closed formula of a call price on a adrat time 0, with time of maturity’
and strikeX, is given by :

B =t |:F2(0) — F1(0) — X | ®(d) + VBp(d)
where

i - *’"T(F2<0>—F1<0>—X)

vE = —TT\/ F2(0)(e3T — 1) — 2F(0) F3(0) (er71o2T — 1) + F2(0) (e71T — 1)
©(-) is the probability density function of the standard normiatribution.
Another, more successful approximation method, is sugddsy Kirk (1995), who replaced

the difference of asset prices by the ratio, and adjustedgttiiee price. The closed formula of a
call price on a spread at time 0, with time of matufityand strikeX, is given by :

K =eT [FQ(O)@(dl) — (F1(0) + X ) ®(dy)

where

dy = - —VK

VE = e—rT\/agT - 2p0202T<%) + ﬂT(%)Q.
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A relatively new approach is proposed by Carmona and Duate(®003a). There, a good
overview of spread options is given, and precise lower bewmd proposed to approximate spread
option prices. The closed formula of a call price on a spreaitng O with the time of maturity”
and the strikeX is given by :

&= |:F2(O)®(d* + 09VT cos(0* + ¢)) — F1(0)®(d* + Ulﬁcos(e*)) — Xo(d")

wheref* is a solution of following equation corresponding to the maxm :

_ 1 o —01 X sin(0) B 10 s
2/ (T) cos(6 + ¢) o {Fz(O) (o2sin(0 + ¢) — oy sin(@))} 2 2VT cos(6 + 9)
B 1 o —09X sin(f + ¢) B 10 o
~ 01/(T) cos(6) log [Fl(O) (o2sin(0 + ¢) — oy sin(@))] 27! Tcos(f)
. _ -1 o F3(0)oasin(6" +¢)] 1 . sl . o
d = ov/T cos(0 — 1) { F1(0)oy sin(6%) } 2( 2VT cos(0" + ¢) — 02V'T cos(d )

¢ = arccos(p); ¢ = arccos(w); o= \/a% — 2poy09 + 0%
o

However, there is a fundamental problem with the above @émuafor certain (realistic) combi-
nations of spread parameters, its solution does not exidthance, it is not clear how to apply
the method proposed in Carmona and Durrleman (2003a). [Ebrspreads the Carmona method
cannot be applied directly.

4. SSMULATION STUDY

We apply our approach to a number of hypothetical spreadsasklets, such that all possible
approximation distributions occur. We do not consider aifl@ghormal approximating distribution
since it reduces to the Wakeman method. The parameters tdghspreads are given in Table 2
and the call option prices on spreads are given in Table 3alFepreads and baskets, the interest
rate ¢) is 3% per-annum and the time of maturit)(is one year.

Our main motivation comes from basket options in energy etarkvhere typically assets have
high volatilities and high correlations. However, we alpplgt our approach to a basket with a low
correlation (spread 2) and low volatilities (spreads 2 antb 3nvestigate the performance of our
approach for low correlations and low volatilities as wefi.all spreads and baskets, the options
are almost in-the-money. The Monte Carlo simulation is adpa 1000 times for each spread (or
basket), to obtain the means and standard errors of caip(ehich are given in parenthesis in
the last row of Table 3).

Simulation results in Table 3 show that both the Carmona bhedi_N methods perform very
well. The prices obtained by the Carmona method are slightlyer to those obtained by Monte
Carlo. Note, however, that the GLN method also performs feelthe basket consisting of three
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| | Spread 1] Spread 2| Spread 3 Basket4 | Basket5 |
Futures priceF, | [100,110]] [120,100]] [200,50] | [95,90,105] | [100,90,95]
\olatility & [0.2,0.3] | [0.15,0.1]] [0.1;0.15]| [0.2,0.3,0.25]| [0.25,0.3,0.2]
Weightsa [1,1] [1,1] [-1,1] [1,-0.8,-0.5] | [0.6,0.8,-1]
Correlationp pLQ:O.g p172:O.2 p172:O.8 p172:p273:0.9 p172:p273:0.9
p1,3=0.8 p1,3=0.8
Strike priceX 10 -20 -140 -30 35
Skewnesg) n>0 n <0 n<0 n <0 n>0
Shift parameter T <0 T<0 T>0 T<0 T<0

Table 2: Basket parameters

assets with negative weights (basket 4 and 5). The pricealarest everywhere within 95 %
Monte Carlo confidence bounds, except for the spread 1. Tihesdev.r.t. the prices of futures 1
and 2) and vegas (w.r.tr;, o, and correlatiorp) for the spreads 1, 2 and 3 at time O are given in
Table 4.

| Method | Spread1] Spread2 | Spread3 | Basket4 | Basket5
GLN 6.7440 7.2643 1.9576 7.7587 9.0264
(shifted) | (neg. shifted)| (neg.regular), (neg.shifted)| (shifted)
Carmona 6.7075 7.2560 1.9566 - -
Kirk 6.7099 7.2350 1.5065 - -
Bachelier | 7.0004 7.3054 2.1214 - -
Monte Carlo| 6.7091 7.2521 1.9594 7.7299 9.0222
(0.0126)|  (0.0098) (0.0045) (0.0095) | (0.0151)

Table 3: Call option prices

Next, we investigate the performance of our method on thes ldislelta-hedging the option,
and compare it with Carmona method. We generate price paths basket assets from the time
of writing the option until maturity, and on each hypothatiday we calculate the option’s deltas
with respect to each asset. We then re-adjust daily the hggmrtfolio according to the deltas.
We define the hedge error as the difference between the quimand the discounted hedge cost
(i.e. the cost of maintaining the delta-hedged portfoliththe hedging scheme works perfectly,
the hedge cost would be exactly equal to the theoreticabotiice and the hedge error would be
zero. In practice it is not zero due to the model error andrdisqe.g. daily) hedging. We expect
the hedge error and its standard deviation to decrease \Wwhdretige interval decreases, i.e. when
hedging is done more frequently.

We investigate the delta-hedging performance for our agagr@n a spread option with para-
metersFy = [100, 110}, 0 = [0.1,0.15],a = [-1,1], p = 0.9, X = 10, r = 3% per-annum and the
time to maturityl’ one year. The spread distribution is approximated usingfeedhognormal. In
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spread 1 spread 2 spread 3
greeks| GLN approach\ Carmona| GLN approach\ Carmonal GLN approach\ Carmona
delta -0.4573 -0.4599 -0.4639 -0.4548 -0.2200 -0.2200

0.5149 0.4815 0.5274 0.4713 0.2226 0.2063
vega -20.6582 -21.5671 39.6771 39.5018 55.4916 55.5976
36.4075 36.6710 14.0768 13.1539 -8.3683 -8.4689
-15.2418 -14.7080 -3.7561 -3.7017 -2.9813 -3.0064

Table 4. Deltas and Vegas

x10° © 107
T T T T T T T T

error standard deviation to call price
error standard deviation to call price

ratio of hedge
ratio of hedge

»
T

2 . . . . . . . . . 2 . . .
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15
hedge interval (days)

L L L
35 40 45 50

.
20 25 30
hedge interval (days)

Figure 1:Left: Hedge error vs. hedge interval for a spread call optising GLM approach and Carmona
method. Right: Hedge error vs. hedge interval for a baskebption consisting of 3 assets with negative
weights, the GLN approach.

the left plot of figure 1 we show the ratio of the hedge errongdgad deviation to the call price vs.
the hedge interval. The figure shows that for both the GLN @ggir and the Carmona method, this
ratio (and so, the standard deviation of the hedge errorgdses together with the hedge interval,
as we expect. In this example the mean hedge error is appatedyrthe same (around 7%) for
daily hedging for both methods. But the ratio obtained by@iéN approach is a slightly lower
than that obtained by the Carmona method.

We also investigate the delta-hedging performance of thid &tproach for a basket consisting
of 3 assets, one with positive and two with negative weighith parameterg;, = [100, 90, 105],

o =10.2,0.3,0.25], a = [1,—0.8,—0.5], p12 = pa3 = 0.9, p13 = 0.8 X = =30, r = 3% per-
annum and the time to maturity’} is one year. We use a negative shifted lognormal distiuti
to approximate the basket distribution. The ratio of thegeeerror standard deviation to the call
price vs. the hedge interval shown is shown in the right of pfd-igure 1. The result is similar to
that of the spread option in the previous example. For thekdiathe mean of the hedge error is
4.8% for daily hedging.

Characteristic features of option vegas for spread opaoaslifferent from the Black-Scholes
model. Carmona and Durrleman (2003b) showed that the pfiaespread option is a decreasing
function of the correlation parameter. They also demoteddran an example that the volatility
vegas can be negative as well as positive. It means that lh@ica does not necessarily increase
with increasing individual volatilities. The GLN approaapplied to the spread option with para-
metersFy = [110,100], a = [-1,1],r = 3%, T' = 1 year,oc = [0.3,0.2] (left figure) p = 0.9
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and X = —10 (middle and right figuresdemonstrates the same phenomena, as shown in Figure

2. The observations are similar to those obtained by the @aarmethod.

Figure 2: Left: Correlation vega vs. correlations and strike pricktiddle: Volatility vega w.r.t.o; for
different volatilitieso; andos. Right: Volatility vega w.r.t.os for different volatilitieso; andos.

5. CONCLUSION AND FUTURE WORK

Simulation studies on a number of hypothetical spreads stidhat the Generalized Lognormal
approach for valuing and hedging spread options, suggbstBdrovkova et al. (2006) performs
well, and its performance is comparable to the method pegpdry Carmona and Durrleman
(2003a). Moreover, the GLN approach has several advantaggshe Carmona method, such
as its applicability to baskets more general than two-asg@tads. A closed formula for the op-
tion price is derived by applying the Black-Scholes (or B)ormula, which is easy to implement
and easy to be understand by practitioners, who are famiithrthe Black-Scholes model. Appli-

cation of the GLN approach to spread options confirms 'thetiegvega’ phenomenon, reported
by Carmona and Durrleman (2003a).

In this paper we considered baskets of futures contracte QLN approach can be easily
extended to baskets of physical commodities, as those denesi by Carmona and Durrleman
(2003a). The extension of the GLN approach to physical coditndaskets will be reported
shortly.

An important feature of energy markets is that most deliwenmytracts are priced on the basis
of an average price over a certain period. Hence, most emengyatives (also basket and spread
options) are Asian-style. So Asian basket options (thansAsian option on a basket of assets)
need to be considered as well. Extension of our approachdmation and hedging of Asian
basket option is a topic of ongoing research.
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Abstract

This work presents a reduced-form credit risk model drivepure-jumps Ornstein-Uhlenbeck
(OU) process. We analyse the case of the Gamma and Inverssi@a®U processes and
show that the default probability can be expressed in clésed through the characteristic
function of the integrated OU process. The model is caldatéb a series of real-market credit
default swap term structures. Results are compared wittvéitlknown cases of Poisson and
CIR dynamics. We finally price a digital default put and shbattmodels with pretty similar
survival probabilities result in sometimes different optiprices.

1. INTRODUCTION

Credit risk models are usually classified into two categorgructural models and reduced-form
models. In structural models an event of default is definetkims of boundary conditions on
the asset value process. The first structural models datetbdderton (1974) and Black and
Cox (1976) but a lot of modifications/extentions can be foumithe literature (e.g. Leland (1994),
Leland (1995), Madan et al. (1998), Cariboni and Schout@084)). On the other hand, the
reduced form approach models directly the default intgresitd defines the time of default as the
first jump-time of a counting process. The first example iegily the Jarrow and Turnbull (1995)
model, who considered a constant default intensity. Sules#cgeneralizations allow for time-
dependent or stochastic default intensities. In thisl&iise, the corresponding counting process
is called a Cox-process. Duffie and Singleton (1999) deesl@basic affine model, which allows
for jumps in the hazard dynamics.

This work introduces a reduced-form model where the intgrgidefault follows a Ornstein-
Uhlenbeck (OU) process. Under this assumption, we showtkigasurvival probability of the
obligor can be expressed in terms of the characteristidimmof the integrated OU process. We
consider the special cases of the Gamma-OU and Inverse i@a3 (IG-OU) processes, where
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the characteristic function of the integrated processadabie in closed-form. This allow to easily
estimate the survival probability and price a broad classedit derivatives.

We calibrate the model on a series of real Credit Default SW&DS) term structures. For
comparison purpose, we also calibrate intensity modeledas the Poisson, inhomogeneous
Poisson, and CIR dynamics. Once the models are calibrateghriee a digital default put and
show that two models with pretty similar default probamktand both almost perfectly calibrated
on the market structures, can result in sometimes diffeyption prices.

In the next section, we introduce the basic background on f@0dgsses, concentrating on the
Gamma and Inverse Gaussian OU processes. Section 3 presemtduced-form OU default
model. We then introduce CDS and link CDS spreads to theriated OU process. The last part
of section 3 presents the results of the calibration exescmd the pricing of the digital default
put. The last section concludes.

2. ORNSTEIN-UHLENBECK PROCESSES

An OU procesyy = {y;,t > 0} (see e.g. Barndorff-Nielsen and Shephard (2001a), Baffrdor
Nielsen and Shephard (2001b), Barndorff-Nielsen and Sirelf2003), Sato and Yamazato (1982))
is described by the following stochastic differential et

dy, = =0y, dt +dzy,, 3o >0 (1)

whered is the arbitrary positive rate parameter ands a subordinator, i.e. a Lévy process with
no Brownian component, nonnegative drift and only positiagements. The procesgis known
as Background Driving Lévy Process (BDLP).

The procesg; is strictly stationary on the positive half-line, i.e. thexists a lawD, called
the stationary law, such that will follow D for everyt, if 1, is chosen according tb (y; is thus
called D-OU process). In particular, given a one-dimensional distron D there exists a&>-OU
process if and only iD is self-decomposable (for definition see Sato (1999)).

An important related process will be the so called integt@#& process (intOUY = {Y;,t >

0}:
¢
Yt:/ y,ds.
0

One can show (see Barndorff-Nielsen and Shephard (2001a)har giveny,,

log Elexp(iuYy)|yo] = 19/0 E(ud™ (1 — exp(—d(t — s))))ds
+iugye? (1 — exp(—vt)),

wherek(u) = k.(u) = log Elexp(—uz;)] is the cumulant function of; .
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2.1. The Gamma-Ornstein-Uhlenbeck Process

The Gamméu, b)-OU process has as BDLP a compound Poisson process:

N
Zt = E Tn
n=1

whereN = {N;,t > 0} is a Poisson process with intensityand {z,,,n = 1,2,..., N;} is a
sequence of independent identically distributed Expariables. It turns out that the Gamma-OU
process has a finite number of jumps in every compact timevaltdts stationary law is given by
a Gamméa, b) distribution:

a

['(a)

a

7% Lexp(—ab), >0,

fGamma (:L‘u a, b) -

which immediately explains the name.
For the Gamma-OU process, the characteristic functioneoff©U process is given in closed-
form by:

¢Gamma'0U(u7 tv l97 a, b7 yO) = E[exp(lun)‘yo]

= exp (Iu%(l —e )+ iuliaﬁb <blog <b — iuﬁ_llzl — e_ﬁt)) — iut)) . (2)

2.2. Thelnverse Gaussian-Ornstein-Uhlenbeck Process

The Inverse Gaussian (@, b)) density function is given by:

fre(z;a,b) = \/Z—w exp(ab)z~%? exp(—(az™! + b?x)/2), z > 0.

This 1G(a, b) is self-decomposable and hence an IG-OU process exists. BDi® of a
IG(a, b)-OU process is a sum of two independent Lévy processes{z;, = z,ﬁl) + z§2),t > 0}.
21 is an IG-Lévy process with parameter& andb, while 2 is of the form:

Ny
2 _
2 =y,
n=1

whereN = {N,,t > 0} is a Poisson process with intensity parametge. {v,,n =1,2,...}isa
sequence of independent identically distributed randorabkes: each,, follows a Norma(0, 1)
law independent from the Poisson procé&sThe IG-OU process jumps infinitely often in every
interval viaz().

The characteristic function of the integrated IG-OU pracesn also be given explicitly (see
e.g. Nicolato and Venardos (2003)):

brc-ou(u, t;9,a,b,y0) = Elexp(iuY;)|yo]
2aiu

= exp (iu%(l —exp(—dt)) + WA(U’ t)) , (3)
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where
Alwt) — 1—+/1+ 11(2— exp(—dt)) @)
1 V14 k(1 — exp(—dt)) 1
+ Nier [arctanh( Ve ) — arctanh< \/1+—/€) ,
ko= —2b%iu/d.

3. THEINTENSITY OU-MODEL

Reduced-form models assume an event of default to occuedirsgh jump of a counting process
M = {M;,t > 0}. The corresponding intensity of default = {\;,t > 0} represents the
instantaneous default probability:

P
o 7 € (t, ' BT > 1

: ®)
wherer is the default time. The dynamics of the default intensitied®ine the credit quality of
the corresponding asset.

We assume that the default intensity follows the Gamma-@lthe 1G-OU process introduced
in the previous section. The dynamics are thus given by kmuét):

d\; = =9\ dt +dzy,, Ao > 0.
The time of default is defined as the first jump @f/;:
T =inflt e RT | M; > 0].
The implied survival probability frond to ¢, P(t), is given by:

P(t) = P[M,=0]

= Plr > 1]
. E{exp (_ /)\d)} ©)
= Elexp (-Y)]

= ¢OU(—i, t7 197 a, b7 yO)a

wheregoy (—i, t; 9, a, b, yo) is the characteristic function of the intOU process evadatt point
v = i. Equations (2) and (3) are used to evaluate the survivddghility in the cases of the
Gamma-OU and IG-OU processes.

!Note that the Gamma-OU case can be rephrased as a speciaf tasdasic affine model introduced by Duffie
and Singleton (1999).
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3.1. Calibration of the model on CDSterm structures

Credit Default Swaps (CDS) are derivatives that providebtinger an insurance against the default
of a company in exchange for (continuous) predeterminedheays. The payments continue until
the maturity of the contract, unless a default event ocdarghis case, the buyer delivers a bond
on the underlying defaulting asset in exchange for its fadee:

The price of a CDS with maturity” is given by the difference between the discounted spread
and the loss payments:

DS = (1- R) (— /0 ' eXp(—rs)dP(s)) iy /0 " exp(_rs)P(s)ds,

whereR is the recovery rate; the risk free rate andP(t¢) is the survival probability up to time
The par spread* that makes this price equals to zero is:

(1-R) (— fOT exp(—rs)dP(s))
fOT exp(—rs)P(s)ds
(1-R) (1 —exp(—rT)P(T) —r [ exp(—rs)P(s)ds)

= . 7
fOT exp(—rs)P(s)ds ")

The closed-form expressions available for the survivabphilities in the cases of the Gamma and
IG-OU dynamics allow to easily estimaté

We calibrate the Gamma and 1G-OU models to the CDS term stegtl; = 1y, 7, = 3y,
T; = by, T, = Ty, andT5 = 10y years) of the Itraxx Europe Index as of the 13th of December
2005. In this exercise we have set 0.03 and R = 0.4 for all the assets. In the calibrations we
minimize the root mean square errofr{se):

e — Z (Market CDS price- Model CDS pI‘ICQZ'

number of CDS prices
CDS prices P

The cpu time required to calibrate our OU-model to all the CZB term structures is around one
minute.

For comparison purposes, the capabilities of the OU modelested by calibrating on the
same term structures the following models:

1. the Homogeneous Poisson (HP) model (Jarrow and Turrit28)), where the default in-
tensity is constant;

2. the Inhomogeneous (INH) Poisson model with piecewisstamt default intensity

)\t:KJ ﬂ,1§t<7}, j:1,2,,5,

3. the Cox-Ingersoll-Ross (CIR) model (Cox et al. (1985)heve the default intensity is sto-
chastic:
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To compare the overall quality of the fits, we compute for eaxddel the average absolute
error as a percentage of the mean praged:

1 [Market CDS price- Model CDS pricé
ape = . T
P mean CDS prlc%% number of CDS prices
Homogeneous Poisson CIR
25 25
20 20
15
10
5
0
0 20 40 60 80 60 80
ape ape
GOU IGOU
25 25
20 20

| - . . .
0 20 40 60 80 40 60 80
ape ape

Figure 1: Distributions of the average absolute error agegmeage of the mean CDS price for the
calibrated models.

Figure 1 plots the distributions of thepe for each model. Results for the inhomogeneous
Poisson dynamics are not reported, since a perfect matdhtasmed between market and model
prices (see below).

In the following, we concentrate on two compani@BN AMROandTDC. Similar results are
obtained for all the other assets. Figures 2 and 3 plot theuttgfrobabilities (left plots) and the
calibrated term structures (right plots). The figures hglttithe failure of the HP model to match
market data. The IHP model can match the market data but tieviwe of the term structure is
clearly unreliable, due to the piecewise constant assompfrhe CIR, Gamma-OU and IG-OU
models can all be nicely calibrated to market data. Figurkedivs that, overall, the Gamma-OU
dynamics outperforms the other two. Table 1 list market andets prices together with the values
of thermse
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Figure 3: Estimated default probabilities and term strregdor TDC.
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Company ly 3y Sy 1y 10y rmse
ABN AMRO Market 3 7 8 11 15
Model HP 9 9 9 9 9 8.95
Model IHP 3 7 8 11 15 —
Model CIR 4 7 9 11 14 2.10
Model GOU 4 7 9 11 14 1.62
Model IGOU 3 7 9 11 14 1.66
TDC Market 50 158 266 299 329
Model HP 221 221 221 221 221 23041
Model IHP 50 158 266 299 329 —
Model CIR 127 206 250 277 299 99.44
Model GOU 105 174 235 286 345 68.616
Model IGOU 89 178 242 288 334 51.10

Table 1: Results of the calibrations on CDS term structureB).

3.2. Pricing of Digital Default Put and Model Risk

The calibrated models are finally used to price a Digital Defeut (DDP) with maturityl” and
payoff1 at default. If default occurs at any time< T', the owner of a DDP receives a unit payoff.
The price of such an instrument at tiche: 7 is given by Schonbucher (2003):

D(t) = [ /t "\ (s)exp (_ /t C(r(u) + )\(u))du) ds} | (®)

We estimateD(¢) using Monte Carlo simulation (sample si2é = 10000). Figure 4 plots the
prices forAMRO (left plot) andTDC (right plot). We concentrate here on the prices obtained
with CIR, Gamma-OU and IG-OU dynamics, which best fit markatad Despite of the similar
calibration results, the DDP prices for very lowyj and very high {0y) times to maturity can

be rather different. For intermediate time horizons sonfiemrdinces still exist but are less pro-
nounced. If we focus oDC, the maximum relative difference is obtained when comgatin
prices (around0% when comparing CIR and OU). Finally, although the calibda®DS patterns
are almost coincident, the same order of magnitude for tlag¢ive differences in DDP prices is
obtained foABN AMRQ(around12% when comparing IG-OU and CIR). This happens because of
the path-dependence of the DDP price, which is not captuyeéldébdefault probability behavior.

4. CONCLUSIONS

We have introduced a reduced-form credit risk model whex@ymamics of the default intensity is
described by a Gamma or Inverse Gaussian Ornstein-Uhlkmvecess. Under this assumption,
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ABN AMRO TDC
T T 40 T T

Price
Price

Figure 4: Price of the digital default put on ABN AMRO Holdifigft plot) and TDC (right plot).

the survival probability has been expressed in closed-imsing the characteristic function of the
integrated process. We have shown that this allows to easiignate the par spread of a CDS.

We have calibrated the model on the 125 CDS constitutingtth@xd Europe Index. The cal-
ibration of the model is quite fast: in one minute a standardtation can calibrate the model to
the complete set of 125 CDS. The Ornstein-Uhlenbeck modebban compared with the homo-
geneous and inhomogeneous Poisson models and with theng@ersbll-Ross dynamics. Results
have shown that while homogeneous and inhomogeneous Rarssdels fail in replicating real
market structures, the CIR, Gamma-OU and IG-OU models caicledy calibrated to market data.
Generally, the Gamma-OU model outperforms the other twoeatsad terms of mean squared dif-
ference between model and market prices.

After the calibrations, the models have been used to pridgiebdefault put through Monte
Carlo simulation. Despite of the similar calibration rdésplthe option prices have sometimes
resulted to be different (up ®0% of relative difference between e.g. the CIR and the Gamma-OU
prices). This happens because of the path-dependenceditjited default put price, which is not
captured by the default probability behavior.
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Abstract

In this paper, we deal with an incomplete market frameworla idiscrete time model. In
actuarial science as well as in finance, the pricing of masdyets are based on some under-
lying stochastic process. Here, use is made of the theorpolfiastics-convex orderings and
their respective extrema to find the extrema (minimum andimmam) for these underlying
processes in incomplete markets. For example, the prewimtkod can provide an analytic
approach to the evaluation of aggregate claims models anddkely related stop-loss insur-
ance.

As an application, we study the pricing problem of contirtggaims of stop-loss type in
the context of incomplete markets. As an illustration, tireomial and trinomial models are
studied in detail. So, to calibrate the price of these prtgjuwur method leads to the computing
of bounds within an incomplete market framework.

1. INTRODUCTION

Stochastic orderings are probabilistic tools to compandean variables or random vectors. Math-
ematically speaking, they are partial order relations @efion sets of probability distributions.
Many papers have been devoted to the derivation of boundsnie stochastic order on a given
random variable5. These bounds use some information about the random wvasabike mo-
ments, support, unimodality, etc. Relying ertremawith respect to some order relation, the
actuary acts in a conservative way by basing his decisiorte@ieast attractive risk that is con-
sistent with the incomplete available information. Therexta correspond to the “worst” and the
“best” risk. See, e.g., Denuit et al. (1999a) and the refesrtherein.

In this paper, we will use the convex order, defined as follogwgen two random variableS
andT, S is said to be smaller thah in the convex order, denoted &s=. 7, if the inequality

65
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E[¢(S)] < E[¢(T)] holds for all the convex functions: R — R, provided the expectations exist.
The intuitive meaning o5 < T is thatS is less variable thaff. The multivariate version of
= IS easily obtained by considering convex functignsR™ — R. However, this ordering does
not allow for interesting applications (so that we will ratftonsider in this papet.c-inequalities
among linear combinations of the components of the randatox®to be compared, as explained
below).

In this paper, we consider multiplicative discrete-timeqasseg X,,, n = 1,2, ...} obtained
as follows. Starting from a sequenfg,, n = 1,2, ...} of positive independent random variables,
we define recursively th&,,’s as

XTL+1 - XnYn+1, n = 172, o 0.

with X; = Y;. Such a process can be seen as a multiplicative random wiikelative increas#,

at timen. It is widely used in finance to model the price of financiatinments (whereX,, is the
exponential of some process with independent increme®is).aim is to derive lower and upper
bounds on the procegs(,,, n = 1,2,...} in the sense that any positive linear combination of the
X,’s is bounded in the convex order by the corresponding linearbinations of the components
of the extremal processes. This is similar to the works byh€eey and Mosler (1996 1997 1998)
where orderings between random vect&fsandY defined bya; X; + a2 Xo + - - - + a, X, <x
a1Y1 + axYs + - - - + a,Y,, for all constantsi, as, . . ., a, are studied.

The results derived in this paper are applied to discrete-tiontingent claims pricing models.
The underlying assets are assumed to follow a discretegnoeess and trading only takes place
at some prespecified dates. In this paper, we consider ampiete market framework, so that
the risk-neutral probability measure is not unique and vedrapresence of a class of risk-neutral
measures. The aim is thus to find the risk-neutral probgbiiéasures that imply the lower and
upper bounds on the price of the claim and that are elemerntseoflass of admissible prices.
Examples within a trinomial model (i.e. a model where thengeain the value of the stock between
two trading times can attain three different values) areudised.

The connection between the papers devoted to extremabdistns that appeared in the actu-
arial literature and financial pricing in incomplete maeket as follows. The class of risk-neutral
probability measures is considered as a class of distobsitivith fixed support and first moment.
Then, extremal elements are identified within the set ofnisktral distributions, leading to bounds
on the prices of contingent claims. This bridge betweenaatLlrisk theory and financial mathe-
matics seems to be promising.

The paper is organized as follows. The extremal processebualt in Section 2. Section 3
describes the application to financial pricing in the trin@hmodel. Numerical illustrations are
provided there. The final Section 4 concludes.

2. EXTREMAL PROCESSES

2.1. Definitions

Let us denote a¥;~ aninJr two positive random variables such that <., Y; <« YZ* holds for
all .. Assume for instance that the suppordfs in [a;, b;] and thatE[Y;] = p;. Then if we define
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the random variables;” andY;" asY,” = y; almost surely, and

a; with probability 2 Z ,
Y+ _ i~ Wg
! . R 2 07}
b; with probability ,
bi — Q;

we haveY,” =<« Y; =« Y;L. Other choices for thes-bounds are possible, according to the
amount of information available about thé&s (support, moments, unimodality, ageing notions,
etc.). See, e.g., Courtois and Denuit (2005) and the refesetierein.

All the random variable®?,Y,, ..., Y, Y, , ..., V", Y, ... are assumed to be independent.
Starting fromX; = Y;” and X, = Y;", we define the extremal procesges,, n = 1,2,...}
and{X,\, n=1,2,...} by X; = X, Y, andX;) = X", Y;" fori =2,3,....

n?

2.2. Convex ordered marginals

We expect that a convex ordering holds betwéen X" and X;. To prove that this is indeed the
case, we will need the following useful lemma.

Lemma 2.1 Let Ty, Ty, Z1, Z, be independent and positive random variables suchThat., 75
andZ; <« Z,. Then, 117, <« T2 Z5 holds.

Proof. Let ¢ be a convex function, and let us denotefas, Fr,, Fz, and F, the distribution
functions ofT}, Ts, Z; andZ,, respectively. From

E[p(Ti21)] — / " Bl6(t20)dFr (1)

< [ Blowz))dFy 1) sinceZ, <o 2
0

_ /O T E[S(T2)dFn(2)

S E[(b(TQZ)]dFZQ (Z) SinceT1 jCX TQ
0

= E[p(T22,)],

we conclude that the announceg,-inequality indeed holds. |
We are now ready to prove the next result that shows that theepsed X, , n = 1,2,...},
{X,, n=1,2,...}and{X,", n=1,2,...} have indeed «-ordered univariate marginals.

n’

Proposition 2.2 The stochastic inequalities,; <. X; <« X;" hold for all ;.

Proof. Let us prove the announced result using an iterative argtinigme result is obviously
true fori = 1, since it reduces td; =< Y1 = Y; . Now, assume that the result holds for
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i = 1,2,...,n and let us prove it forn + 1. Let us apply Lemma 2.1 in our setting. Taking
Th=T,=X,andZ, =Y, |, Z, = Y,;1, we get

XY = Xo Sex Xy Yo
Now, taking7y =1, = Y, andZ, = X, Z, = X,,, we have
X;YnJrl =ex XnYnJrl = XnJrl-

We then conclude thaY | <cx X4 by transitivity. The proof ofX,, ;; <cx XJH follows along
the same lines. [

2.3. Convex ordered linear combinations

Let us now prove that any positive linear combination of )& is bounded from below and from
above in the<-sense by the same combination of fig’s and of ther’s.

Proposition 2.3 Whatever the positive constants, . . . , «,, the stochastic inequalities

n n n
> X So )X S ) X
j=1 j=1 j=1
hold for anyi; < i, < --- < 1,, and integem.

Proof. We only prove the stochastic inequal@?:1 o X Sex Z}Ll a;X;;; the reasoning to
establishy ", ; Xi, <ex -7, ;X;" is similar. The result is obviously true for = 1. Let us
first establish the result for = 2. To this end, let us write

X + X, = X; (4, ...Y)

alXil + OZQXZ'Q = Xi1 (Oél + a2}/;'1+1 R Y;Q)

SinceY; |, ...Y, =« Yi41...Y;, and since< is closed under changes of scale and origin,

Lemma 2.1 then gives; X + @ X, =cx a1.X;, + a2 X;,, as announced. Now, let us assume that
the result holds for, and let us establish it for + 1. First, note that

X At ann Xy =X e+ X (o + oYy Vi)

int1 e Lin

The recurrence relation ensures that, given , ... Y; " = ¢, the stochastic inequality

X, +-+ X, (Oén + Oén+1t) Sex 1 Xy, + -+ X, (ozn + C(n+1t)

holds true. Sincé’; ,,...Y;  isindependentfrom both, ,..., X; andX; ..., X; , the=u-

In4

inequality also holds unconditionally, so that we get
OélXi: + -+ an+1XZ';+l =ex alXil + -+ in (C(n + OénJrlY;;Jrl LYo )
Sex Xy 44 X (o a1 Yier - Yin)

sinceY; ., ...Y;

int1

=ex Yin41---Yi,,,. This ends the proof. [
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3. APPLICATIONS TO THE TRINOMIAL MODEL FOR STOCK PRICES

3.1. Description of the model

In the trinomial asset pricing model, we begin with an inigtock priceS, = 1. There are three
possible numbersl, 1 andwu, with0 < d < 1 < u, such that at the next period, the stock price will
be eitherdS,, Sy or uSy. Typically, we taked andw to satisfy0 < d < 1 < u, so change of the
stock price fromS, to dS, represents downwardmovement, and change of the stock price from
Sp to uSy represents anpward movement. Therefore, at each time step, the stock pricereith
goes up by a factar or down by a factorl or does not move.

Initial Trinomial Process

15

Processes Trajectories
1.0
|

0.0
|

Time

Figure 1:100 trajectories of the trinomial process.

Let {S,, n =0,1,...} be the stock price process antbe the risk-free interest rate. We also
assume that < 1 and1 + r < u (no arbitrage opportunities). This process falls into tbepe
of this paper sincé,,,; can be obtained as the product of the previous stock pfjdenes.J,, 1,
where theJ,’s are independent and identically distributed randomaldeis, taking the values 1
oru. Figure 1 describes 100 typical trajectories of the trirdmrocess withh = 1.1, d = 0.9. The
physical probabilities associated with the downward (@tienary (1) and upward (u) movements
are respectively equal to 10%, 51.26% and 38.74% as in HMIZR

The financial pricing of contingent claims is not made unéierghysical (or historical) prob-
ability distribution, but well under the risk-neutral oriRecall that aisk-neutral probability mea-
sureis a measure that agrees with fhieysical probability measurabout which price paths have
zero probability, and under which the discounted pricedlgiranary assets are martingales. The
condition for the model to be free of arbitrage opportusitgethe existence of a risk-neutral prob-
ability measure and the price is then obtained by taking tipe&ation of the discounted payoff
under such a measure.

If there exist claims that are not attainable, then the ntasksaid to beancomplete In this
case there are infinitely many risk-neutral measures. Therial model is known to be incom-
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plete. The spac® of all risk-neutral probability measures is taken such tmater all risk-neutral
probability measureB, the discounted stock price proce{§$5”—)n, n =0,1,...} isa martingale
with respect to the natural filtration, i.e.

SnJrl
E-~
r {(1 + r)nl

g -
S0,51,...,S,] = ~ for anyP € P.
0: 1 } (I+7r)m y

3.2. The setP of risk-neutral probability measures

Let us denote aX,, the discounted stock price, that is,, = (1+ o starting fromX, = Sy. The
process X,,, n = 1,2, ...} admits the representatiot, = X,, 1Y, with

d with probability p,,
(1+ 7)Y, =< 1with probabilityp,
u with probability ps.

By convention X; =Y; B

Within the trinomial model, every risk-neutral probabjlineasureP corresponds to a triplet
(p1, P2, p3) Of positive real numbers satisfying+ p, +ps = 1, where the risk-neutral probabilities
p1, p2 and ps are respectively associated with a stationdry (lownward ) and upward )
movement of the stock price process. The ciass risk-neutral probability measures can then be
identified with the set of admissible triplets. B

All the risk-neutral probability measures, henceforth ated asP = (p, p2, p3), must be
equivalent to the historical measure (in the sense thaethef @vents that have probabilityunder
P is the same as the set of events that have probabilityder the physical measufg and such
thatEs[ X, 11|X,] = X, for all n. So(p1, p2, p3) have to verify the following system

p1+p2t+p3=1
{ p2-d+p-1+ps-u=1+r

with0 < p; <1 (i = 1,2,3). Thisis equivalent to say that all risk-neutral probataitheasures
(P1, P2, P3) — =l andp; = L5+t with 0 < pp < =120,

3.3. Extremal price processes

Denuit and Lefevre (1997) and Denuit et al. (1999b) derivegtbounds on random variables
valued in{0,1,...,n}. These extremal distributions can be generalized to the chsandom
variables valued in an arbitrary s&t = {eg,...,e,}, Withey < e; < --- < ¢,, in the spirit
of Denuit et al. (1999c). Specifically, consider a randomalde S valued in&, with meany.
Defining

¢, with probability 1 —#
gdise _ Ck+1 — Ck
min ek

exs1 With probability £ — %
€r+1 — €k
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wheree;, € &, _1 is such that, < u < exyq, and

¢, with probability £

gdisc _ €n — €0
¢,, with probability 22—

€n — €

we haveS¥s¢ <., S < Sds¢. Knowing thatEz[Y,] = 1 for all n, we see easily that the random

min max"

variablesY,~ andY,' such that the stochastic inequalitiés <. Y,, <« Y, hold true are defined
by

(1 with probability * — 1 7).

(1+r)Y, = u—1
u with probability ——
\ u—1
and

(4 with probability “ — 7).
(1+7)Y,; = u—d

| uwith probabnity%l .

The processesX,,, n = 1,2,...} and{X ", n =1,2,...} are then defined b, = X, Y~
and X = X YT, starting fromX; = Y;” andX; = Y|'.
The stochastic processéX, , n = 1,2,...} and{X,, n = 1,2,...} are trinomial models

with probabilities associated ta, d, u) being respectivel(“‘uﬁr) .0, u11> <O, uolldr) (1:?;‘1).
These two sets of probabilities do not correspond to riskrabmeasures (since the support is not
the physical one). The two extremal processes are obtawyéetting the probability associated
to d (i.e. p;) converging to its minimal and maximal possible values (l.aend %). Figure 2

described 00 trajectories of the minimal and the maximal processes with1.1, d = 0.9.

3.4. Numerical results
3.4.1. BJROPEAN CALL OPTION

The owner of a European call option has the right to buy a stoick (strike price) at a certain
future timeN. We denote by5, the current value of the stock price and we make the assumptio
that the considered stock price follows a trinomial modehw periods of time. Considering

in the setP of risk-neutral probability measures, a possible pricened European call is given by

WE@[(SN — K).]. Every possible price satisfies

1 1 1

Esl(Sy — K)4] < mEﬁ[(SN - K)4] < L

i35 (V) (57) (5555 w0,

Eg[(Sy — K)4],
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Figure 2:100 trajectories of the extremal trinomial process.
and

Es[(Sy — K)+]

> (]

=0

NN

)

(1+7"))N

Loty (=5

(Sou'dN " — K.

Table 1 displays the bounds obtained on the call price féemiht maturities and strike prices.
As in Hull (2002), we consider = 1.1 andd = 0.9. The annual risk-free rate i2%. A period of
time corresponds t8 months. The range of possible values for the price of theogibn is not

too large.

| N | K | Minimum [ Maximum |
3 months| 0.95 || 0.07653785 | 0.0938558
1 0.02793458 | 0.0625706

1.05 || 0.01396729 | 0.0312853

6 months| 0.95 || 0.1023344 | 0.1191295
1 0.0550888 | 0.0822166

1.05 || 0.0318363 | 0.0626412

lyear | 095 | 0.1517857 | 0.1714171
1 0.1071429 | 0.1383014

1.05 || 0.0740133 | 0.1136681

2years | 0.95 || 0.2426658 | 0.2610702
1 0.2028061 | 0.2318204

1.05 || 0.1655976 | 0.2042068

Table 1: Bounds on the price of a European call option.
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3.4.2. ASIAN CALL OPTION

An arithmetic Asian call option with exercice daté, exercice pricek and M averaging dates

generates a pay-o(f% Zi]‘ijl Sn_i— K) . This contingent claim is traded at timhdor a price
+

1 1 M-1
e | (3 2 o) |

whereP is in the setP of all risk-neutral probability measures. For a comprehenisackground
on Asian option prices, the reader is referred, e.g., to Sigtal. (2000), Vanmaele et al. (2006)
and the references therein.

As a numerical illustration, we consider the same paramatieles as for the European call.
Moreover, the averaging dates are taken to be all the dategydhe life of the option (including
maturity), i.e.M = N. Results are displayed in Table 2. The bounds displayed eTa are
computed by simulation usint) 000 random generations (standard errors attached to these ap-
proximations are also given). Again, the intervals of adibie prices is not too large.

| N | K | Minimum [ Std Error] Maximum | Std Error|
6 months| 0.95 || 0.08853629 | 0.0487% | 0.1018841 | 0.0847%
1 0.04004108 | 0.0483% | 0.07083054 | 0.0660%
1.05 || 0.01814324 | 0.0309% | 0.04076772 | 0.0488%
lyear | 0.95 || 0.1103681 | 0.0579% | 0.1251327 | 0.1045%
1 0.06580303 | 0.0585% | 0.09112557 | 0.0926%
1.05 || 0.0352885 | 0.0456% | 0.06358178 | 0.0780%
2years | 0.95 0.152037 0.0733% | 0.1629523 | 0.1391%
1 0.1114088 | 0.0738% | 0.1301361 | 0.1278%
1.05 || 0.07566844 | 0.0684% | 0.1022506 | 0.1161%

Table 2: Bounds on the price of an Asian call option.

4. DISCUSSION

In this paper, extremal elements in the class of risk-néptabability measures are investigated,
leading to bounds on the prices of contingent claims. Thisnising approach also leaves some
open questions. It is well-known that improvements of thg-bounds are possible when the
underlying distributions are unimodal (and are given bytomes of uniform distributions). See,
e.g., Denuit et al. (1999a). Unimodality is often satisfiedier the physical probability measure.
An interesting question could be to investigate the posgiahsmission of unimodality to the class
of risk-neutral distributions. The same problem could hesgtigated with ageing notions.
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Of course, alternative approaches could be investigatedinStance, convex bounds on the
conditional distributions could be derived. From the déifimi of the proces$X,,, n = 1,2,...}
we see thal[ X, 1| X1, ..., X,] = X,E[Y,1]. If E[Y,] = 1 for all n (as it is usually the case
in the financial applications, after a suitable change ofsueg theri£[ X, 1| X, ..., X,] = X,.
The idea is then to construct the extremal processes fromxtiemal conditional distributions
from the knowledge of the suppdgt, b) and the conditional meak,, .
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Abstract

The concept of economic capitd’ () refers to the amount of capital a financial institution is
supposed to set aside in order to prevent that its net adaetfad below a certain ‘catastrophic
level'. One then associatdsC' with the idea of a protection buffer for unexpected lossas th
might be incurred by the conglomerate. Traditionally oninges theE'C' with a certain confi-
dence level (say 99.95%) of the loss distribution. The gwblve will address is the compu-
tation of the total credit risk component of the economicitedjand how to allocate it among
the different entities of a financial conglomerate. Theta#imight be seen as business lines,
portfolios or even whole institutions of a financial congknaite. The model used to generate
the loss distribution uses Monte Carlo (MC) simulation. fartime being, there are several
models currently available in the literature for the allbma of the EC' of a conglomerate
among its different Business Lines. In this presentatiorwiliepresent numerical results of a
comparison between the main approaches, enlighteningaidcks and advantages of each
of them.

1. INTRODUCTION

The concept okconomic capita( £C) refers to the amount of capital a financial institution is
supposed to set aside in order to prevent its net asset \&ling foelow a certain level that would
have an impact on its normal operation. It is supposed totimmas a buffer for any unexpected
losses {/ Ls) that might be incurred by the institution.

On the regulatory side the Basel Il framework has forced bankuse methodologies that
link EC' allocation techniques with risk. In addition, supervisati be closely monitoring the
procedures the banks will have put in place to deal with esooaapital on Banking Super-
vision (BCBS). Moreover the increasing competition andoitsssure on business margins have

corresponding author
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brought up the problem of efficie®C allocation among the different entities and business lofies
a financial conglomerate. Directly related to the problerafti€ient EC' allocation is the problem

of measuring the diversification benefits and risk adjustadridbutions for individual positions

and business lines taking into account the whole portfolio.

Several approaches have been proposed to calculate righbotions at position and entity
levels. Tasche (2004) for example shows that the only deitahy to measure performance is
by defining a risk contribution as the derivative of the riskasure in the direction of the asset
weight. Kalkbrener et al. (2004) on the other hand compdre&xpected shortfall measure with
the classically use@laR/CoV ar approach. A derivation of’C' allocation and risk measures is
the paper of Dhaene et al. (2003). Additionally issues irgdatomonotonicity andvC' allocation
is treated in Dhaene et al. (2004). Recently Goovaerts €@05) proposed an algorithm in which
one uses both the whole loss distribution of the portfolid #re standalone distributions of the
individual sub-portfolios to allocat&C'. The problem this paper proposes to address is the one
of comparing some of the different methodologies largelduis practice by market participants
for allocating £C among the different entities of a financial conglomerateze@ithe complexity
of the task behind this work this paper should be seen as gt®fira series of research articles in
which the end goal is to present an approach for using sucstersyor active credit ALM portfolio
management. In this scope a full discussion of the methgikdowith a detailed explanation of
the differences on the portfolios and positions levels isabthe scope of this article.

The paper will be structured as follows. In section 2 andise@® we describe the portfolio
model used and some of the different risk measures used mahieet respectively. In section 4
we test those measures in a typical banking portfolio and gomments on the differences. In
section 5 we conclude the article with a résumé of the difiees and give a hint of the results of
the forthcoming research.

2. THE PORTFOLIO MODEL

In order to be as realistic as possible with what is done intpr@awe have made our analysis on a
one-period framework using a model (see Gupton et al. (18 @etails) commonly adopted by
practitioners that also includes ratings migrations. lchsa model the credit portfolio will consist
of bonds whose returnis are given by:

2
Y;:OzZﬁij—l—\/]_—Oz2& (l)
j=1

with o representing the average correlation between the bondshanslystematic risk factors
((Z1, Z3): the market) which we suppose to be two: an industry and atoguend¢; being the
idiosyncratic risk termA/(0, 1): unidimensional gaussian distributed with mean zero aaiistrd
deviation one). The loss distribution of the portfolio vk given by:

L= En: L; 2)
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with the individual losseg,; given by one year forward changes in prices of each positiantd
rating migrations.

The rating migrations are determined using a standard @auesspula algorithm for the sys-
tematic factors and a standard uni-dimensional Gaussiahdadiosyncratic factor. The correla-
tion between the market factors have been taken from théyeaairkets as explained in de Servi-
gny and Renault (2003) The transition probability matrix (TPM) is a historical ®and some
standard adjustments have been done in order to compensataie ratings incoherences.

3. ECONOMIC CAPITAL AND RISK MEASURES

Once the portfolio loss distribution has been determinexitban uses risk measures for determin-
ing the unexpected loss and the allocation of the econonpitata

Assume a loss distribution defined yand a certain quantile. The credit value at risk
(cVaR) and the expected shortfalkS) associated with the quantile are defined respectively as:

cVaR,(L) =inf{z > 0|P(L < z) > a} (3)
ES.(L) =Ep[L|L > ¢VaR,(L)]. 4)

Below we will define approaches using standard risk meashatsre largely used in practice
for allocating economic capital. Assume the conglomemat®mprised of. sub-portfolios whose
allocations we want to determine. The approaches we willdmparing in this paper are the
following:

a) VaR/CoVar: although largely used by practitioners this approachpggl for the case of
Gaussian loss distribution. In this approach the allocatesital of a certain sub-portfolio
will be given by:

cov{L, L;}

o

ECi(a) = - ECr(a) (5)
where L; and L are the losses of sub and the total portfolio respectivelyd 42 and
EC7(«) are the total portfolio loss variance and th€' for the total portfolio (assumed
to becVaR,(L)).

b) Pro-Rata:VaR: In this approach one uses the standaldreR,, of each sub-portfolio as a
weight in the allocation of the total rigk

cVaR,(L;)

ECi{a) = S VaR.(L:)

cVaR,(L). (6)

c) Basel Il: in this approach we use the relative proportiassilted from the Basel Il formulas
to allocatecVaR. Assume for example thas/; is the regulatory capital of portfolibthen

2In our case we have used the equity correlations given bydHorRisk Tracker (PRT) from S&P.
3As measured by the total’ a R that takes into account the whole correlation structuré@efortfolio
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the allocated capital for portfolibwill be given by:

ECi(a) = cVaRy * Bsli/() _ Bsly). (7)
=1
The principle behind this approach is to keep Basel Il propos for EC' allocation.

d) Marginal Optimization of TotatVa R, (see Goovaerts et al. (2005)): the idea is to search
on the standalone loss distribution of each sub-portféleoguantile for which the addition
of thecVaR, of the sub-portfolios would equal the totdl a R of the whole portfolio. One
then searches the quantifeon the standalone loss distribution of the sub-portfoliashs
that:

g =imf{f €[0,1] : i cVaRg(L;) > cVaR,(L)} (8)
i=1
then EC;(«) is defined as
ECi(a) = cVaRs(L;). 9

e) CreditVaR Contribution via Expected Shortfall: In this approadhriaR is allocated us-
ing the concept of Expected Shortfall contribution. The &oted shortfall contribution is

defined by:
The allocation is then given by:
_ ESp(Li)
ECi(a) = ES5(L) cVaR,(L). (11)

Observe that the quantiles for th&€a 1z, and for the£'S; do not need to be the same. For
example a bank might have it3 a« R, depending on a quantile of (say) 99.97% while
allocating it following a quantiles of 99%. l.e. portfolios that are more risky would need
more capital. Such decisions are strategic and depend qoticy of the bank.

f) Expected Shortfall that equat¥’a R,,: in this approach we will be looking at theS quantile
that equals theV aR. Then the allocation will be done using th&'. Assume for example
that:

f=inf{3 €[0,1]: ESz(L) > cVaR,(L)}. (12)
In this way:
Observe that the main objective of this approach is to ekt@nhe problem thafl’aR is a
non-additive measure (see Artzner et al. (1999) for dgtails

The results of the experiment will be given in function of theersification benefit (DB)f a
portfolio and it is defined as:

DBy =1-ECr/() EC) (14)
i=1
whereEC' is the total economic capital for the whole portfolio afida R, (L;) is the standalone

¢V aR of the portfolioi composed by: sub-portfolios. TheD B is a measure of the diversification
gain one has when the sub-portfolios are put together inange lportfolio.
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4. THE RESULTS

For the tests that follow we have selected 5 portfolios ofedént sizes, compositions and con-
centrations. The portfolios chosen have in general gooditguand we have made them quite
concentrated to show problems practitioners may face. ®hgositions of the different portfo-
lios in terms of average rating, average maturity and camagon factor (defined as the percentage
of issuers with 50% of the portfolio) are shown in table 1. \Wew the standalon&’ a Rgg 97+ Of
each portfolio (it is given as a percentage of the totad Ry 479, 0f the whole portfolio).

In terms of sector concentrations we have build the pod$di1 up to P5 with securities from
mainly four sectors (financials, sovereigns, utilitiesg @eme ABS’s (not more than 10% of this
class)) while portfolio P6 contains ABS’s only. When compgthe sub-portfolios, P6 is the most
diversified sub-portfolio.

Avg Dur(yr) | Rating| CF | Amount(%) | Std-AloneVaR
P1 13 AA 5 43.3 36.5
P2 7 A+ 7 35.4 56.3
P3 11 A+ 11 5.4 13.3
P4 1 AA- 9 10.3 15.6
P5 30 AA 3 5.1 8.7
P6 5 AAA | 30 0.5 0.4

Table 1. Composition of the Different Portfolios.

In the present analysis, one used the Moody'’s transitiobaiity matrix adjusted for some
rating imperfections. The correlation function is the oee\kd using equity returns. The correla-
tion is the one that comes from PRT (Portfolio Risk Trackea)gredit risk system comercialized
by S&P (see de Servigny and Renault (2003) for more detallsg systematic factor used, was
calculated via regression using equity data and in thisystvelwill be using 50% for that factor
(although the market factor has proved to be quite lower %% we have been using 50% for a
question of prudence). The result of the tests (in termB® Bj) for the different methodologies is
shown in table 2.

P1L| P2 | P3| P4 | P5 | P6
a)VaRICoVaR | 1.8 | 19.0| 48.9| 82.8| -0.10| 83.3
b) ProRatd/aR | 23.5| 23.5| 23.5| 23.5| 23.5| 23.5
c) Basel Il 27.0| 7.1 |36.7|72.7| 6.0 |64.1
d) Marg. Opt. 15.0| 18.7| 28.9| 46.1| 15.7 | 20.7
e)cVaRcontr |11.6|13.3|48.7| 75.6| 6.1 | 76.2
f) ES contr 20.2]| 10.5| 48.7| 62.0| 14.1 | 80.0

Table 2: Diversification benefit & C' allocation using different measures.

A first observation is about th€ar/CoVar approach. As already reported elsewhere it can
lead to a capital allocation that is higher than its stanu&aloa R and in some very special cases
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even higher than the whole amount of the portfolio. An exangdlit can be seen in the case of
sub-portfolio P5.

The simple ProRata approach has the characteristic ofidgz&tjually the DB among the sub-
portfolios independent of the correlation within the sutfolios. As it is seen for sub-portfolio
P6 this approach can have a negative impact on small sufsf@stthat would present ideal di-
versification characteristics with respect to the remgpiortfolio. The Basel Il approach has also
the characteristic of simplicity (as the numbers are anyaailable in the internal systems of
most banks). The problem with this approach is that the taro® underlying Basel Il formulas
does not necessarily represent the correlation among theatfolios under study (see e.g. the
allocation given by the”S contrib. approach).

The Marginal Optimization uses the standalone loss digioh for allocation and that distrib-
ution does not take into account the correlation among thepsutfolios. This is again evidenced
by the allocation given to sub-portfolio P6. ThE«r and theE'S contribution approaches account
quite well the DB brought by sub-portfolio P6.

The cVaR contribution methodology permits one to transfer risk aghthre sub-portfolios in
a way that risk generated in low risk sub-portfolio is all@zhto a higher risk one. Although it
brings up the issue that the quantile used for alloca¥ofi(in our case) is certainly arbitrary and
certainly depends on management decisions. ARecontribution has the problem that one does
not know in advance which quantilg {n the equation (12)) one will need to take, implying that
one will need to make a couple of simulations to determinelitat can be time consuming).

The first three approaches have the advantage of simplicityeacost of loosing important
insights when allocating the DB. The Marginal Optimizatimethod represents an increase in
mathematical complexity. For communication purposes iwigubsidiaries and business lines
it can be quite convenient: the standaldneR is certainly available at the sub-portfolio levels
and the holding would only need to pass the information onsfteific quantile for allocation
purpose. The disadvantage is the loss in correlation amungub-portfolio when deciding the
allocation. The:VaR and theE'S contributions both usé&'S factors for allocation purposes. The
¢V ar contribution brings up the quite (politically) sensitivasue of determining the quantile for
allocation purpose. Th&S contribution has the additional complexity of needing ipn@hary
simulations to determine the allocation quantile.

5. CONCLUSIONS

In this paper we have shown the impact of different capitklcation methodologies for sub-
portfolios of a large conglomerate and for individual pasis. We have discussed six method-
ologies, three quite simple and straightforward: thek/CoV ar, the ProRata and the Basell Il
(factors); and three more complex ones: Marginal OptinoratV a R contribution andE'S con-
tribution. The methodologies were tested on the problentloating risk as measured by a R
at the99.97% quantile on six sub-portfolios.

The first three approaches have the advantage of simplicityeacost of loosing important
insights when allocating the DB. The Marginal Optimizatimethod represents an increase in
mathematical complexity. For communication purposes iwigubsidiaries and business lines
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it can be quite convenient: the standalefi&: R is certainly available at the sub-portfolio level
and the holding would only need to pass the information onsitexific quantile for allocation
purpose. The disadvantage is the loss in correlation amungub-portfolio when deciding the
allocation. The:VaR and theE'S contributions both us&'S factors for allocation purposes. The
¢V ar contribution brings up the quite (politically) sensitivasue of determining the quantile for
allocation purpose. Thé&'S contribution has the additional complexity of needing ipn@ary
simulations to determine the allocation quantile.

A continuation of this study includes building tables shagveconomic capital consumptions
per position, rating, and sector. Those tables are put ircoiméext of a portfolio management
approach to an ALM credit desk. In order to avoid loosing hetson on a position level and being
able to build a scenario analysis framework for the wholéfpbo of the financial conglomerate a
paralel system (with up to 25 machines) has been put in pleicg lable to handle large amounts
of positions in very short time. Additionally an innovatiiportance sampling algorithm has
been implemented to improve the performance of the systeims Study which represents the
continuation of what has been shown in this paper will be ighkl in brief.
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Abstract

In this paper, we elaborate a formula for determining thénwgut strike price for a bond put
option, used to hedge a position in a bond. This strike psceptimal in the sense that it
minimizes, for a given budget, either Value-at-Risk or Gtiadal Value-at-Risk. Formulas are
derived for both zero-coupon and coupon bonds, which cankeaunderstood as a portfolio
of bonds. These formulas are valid for any short rate model avgiven distribution of future

bond prices.

1. INTRODUCTION

The importance of a sound risk management system can hagdinterestimated. The advent
of new capital requirements for both the banking (Basel il amsurance (Solvency Il) industry,

are two recent examples of the growing concern of reguldtsrghe financial health of firms in

the economy. This paper adds to this goal. In particular, evisicler the problem of determining
the optimal strike price for a bond put option, which is usechédge the interest rate risk of
an investment in a bond, zero-coupon or coupon-bearingrdardo measure risk, we focus on
both Value-at-Risk and Conditional Value-at-Risk. Ouryation is constrained by a maximum
hedging budget. Alternatively, our approach can also bd tseetermine the minimal budget a
firm needs to spend in order to achieve a predetermined a@bsdl level. This paper can be seen
as an extension of Ahn et al. (1999), who consider the sant#@eurofor an investment in a share.
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2. LOSS FUNCTION AND RISK MEASURES

Consider a portfolio with valuéV;, at timet. W, is then the value or price at which we buy the
portfolio at time zeroWr is the value of the portfolio at tim&. The lossl. we make by buying at
time zero and selling at timg is then given byl. = W, — Wr. The Value-at-Risk of this portfolio
is defined as thél — a)-quantile of the loss distribution depending on a time waéwith length
T. A formal definition for theVaR,,  is

Pr[L > VaR, 7| = a. (1)

In other wordsVaR,, 7 is the loss of the worst case scenario on the investmentlat-ax) confi-
dence level at timé&". It is also possible to define théR,, 1 in @ more general way

VaR,r(L) =inf{Y | Pr(L >Y) < a}. 2

Although frequently used, VaR has attracted some critisisfirst of all, a drawback of the
traditional Value-at-Risk measure is that it does not céreuathe tail behaviour of the losses.
In other words, by focusing on the VaR at, let's say a 5% lewel ,ignore the potential severity
of the losses below that 5% threshold. This means that we haveaformation on how bad
things can become in a real stress situation. Thereforeinthertant question of ‘how bad is
bad’ is left unanswered. Secondly, it is not a coherent rigasnre, as suggested by Artzner
et al. (1999). More specifically, it fails to fulfil the subatidty requirement which states that
a risk measure should always reflect the advantages of dwegs that is, a portfolio will risk
an amount no more than, and in some cases less than, the suma onfks of the constituent
positions. Itis possible to provide examples that showVWa& is sometimes in contradiction with
this subadditivity requirement.

Artzner et al. (1999) suggested the use of Conditional Va¥ag as risk measure, which they
describe as a coherent risk measure. CVaR is also known &R, Ovarlail Value-at-Risk and is
defined as follows:

CVaR,r(L) = é / ) VaRg 1 (L) dB. 3)
0

This formula boils down to taking the arithmetic averageha tjuantiles of our loss, from O to
on, where we recall thafaR 5 ;- stands for the quantile at the leviel- 3, see (1). This formula
already makes clear th@aR,, (L) will always be larger thavaR,, r(L).

If the cumulative distribution function of the loss is conibus, CVaR is also equal to the Condi-
tional Tail Expectation (CTE) which for the logsis calculated as:

CTE.1(L) = E[L | L > VaRqr(L)].

3. THE BOND HEDGING PROBLEM

Analogously to Ahn et al. (1999), we assume that we havea #iero, one bond with maturity
S and we will sell this bond at tim&’, which is prior toS. In case of an increase in interest rates,
not hedging can lead to severe losses. Therefore, the contleaides to spend an amouriton
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hedging. This amount will be used to buy one or part of a bortdbption, so that, in case of a
substantial decrease in the bond price, the put option caxéeised in order to prevent large
losses. The remaining question now is how to choose the=gtrike. We will find the optimal
strike prices which minimize VaR and CVaR respectively fgien hedging cost. An alternative
interpretation of our setup is that it can be used to caleuta minimal hedging budget the firm
has to spend in order to achieve a specified VaR or CVaR leved. |dtter setup was followed in
the paper by Miyazaki (2001).

3.1. Zero-coupon bond

Let us assume that the institution has an exposure to a baid,5), with principal X' = 1, which
matures at time, and that the company has decided to hedge the bond valuergyaipercent-
ageh (0 < h < 1) of one put optionP (0, 7', S, X') with strike priceX and exercise daté (with
T<09).
Further, we assume that the distributionYof7’, S) is known and is continuous and strictly in-
creasing. We will denote its cumulative distribution fuoat(cdf) under the measure in which we
measure the VaR or the CVaR By (r,5)(-). For example when the short-rate model is one of the
following commonly used interest rate models such as Vasioee- and two-factor Hull-White,
two-factor additive Gaussian model G2++, two-factor He#lrow-Morton with deterministic
volatilities, see e.g. Brigo and Mercurio (2001), thé(’, S) has a lognormal distribution.
Analogously to Ahn et al. (1999), we can look at the futureseadf the hedged portfolio that
is composed of the bond and the put optio(0, 7', S, X) at timeT" as a function of the form

Hr =max(hX + (1 - h)Y(T,9),Y(T,S)).

In a worst case scenario — a case which is of interest to us puheption finishes in-the-money.
Then the future value of the portfolio equals

Hr = (1—h)Y(T,5S) + hX.

Taking into account the cost of setting up our hedged paotf@thich is given by the sum of the
bond priceY (0, S) and the cost’ of the position in the put option, we get for the value of thesto

L=Y(0,9)+C —((1-h)Y(T,S)+ hX), 4)

and this under the assumption that the put option finishésarmoney.
Note that this loss function can be seen as a strictly deiogasnctionf in Y (7', S):

FY(T,8)) :=Y(0,8) + C — (1 — W)Y(T, S) + hX). (5)

VaR minimization
We first look at the case of determining the optimal sttlkevhen minimizing the VaR under a
constraint on the hedging cost.

Recalling (1) and (4), the Value-at-Risk at anpercent level of a positioil = {Y, h, P}
consisting of a bond” andh put optionsP (which are assumed to be in-the-money at expiration)
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with a strike priceX and an expiry dat&’ is equal td
VaRar(L) =Y (0,9) + C = (1 — h)Fy }p g (@) + hX), (6)

whereFy. ;¢ (a) is the percentile of the cdfy(r.s), i.e. Pr[Y (T, S) < Fy 1 ¢ (a)] = a.
Similar to the Ahn et al. problem, we would like to minimizeethisk of the future value of
the hedged bondi;, given a maximum hedging expenditure More precisely, we consider the

minimization problem
min¥'(0, 8) + C — (1 - ) Fy . (@) + hX)

subject to the restrictionS = hP(0,7, .5, X) andh € (0, 1).
This is a constrained optimization problem with Lagrangecfion

L(X,h,\) = VaRar(L) — N(C — hP(0,T., 5, X)),

containing one multiplicatok. Note that the multiplicators to include the inequalities: 4 and
h < 1 are zero since these constraints are not binding. Takiogaictount that the optimal strike
X* will differ from zero, we find from the Kuhn-Tucker conditien

(0L oP

oLC -

= —(X - Fy(lT,S)(a)) +AP(0,7,5,X)=0
oLC

—~=C—-hP(0,T,5,X) =

B\ C—-hP(0,T,5,X)=0

 0<h <1 and A>0

that this optimal strikeX* should satisfy the following equation
P
P(0,T,S,X) — (X — Fy(lT’S)(oz))g—X(O, T,S,X)=0. (7)
By a change of numeraire, it is well known that the put optiolcg equals the discounted
expectation under thE-forward measure of the the pay-off:

Its first order derivative with respect to the striké gives the cumulative distribution function

FE(TS) of Y/(T, S) under thisI'-forward measure, see Breeden and Litzenberger (1978):
oP T
8—X(07T7 SuX) = Y(O7T)FY(T,S)(X) (8)

Hence, (7) is equivalent to

P(0,T,5,X) = (X — F;(lT,S)(C“))Y(Oa T)FE(T,S)(X> =0.

1In case of an unhedged portfolio, take= h = 0 in (4) and in (6) to obtain the loss functidnwith corresponding
VaRmT(L).
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Important remarks

1. We note that the optimal strike price is independent ofrbd@ging cost”. This indepen-
dence implies that for the optimal striké*, VaR in (6) is a linear function ok (or C):

VaRa,r(L) =Y (0,8) = Fyipg (@) + R(P(0,T, S, X*) + Fy i 6 (@) — X7).

So, there is a linear trade-off between the hedging expamrdénd the VaR level. It is a
decreasing function since in view of @}(O,T, S, X*) < 1 and thus according to (7)

X* = Fyipg(a) > P(0,T, 5, X*).

Although the setup of the paper is determining the strikegowhich minimizes a certain

risk criterion, given a predetermined hedging budget, tfaide-off shows that the analysis
and the resulting optimal strike price can evidently alsaubed in the case where a firm
is fixing a nominal value for the risk criterion and seeks thaimal hedging expenditure

needed to achieve this risk level. It is clear that, once itenal strike price is known, we

can determine, in both approaches, the remaining unknoviabla (either VaR, eithet).

2. We also note that the optimal strike price is higher thanbibnd VaR IeveF;(lm) (a). This
has to be the case sin€¥0, 7', S, X) is always positive and the change in the price of a put
option due to an increase in the strike is also positive. fdsslt is also quite intuitive since
there is no point in taking a strike price which is situatetbisethe bond price you expect in
a worst case scenario.

When moreover the optimal strike is smaller than the forwarce of the bond, i.e.

Y(0,5)
“Y0,7)

*

then the price of put option to buy will be small.

3. The assumption of continuity and strictly monotonicitytee distribution ofY (7', .S) can be
weakened. In that case we should work with the general defini2) of VaR.

CVaR minimization
In this section, we demonstrate the ease of extending olysasio the alternative risk measure
CVaR (3) by integration of (6):

cvaij»:1«@5y+c—hxx-la-Jo/Wthawyw. (9)
« 0 ’

We again seek to minimize this risk measure, in order to mierpotential losses. The procedure
for minimizing this CVaR is analogue to the VaR minimizatipmocedure. The resulting optimal
strike priceX* can thus be determined from the implicit equation below:

1 [ __ 0P
PO.T.S.X) = (¥ = [ Rl (49 F50.7.5.5) =0, (10)

or, equivalently by (8), from

1 (63
PO.TSX) = (X = [ ol (D19Y (0. T) Ry 5(3) =0,
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As for the VaR-case the optimal strike* is independent of the hedging c@stand CVaR can be
plotted as a linear function @f' (or h) representing a trade-off between the cost and the level of
protection.

For the same reason as in the VaR-case, the optimal strikeas to be higher than the bond CVaR

level 2 [¢" Fyr.s)(8)dp.

4. COUPON-BEARING BOND

We consider now the case of a coupon-bearing bond payindfleashC = [y, .. ., ¢,] at maturi-
tiesS = [S1,...,5,]. LetT < S;. The price of this coupon-bearing bond7his expressed as a
linear combination (or a portfolio) of zero-coupon bonds:

CB(T,S,C) = i aY(T,S)). (11)

i=1

As in the previous section, the company wants to hedge itgigo$n this bond by buying a
percentage of a put option on this bond with strikeand maturityZ". In order to determine the
strike X, the VaR or the CVaR of the hedged portfolio at tifids minimized under a budget
constraint. Comparing the results in the previous secion/dR and CVaR minimization for a
hedged position in zero-coupon bond we note that both casemdact be treated together.

We first have a look at the value of a put option on a couponibgdrond as well as at the
structure of the loss function.

Since the zero-coupon bontg7', S;) all depend on the same short raté athe vectorY (7', S1),
....Y/(T,S,)) is comonotonic, see Kaas et al. (2000). By the propertie®wifanotonic vectors,
the coupon-bearing bond CB, S,C) (11) is a comonotonic sum with cumulative distribution
function Fg(+) under thel'-forward measure. This implies that a European option onupao-
bearing bond decomposes into a portfolio of options on the&zidual zero-coupon bonds in the
portfolio, which gives in case of a put with maturityand strikeX:

CBP(0,7,8,C,X) =Y aP(0,T,5,X;), with > ¢X;=X. (12)

i=1 i=1

This result, now well-known as the Jamshidian decompasiticas found in Jamshidian (1989)
in case of a Vasicek interest rate model. Kaas et al. (200@jredd this result in a more general
framework of stop-loss premiums and gave an explicit exqpoesor theX;:

Xi = (Fyrs,)) ™ (Fea(X)). (13)

Repeating the reasoning of Section 3.1 we may concludentatiorst case scenario the loss of
the hedged portfolio at tim& composed of the coupon-bearing bond (11) and the put opt®n (
equals a strictly decreasing functigrof the random variable CB’, S, C):

L =CB(0,8,C) +C — ((1— h)CB(T,S,C) + hX) := f(CB(T,S,C)). (14)
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VaR and CVaR minimization
The VaR of this loss that we want to minimize under the comdgsd) < h < 1 andC =
hCBP(0,T,S,C, X), is given by

VaRor(L) = f(Fag (@) = CB(0,8,C) + C — (1 - h)Fed(a) + hX),  (15)

whereF; stands for the inverse cdf of the coupon-bearing bond umdemeasure in which VaR
(and CVaR) is measured.

By integrating this relation (15), after replacingoy (3, with respect tg3 between the integration
bounds 0 andy, we find for the CVaR of the loss:

CVaR. (L) = CB(0,8,C) + C — hX — $(1 — h) / ) F(B)dB. (16)
0

Also here we note the similarity in the expressions for tls& measures (RM) VaR and CVaR
which could be collected in one expression:

RM, r(L) = CB(0,S,C) + C — hX — (1 — h)g(Fgg () (17)
Faa(a) if RM = VaR
with  g(Fgg(a)) = 4 4 (18)

- / F(B)d3  if RM = CVaR.
0

Although the marginal distribution8y-(r 5,y are known, the distributiofcg of the sum can in
general not be obtained. However, in the case of a comoradom we have, see again Kaas et al.
(2000),

ch virsy (@) forallpeo,1], (19)

and similarly for the inverse cdfs under ttheforward measure.
We now want to solve the constrained optimization problem

r)r}il? RM, r(L) subjectedto C'=hCBP(0,7,S,C,X), 0<h<1.

From the Kuhn-Tucker conditions we find that the optimakstiprice X* satisfies the following
equation
CBP
CBP(0,7,8.€.X) ~ (X — g(Fgg () oo (0.7.5.,¢. X) = (20)
Rewriting this equation in terms of the put options on thevitlial zero-coupon bonds cfr. (12),
invoking (19) and using the linearity of the functigr{18), leads to the following equivalent set of
equations:

) 0X;
Zcz (0,7, S;, X;) ch v irs,) )))Zcia OTSZ,X)aX 0 (21)
=1 =1
=1
¢, 2% =1, (23)

“ax

1=1
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whereX; is defined by (13).
We can further simplify relation (21) by applying relatid) ¢o the strikeX; given by (13), i.e.

oP _
ox, (0T 5 X)) =Y (0, ) F s, (Fyrs,)) ™ (Fds(X))) = Y(0, T) Fég(X).
Hence, this derivative is independentafhich implies in view of (23) that
" opP 0X; & . 0X;
Zciﬁ(oa T, Sz‘>Xz‘)a—X = Y(O, T)FgB(X) 8X Y(O T)FCB(X) (24)
i=1 v i=1
We introduce the short hand notation
Ax = Fig(X). (25)

Substitution of (13), (22) and (24) in (21) leads to the falilog equation that we have to solve
for Ax:

n

> aPO, T, S (Firs) " (Ax) = Y(0.T)Ax Y il(Ff7,5)) " (Ax) = 9(Fy g, (@))] = 0.
= =1
Once, we knowA x we immediately have the optimal striké* from (22):

n

X* =Y i Flirs)) " (Ax). (27)

=1
Remarks
1. We note that also in the case of a coupon-bearing bond tireastrike price is independent

of the hedging cost and that one can look at the trade-off detvwhe hedging expenditure
and the RM level, cfr. Section 3.1.

2. Also here we may weaken the assumption of continuity andtlgtmonotonicity of the
distribution functionsfy (r,s,). In that case we have to invoke Kaas et al. (2000) with a so-
calledn-inverse distribution of a random varialdfewhich is defined as the following convex
combination:

Fy'(p) = nFyt (p) + (1= ) By Y (p), pe(0,1), nelo,1],
Fy'(p)=inf{y eR| Fy(y) >p}, pel0,1],
Ey'(p) =sup{y eR | Fy(y) <p}, pel0,1].
Thus relation (12) holds with
X = (FE(T,Si))_l(n)(FgB(X))v

wheren € [0, 1] is determined from

n

Z i(Fyr,sy) " (Fé(X)) = X,

i=1
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5. APPLICATION: HULL-WHITE MODEL

As an application, we focus on the Hull-White one-factor mlofirst discussed by Hull and White
in 1990 (see Hull and White (1990)). We choose this modelleed is still an often used model
in financial institutions for risk management purposess @ego and Mercurio (2001)).

Hull and White (1990) assume under the risk-neutral mea3uhat the instantaneous interest
rate follows a mean reverting process also known as an GmAdtdenbeck process:

dr(t) = (6(t) —~y(t)r(t))dt + o(t)dZ(t) (28)

with Z(t) a standard Brownian motion und€, and with time dependent parameté(s), v(¢),
ando(t). The parametef(¢) is the time dependent long-term average level of the spetest
rate around whichr(¢) moves,y(t) controls the mean-reversion speed aitd) is the volatility
function. By making the mean reversion levetime dependent, a perfect fit with a given term
structure can be achieved, and in this way arbitrage candidexy. In our analysis, we will keep
~ ando constant, and thus time-independent. According to Brigd lercurio (2001), this is
desirable when an exact calibration to an initial term dtreecis wanted. This perfect fit then
occurs wherd(t) satisfies the following condition:

2
6(t) = FM(0,0) +7FM(0,6) + (1 - e7"),
v
where,F*(0,t) denotes the instantaneous forward rate observed in thestramkime zero with
maturity¢.
It can be shown (see Hull and White (1990)) that the expextatnd variance of the stochastic
variabler(t) are:

Elr(t)] = m(t) =r0)e " +a(t) —a(0)e™ ", Var[r(t)] = s*(t) = —(1 —e ) (29)

with the expression(t) calculated as follows:
02 (1 —e >
t)=F"(0,t) + = :
alt) = FM(0,6) + 5 ( . )

Based on these results, Hull and White developed an analgipression for the price of a
zero-coupon bond with maturity date

Y(t,S) = A(t, S)e  B&:SIr®)

where
1 — (51 YM(O S) B M o2 —2yt\ B2
B(t.S) — A(t. S) = ) (t,S)FM(0,t)~ % (1—e )B=(t,S)
(7 ) v ) (7 ) YM(O—7t)€ v

with Y™ the bond price observed in the market. Sirge, S) andB(t, S) are independent of(t),
the distribution of a bond price at any given time must be togral with parameterf and X'?:

(¢, S) = In A(t, S) — B(t, S)m(t), N(t,S)* = B(t, S)*s*(t),
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with m(t) ands?(t) given by (29). Thus under the risk neutral measure the ievedof Y (7', S)
is given by

3 —1
Fylpg)(p) = 1THETOTE@ 0y, € 0, 1], (30)

and we can compute the (standard) integral

/0\ FY_'(1T75) (ﬁ)dﬁ — eH(T,S) /0\ 62(T7S)¢71(ﬂ)d5 _ €H(T,S)+%E2(T7S)¢)(¢)—l(a) . E(T, S)) (31)

By a change of numeraire it can be shown tHéi", S) remains lognormally distributed under the
T-forward measure but now with paramet&rs and(>7)? given by:

(T, S) =In G;Eg%) — %(ET(T, S, XI(T,S) =X(T, S). (32)

Hence, the inverse cdf of (7', S) under thel'-forward measure is known explicitly:
(Frs) " (p) = ' DIEHT0 e o,1], (33)
as well as the put option price and its derivative with respethe strike:

P0,7,5,X)=-Y(0,5)P(—d; (X)) + XY (0, T)P(—d2(X)),
oP

oy (0.7.5.X) = Y(0,T)@(~dy(X)),

with, when taking (32) into account,

o Y(0,5) ! NI7(T, S) — In(X)
b = g7 {m (Y(()’T)) - ln(X)] +9OT8) = =g+ B(TS)
(34)
d(X) = di(X) - 51, 5) = 5] = In(X) (35)

S(T, S)

For thezero-coupon casgsubstitution of the relations above in (7) and in (10) githesfol-
lowing implicit relation for the optimal strike™*:

_ Y(0,9)0(=d (X))

ot =
G D =50 1)@=y (X))
with
B eH(T,S)+E(T,S)<I>_1(a) if VaR
G(@ ' (a)) = 1 TI(T,S)+152(T,5) & ( —1 : (36)
~e WS (0 (a) - X(T, 9)) if CVaR.

For thecoupon-bearing bond casgthe above relations for the distribution and the put option
price hold but withS and X replaced bys; and X;. The expressions (34) and (35) fn( X;) and
dy(X;) can further be simplified in view of (13),(25) and (31):

4 (X)) = S(T,S;) — 3 (Ax),  do(Xi) = - (Ay).
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In this way, the set of equations (26)-(27) to find the optisteke X* is equivalent with:

n

Zci [—Y(O, SH®(PHAx) — X(T, S;)) + Y(O’T)AX€HT(T,S77)+Z(T7S77)¢71(AX)]
i=1
= V(0. T)Ax D [T - G (@ )

i=1

X* — ZCienT(T,Si)JFZ(T,Si)@—l(AX)7

=1

whereG;(®!(«)) is defined by (36) when replacirfjby ;.
For a complete numerical example we refer to Deelstra e2@0%) and Heyman et al. (2006).

6. CONCLUSIONS

We provided a method for minimizing the risk of a position itbv@nd (zero-coupon or coupon-
bearing) by buying (a percentage of) a bond put option. Takito account a budget constraint,
we determine the optimal strike price, which minimizes audaht-Risk or Conditional Value-at-

Risk criterion. Alternatively, our approach can be usedma@&ominal risk level is fixed, and the

minimal hedging budget to fulfil this criterion is desiredofn the class of short rate models which
result in lognormally distributed future bond prices, werdaelected the Hull-White one-factor
model for an illustration of our optimization.
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Abstract

Several two-sided exit problems for a Lévy process areidern=d in the present paper. We
obtain the integral transforms of the joint distributiontloé first exit time from a fixed interval

and the value of the overshoot through boundaries at thannsf the first exit. The Laplace

transform is found of the joint distribution of the numberugfward and downward intersec-
tions. Finally, the joint distribution of the first entry terinto a given interval and the value of
the process at that instant is obtained.

1. INTRODUCTION

During the last decades Lévy processes have become vemygp@s modeling tools in insurance
and mathematical finance (see i.e. Boyarchenko and Levekid(#002), Schoutens (2004), As-
mussen et al. (2004)). Some specific types of Lévy procgsseed to be appropriate as models
of stock prices (Geman (2002), Rydberg (1997), Schoutd1(2 Asmussen et al. (2005)). It has
been recognized that Lévy models give a much better fit téilaacial data and lead to significant
improvement with respect to the Black & Scholes model, sé®@®ens (2003). Along with the
applications aspect, the theory of Lévy processes itgsffaced with a lot of developments (As-
mussen and Rosinski (2001), Bertoin (1997), Pistorius42Qadankov and Kadankova (2005),
Kyprianou and Pistorius (2003), Avram et al. (2002) and mathgrs). Many interesting problems
in applied probability and in finance, in particular, areatetl to determining of the distribution of
the first exit time and the value of the process at the epockibfléowever, other boundary char-
acteristics of the process are also of interest. Motivayeithis fact, in this framework we consider
several other boundary problems. The first problem we dethl iwithe so-called two-sided exit
problem, which plays a crucial role in options pricing. Weanh the integral transforms of the
joint distribution of the exit from the interval and the valof the overshoot through the bound-
aries. Further, employing these results we derive the dractulae for the integral transforms
of the joint distribution of the supremum, the infimum and tzéue of the Lévy process. The
distribution of the number of intersections of the interlggla general Lévy process is obtained

97
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in terms of the integral transforms of the joint distributtiof the exit from the interval and the

value of the overshoot through the boundary, the first p&ssage and the value of the overshoot
through the level. Finally, the joint distribution of thesfirentry time into the interval and the value
of the process at this instant are determined in terms ofiatéransforms. Note however, that the
exact formulae for the integral transforms of the mentiohedttionals are obtained but not the
distributions themselves, which we are primarily inteeelsh. Thus, we are faced with a problem
of inverting the integral transforms which is of high dimams An alternative is the use of Monte

Carlo simulations, which is not a simple task. Further sifigaitions of the obtained formulae is

the subject of ongoing research.

2. DEFINITIONS AND AUXILIARY RESULTS

Let (2, §,{3:}, P) be a filtered probability space, where the filtratif§} satisfies the usual
conditions of right-continuity and completion. We assuima &all random variables and stochastic
processes are defined on this probability space. A Lévygsis a§-adapted stochastic process
{£(t); t > 0} which has independent and stationary increments whose pattright-continuous
with left limits (see i.e. Sato (1999) or Bertoin (1996)). dém the assumption thgf0) = 0, the
Laplace transform of the procesg (¢); t > 0} has the formE[e7¢®)] = ¢! k() Rep = 0, where
the functionk(p) is called the Laplace exponent and is given by the formulai&@od (1971),
p.110)

1 _ 1 <[ px
- — p&(t) — 2252 _ pr
k(p) = I Ele™Y] = o p%o ozp+/_oo <e L+ +x2) T1(dz). (1)

Herea, o € R andll(-) is a measure on the real line, such tﬁétﬁﬂ(dx) < oo. The introduced
process is a space homogeneous, strong Markov processs fietB1> 0 and define the variable

x(y) =inf{t: y+£(t) ¢ [0,B]}, yel0,B]

the first exit time from the interval, B] by the procesg + £(t). The random variable(y) is a
Markov time andP [ x(y) < oco] = 1. Exit from the interval0, B] can take place either through the
upper boundarys, or through the lower bounda#y Introduce eventsd ? = {w : &(x(y)) > B},
i.e. the exit takes place through the upper bounddry:= {w : £(x(y)) < 0}, i.e. the exit takes
place through the lower boundary. Define

X(y) = (ExW) = B) Lus + (=6(x(y))) La,,  P[AP+A¢] =1

the value of the overshoot through one of the boundariegatghch of the exit, wherkg, = 74 (w)
is the indicator of the evemM. To determine the joint distribution dfy, X} we will employ one-
boundary characteristics of the process. For 0 introduce the random variables

Tf=inf{t: {(t) >x}, T*=&(7") 2, m=f{t:{{) <2}, T,=-En)—2

the first passage time of the levelnd the value of the overshoot through this level at the inista
of the first passage, the first passage time of the levednd the value of the overshoot this level
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at that instant. Integral transforms of the joint distribatof { 7*, 7%}, {7,,T,} for s > 0,
Rep > 0 satisfy the following equalities [Pecherskii and RogoZifg9) or Zolotarev (1964)]

—1
Ble= ™) = (B[e]) B[00 65 (1) > x)
— 71 -
E [e—sTx—PTac] — <E][ep§ (V‘g)]> E [6p(§ (Vs)+y); _5_(7/5) > l‘],

whereé ™ (t) = sup &(u), £ (t) = irg ¢(u), vs is an exponential variable with parameter- 0,
u<t u>

independent of the procesB| v, > t] = exp{—st}, and

<1
E[e‘pfi(”s)] = exp {/ p et E[e™™® _1; ££(t) > 0] dt}, +Rep > 0.
0

3. THE FIRST EXIT FROM THE INTERVAL

Theorem 3.1 Let {{(t); t > 0}, £(0) = 0 be a real-valued Evy process with Laplace exponent
(1), B>0, ye[0,B], z=B-—y,and

x(y)=if{t>0: y+&(t) ¢[0,B]}, X)) =(EKxW)—B)Lan+ (=§(x(W))) La,

the instant of the first exit by the procegst+ £(t) from the intervall0, B] and the value of the
overshoot through a boundary at the epoch of the exit fromirttexval by the given process.
The Laplace transforms of the joint distribution ok (v), X (y) } for s > 0 satisfy the following

formulae

E [e—sx(y); X(y) c du’ AB] = fi(l’,dU) + /OO f_f_(x,dv) Ki('l],du)7
0
Ele W X(y) € du, Ag] = f*(y,du) + /°° 2y, dv) K% (v, du), (2)
0
where

v+ B

fi(z,du) =E[e™™; T" € du] — / Ele™™;, T,€dv]Ele™ " TP € du],
0

fi(y,du) =E[e™; T, € du] —/ Ele™™; T ¢ dv] E[e™*™+5; T, 5 € du];
0
and K5 (v, du) = K" (v,du, s),v > 0 are the series of the successive iterations;
n=1

KN (v, du, s) = Ki(v,du,s), K (v,du, s) / K (v, dl,s) Ko(l,du,s)  (3)
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are the successive iteratiofis € N = {1, 2, ... }) of the kerneld<, (v, du, s), which are given by
the defining equalities

K (v, du, s) = / Elem8: T, ged]Ele™"; THE € du],
0

K _(v,du,s) = / Ele™" TE c dl] E[e™*™5; T, p € dul. 4)
0

4. SUPREMUM, INFIMUM AND THE VALUE OF THE PROCESS

In this section we determine the joint distribution {)tf?f £(t), &(vs), sup&(t) } for a general
Vs t<vg

Lévy process (i.e. at an exponential tim¢. Further we will use the following notatio: (¢) =
inf £(u), £7(t) = sup £ (u).

Let {£(¢); t > 0} be a Lévy process with Laplace exponent @)y > 0,z +y = B,
£(0)=0 and

x=inf{t: {(t) ¢ ([~y,2]}, X =() — ) Laz + (=E(x) —y) La,

the first exit time from the interval-y, x| by the procesg(t), where A® = {&(x) > =},
A, = {&(x) < —y} are the events on which the exit frgh B] can occur. Here, unlike in the
previous section we shifted the process £(¢) and the interval0, B] down byy. Note, that due
to the space homogeneity of the process the integral transfof the joint distribution of x, X }
for the Lévy process with Laplace exponent (1) satisfy folae (2) of Theorem 2.1.
Observe that,
Plx > t] = P|—y < inf {(u), sup&(u) < z].
u<t u<t
Therefore, we can employ the results of Theorem 2.1 to dénieentegral transform of the joint
distribution of{ £~ (vs), £(vs), £ (vs) } -

Q(p) = / D Py < £ (), En) €du, £ () < 7] = B[P x> n]. ()

Theorem 4.1 Let{{(¢); t > 0} be a Levy process with Laplace exponent @), > 0, x+y = B,

£(0) = 0.
The integral transform (5) of the joint distribution §€ ~ (v,), £(vs), £ (vs) } satisfies the equality

Q°(p) =Uj(x) — e / e?Ele™ X €dv, A, | Uj(v+ B), Rep <0, (6)
0

p

where(Rep < 0)
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the integral transform of the joint distribution §f¢(v,), £ (vs) } is given in terms of the Wiener-
Hopf factors by the following formula

E[e ™) ¢t (v,) <a] = E[e P E[e ) ¢ (1) < 2], Rep<0;
and the integral transforms of the joint distribution ok, X } are given by (2) of Theorem 2.1.

For particular classes of Lévy processes formula (6) ofofémm 4.1 takes a simplified form. Let
us illustrate it by an example.

Corollary 4.2 Let{w(t); t > 0 } be a Wiener process with Laplace exponeft) = 302p* and
x =inf{t > 0: w(t) ¢ [y, x|} be the first exit time from the intervgty, x|,  + y = B by the
process{w(t); t > 0}.

Then

1) the distributionQ!(—y, a, 3, ) o Pl—y < infw(u), w(t) € (o, B), supw(u) < z]is

u<t u<t
given by formula:

Pl—y < infw(u), w(t) € (a, B), supw(u) < z]

u<t u<t
41 1 20 — o — —
== ; ~ €xp (—at(wya/Bf) sin (%ﬂ'l/) sin <%Bﬁ7ﬂ/) sin <B2Ba7ﬂ/) ,

Plx > t] = %Z 21/:_ T exp (—%t(ﬂ'(ZV + 1)0/3)2) sin (%(21/ + 1)7r> :

2) the moments of the first exit timeare of the following form

1 1 1
EN] = —ry, BN = ooy +3ey +97),  Varld = oay(@® +¢7),
in particular, whenz = y
n 1 T\ 2n
2L e T (5) En; n>0,

whereE,,, n > 0 are the Euler numbersy; =1, E5 =5, ...

3) the probabilityQ!(—y,a, 3,2) = Pl—y < infw(u), w(t) € (o, B3), supw(u) < ]

- ugt ugt
satisfies the formula

5

oV 2T

B
Qt(_y7a7ﬁ7x) = ! /

(Z 67(23k+u)2/202t_ Z 6(2Bk+2xu)2/202t> du.

k=—o0 k=—o0
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5. NUMBER OF INTERSECTIONS

The objective of this section is to determine the joint dlsttion of the number of upward and
downward intersections of the interviaty, =] by the Lévy proces$(t); ¢ >} 0 with Laplace
exponent (1). Assuming thgt0) = —(v + y), v > 0 we denote by, = inf{¢: £(¢t) > = } the
instant of the first upward intersection of the intergraly, =). Assuming that(0) = v+ z,v > 0
we denote by’ = inf{t : £(f) < —y} the instant of the first downward intersection of the
interval[—y, x]. Now let £(0) = 0 and introduce:

e o, i.e. the number of the upward intersections of the intefrvgl ] up to the instant;

e «, i.e.the number of the downwards intersections of the imtérvy, | up to the instant.

Theorem 5.1 Let {{(t); ¢ > 0}, £(0) = 0 be a Levy process with Laplace exponent (B),> 0,
r€0,B],y=B — .

Then the joint distribution of the number of upward and doardintersectiong «,;, «,_ } of the
interval [—y, z] for n € NU {0} satisfies the following equalities

Pla, =n, o, =n+1]

e, X e dv, A® / (v, du, s /E[e”“tB; Tyip € dl] (1 - E[e’STlJrB]);
0 0

(e o]

E[e—STU+B; Tu+B c dl] (1 _ E[e_STH'B]),

J’_
0/
P[auJr n+1, o, =n]
/ X X edv, A ]/K(n)(v,du,s)
0

0

= Ttpeoy—
E[e™ X € dv, A¥]E[e™™+7] +/E[es"; X edv, Ay]E[e""]

0

= n =
— [in= 0}<

"‘[{neN} E[est; X € d’U, ACL“]/ Ki")(v,du, S) (1 o E[efsfu-t-B])
0 0

0\8

+I{n€N}/ E[e X, X € dv, Ay]/ K(,")(U,du, s) (1 —E[e_”uw]);
0 0

where K (v, du, s) o d(v — u) du, and the functionsE [e™*X; X € dv, A”], E[e*X; X €

dv, A, ], and the successive iteratiorfs (v du,s),n € N of the kernelsk. (v, du, s) are given
by the formulae (3) of Theorem 2.1.
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As an example, consider a Wiener procésgt); ¢ > 0} with Laplace exponent(p) = 107p?,

f e~ 20%t qy,

i.e. Plw(t) € (a,b)] =
Then

\/ﬁ

Plaf =n+1, 07 =n]=2 >  (~D)*Plw(t) € (~x + kB, z + kB)];
k=2(n+1)

Pla, =n+1, a7 =n] =2 i (-1D)*Plw(t) € (—y + kB,y + kB)];
k=2(n+1)
Plaf = o =n]
=2(1=6u0) Y, (=1)*Plw(t) € (~z+kB,x + kB)|
k=2(n+1)

+2(1 — 6,0) i (—1)¥Pw(t) € (—y + kB, y + kB)]

k=2(n+1)

+ 6no <1—2Z >x+(k:+1)B]+P[w(t)>y+(k+1)B]}>.

6. FIRST ENTRY TIME

In this section we determine the integral transforms of thet jdistribution of the first entry time
into the interval0, B] and the value of the Lévy process at this instant. Obsema¢the first entry
of the interval (after leaving it) can take place either frabove (position of the process+ B),
or from below the interval<v), or from the starting poing(0) = 0).

Theorem 6.1 Leté(t) € R, ¢ > 0, £(0) = 0 be a Lévy process with Laplace exponent (&);> 0,
x(y) o, fory ¢ [0, B], and

X(y)=inf{t>x(y): y+£1t)€[0,B]}, Xy =y+&XW)el0,B], yeR

the first entry time of the procegs+ £(¢) into [0, B] and the value of the procegs+ £(t) at the
epoch of the entry. o

Then the integral transforms of the joint distribution{of(v), X (v)}, vy € R for s > 0 satisfy the
formulae

b (du, s) = E [e X8 X (v 4+ B) € du]

/ Q% (v,dl)Ele™"; B—"T; € du]

+/ Qi('u,dl)/ Ele™™, Ty — Bedv|E[e™ ; T" € du], v >0
0 0
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by(du,s) = E [e= XY 7( v) € du]
/ Q% (v,dl) E[e™*"; T € du]
/ Q7 ’Udl/ Ele™; T'—=Bedv]E[e™": B—T, €du], v>0,
by, du,s) = E e X(y) € du]
:/ E[e XW: X(y) € dv, AP]b*(du, s)
0

s [T X () € do, Al b(dus) yelo,B)
0

whereé(z), x € R is the delta function,

Qi(v,du}:5(v—u)du+ZQ$)(v,du,s), v >0,

neN

are the series of the successive iteratiogﬁ,g) (v,du, s),andn € N,
QY (v.dn.s) = Qulvdus), QU (wvdus) = [T QL (v, dl)Qull,du.s),
are successive iterations of the kernéls(v, du, s), which are defined by the following formulae
Q. (v, du, s) = /OOO Ele™*™; T, — Be dl|E[e™"; T' — B € dul,
Q_(v,du,s) = /00 Ele™™; T" — B € dl| Ele™*"; T} — B € dul.
0

Remark 6.1 The proofs of all stated theorems can be found in KadankowWaa@nkova (2005).
Examples of the stated results for particular classes oy lpeocess are also given in Kadankova
and Veraverbeke (2006), Kadankova (2003).

Remark 6.2 Although we obtained rather sophisticated expressionmtegral transforms of the
two-boundary characteristics of the Lévy process, we libakthe results presented can be of use
in further investigation of Lévy processes and give soruéfirl ideas for further applications in
finance.

References

S. Asmussen and J. Rosinski. Approximations of small junfpiséey processes with a view
towards simulationJournal of Applied Probability38(2):482—-493., 2001.

S. Asmussen, F. Avram, and M.R. Pistorius. Russian and Avaeput options under exponential
phase-type Lévy model&tochastic Processes and their Applicatioh®9:79-111, 2004.



Several two-boundary problems for Lévy processes 105

S. Asmussen, D. Madan, and M.R. Pistorius. Pricing equitsuideswaps under the CGMY Lévy
model. Submitted2005.

F. Avram, A.E. Kyprianou, and M.R. Pistorius. Exit problerfts spectrally negative Lévy
processes and applications to Russian, American and Caghadptions. Technical report,
Utrecht University, 2002.

J. Bertoin.Lévy processeCambridge University Press, Cambridge, 1996.

J. Bertoin. Exponential decay and ergodicity of a compjetsisymetric Lévy process in a finite
interval. Annals of Applied Probabilityl:156-169, 1997.

S. Boyarchenko and S. Levendorskii. Barrier options anaheand-out options under regular
Lévy processes of exponential typ&nnals of Probability12(4):1261-1298, 2002.

H. Geman. Pure jump Lévy processes for asset price mogellournal of Banking and Finange
26(7):1297-1316, 2002.

V.F. Kadankov and T. Kadankova. On the distribution of thst fexit time from an interval and
the value of overshoot through the boundaries for procesgbhsndependent increments and
random walks Ukrainian Mathematical Journatl0(57):1359-1384, 2005.

T. Kadankova. On the distribution of the number of the irget®ns of a fixed interval by the
semi-continuous process with independent incremeiitseory of Stochastic Processds?2:
73-81, 2003.

T. Kadankova and N. Veraverbeke. On several two-boundanyl@ms for a certain class of Lévy
processes. Submitted, 2006.

A.E. Kyprianou and M.R. Pistorius. Perpetual options andacigzation through fluctuation theory.
Annals of Applied Probability13(3):1077-1098, 2003.

E.A. Pecherskii and B.A. Rogozin. On joint distributiongahdom variables associated with fluc-
tuations of a process with independent incrememtsory of Probability and its Applications
14:410-423, 1969.

M.R. Pistorius. A potential theoretical review of some gxibblems of spectrally negative Lévy
processesSEminaire de Probabilés 38:30-41, 2004.

T. Rydberg. The normal inverse Gaussian Lévy process:latinn and approximationCommu-
nications in Statistics: Stochastic model8:887-910, 1997.

K.-l. Sato.Lévy processes and infinitely divisible distributio@ambridge University Press, 1999.

W. Schoutens. The Meixner process: Theory and applicatiofisance. Technical report, EU-
RANDOM, Eindhoven, 2001.

W. SchoutensLévy processes in financ@/iley, Chichester, England, 2003.



106 T. Kadankova and N. Veraverbeke

W. Schoutens. Exotic options under Lévy models: an overvigournal of Computational and
Applied Mathematicsl89:526-538, 2004.

A.V. Skorokhod.Theory of Random Processd®oston Spa, Yorkshire, England, 1971.

V. M. Zolotarev. The first passage time of a level and the behaat infinity for a class of
processes with independent incremefitseory of Probability and its Application8:653-664,
1964.



ECONOMIC CAPITAL ALLOCATION UNDER LIQUIDITY CONSTRAINTS

Fernando Mier zej ewski

Faculty of Economy and Applied Economy, Katholieke Uniteitd euven, Naamsestraat 69, 3000
Leuven, Belgium
Email: Fer nando. M er zej ewski @M s. kul euven. be

Abstract

Since the capital structure affects the performance of gilmhmstitutions confronted to liquid-

ity constraints, th&economic Capitals determined by the maximisation of value. Allowing
economic decisions to be characterised loystortedprobability distribution — so assessing
the attitude towards risk as well as information and knogéed- the optimal surplus is ex-
pressed as ®alue-at-Risk— as recommended by the Basel Committee. Thus, demanding
more capital than regulatory requirements accounts féerdifit expectations about risks. The
optimal surplus is allocated to the lines of business of gjlmmerate according to the borne
risk and the type of divisional managers. Full allocatiorassured and no covariances are
required. Further, a mechanism is provided, which allowste distribution of equity in a
decentralised organisation.

1. INTRODUCTION

In a seminal paper, Modigliani and Miller (1959) claimedttimeperfect markets the capital struc-
ture of financial institutions does not matter for at any tiine possible to raise or release funds
if required. Accordingly, the optimal plan when the objeetis maximising value, is to attract
as much debt as possible. Since this fact is not observediatipe, Modigliani and Miller gave
several explanations in subsequent papers, even quesfitre skills of decision makers, as in
Miller (1998). However, averse-to-risk customers are g@@so fluctuations and then the perfor-
mance of intermediaries depends on providing guarante¢ssisumed liabilities are default-free,
see Merton (1997). This situation leads manager’s desgsimhe determined also by risk aversion
— as long as their reputation depends on performance.

Usual practices to protect against default risk laeelging re-insuringand capital cushions
By Economicor Risk Capitalwe mean an amount of money invested in non risky assets that
serves as a buffer in order to prevent insolvency. Sincece ras to be paid for raising capital,
there is a level of surplus which properly combines the twoflociing objectives: maximisation
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of shareholder’s value and minimisation of default risk.ttwi a multibusiness environment, the
problem of allocation arises due to the gain acquired — thinadiversification — when merging
the activities of the firm. Such benefit should be distribut@dy among the subsidiaries —
i.e. according to the risk borne. In this context, many of alecation principles present in the
literature are based on covariances. Full allocation s@ssidered as a desirable property — for
the aggregate surplus maintained by divisions should baléguhe level regarded as appropriate
for the conglomerafe

In Merton and Perold (1993) a capital allocation princigedeveloped based on the incre-
mental risk of subsidiaries, which is obtained by subtrarthe capital required after suppressing
a line of business to the surplus demanded by the whole piortf@hen the sum of individual
surplus might be lower than the capital hired by the conglatee— the difference is explained
by the gains in efficiency due to the knowledge of divisionalh@gers. On this basis, Merton and
Perold argue that it is inappropriate to full allocate thpitad — for doing so incentives may be
distorted. Myers and Read Jr. (2001) consider instead timginah capital requirement, defined as
the marginal change in the total surplus in response to d smetment in the equity demanded by
a certain line of business. They prove that full allocat®guaranteed by this principle, provided
that some conditions on the valuation function of capitelsatisfied.

Stoughton and Zechner (1999) propose a model to deal witls finat are not able to continu-
ously raise funds — see also Froot et al. (1993) and Jens@&6).1¥hus, equity is distributed in
order to maximise thEconomic Value Added (EVAY the lines of business, and capital allocation
is justified as a mechanism that stimulates the exchangdmiiation inside the institution. In
the process, the attitude towards risk is considered, wkishpposed to depend on the ability to
apply and transfer skills — as well as the effort expendedctumulate information. Thus, an
optimal mechanism is advanced based on the internal pricapfal. Distortions are allowed in
the form of under and overinvestment.

In the following, an allocation principle is proposed whialstead of accounting for stochastic
dependencies, focuses on agency costs due to discreparttie®xpectations kept by central and
divisional managers. Actually, the case of perfect coti@teis considered — when no diversifica-
tion is possible — in this way modelling the situation whea thilure in any division may damage
the credit quality of the whole conglomeragection 2s devoted to the determination of the opti-
mal amount of economic capital. The attitude towards risleigrmined by a single — functional
— parameter, which in imperfect markets accounts for diffiees in expectations among decision
makers. Thus, the demanded surplus depends on the riskeprefdr the informational type —
of decision makers, as well as on the risk involved. The mobbf capital allocation within a
multibusiness setting is addressedSaction 3 A centralisedsolution is obtained depending on
individual exposures. liBection 4the stand aloneallocation is attained by letting subsidiaries to
act on their own. Finally, the problem of agency costs is assed by establishing aptimal
contract When the types are not accessible — a situation most prplbaihd in practice — a
mechanism can be designed by fixing the cost of raising dapgale the conglomerate. In this
way, subsidiaries are forced to reveal their typection Sconcludes.

1See Albrecht (2004), Hallerbach (2003) and Saita (2004).
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2. ECONOMIC CAPITAL ASTHE OPTIMAL LEVEL OF SURPLUS

Consider a financial institution holding assets and liibgi for total market values ofl and L
respectively. The net — random — loss suffered each perithgeis given byX = L — A. Merton
(1977) defines the fair price of insuring liabilities — at @mge before the maturity date — as the
present value of the liability claim less the value of a pui@pon assets with strike price equal
to the value of liabilitie In the same way, it follows that shareholders are the owoieascall
option on the portfolio of assets whose exercise price ivdhge of liabilities. From théut-Call
Parity Theoremthe following relation must hold:

A=C(A L)+ LeT™" — P(A, L).

Thus, though both the market value of assets and equity aidms of leverage, by the
Put-Call Paritytheir sum is independent of it. Hence, the market value ofithe i.e. the market
value of the portfolio of assets, is independent of the capital structure, as stated in theigfiani
Miller proposition, see Miller (1998). However, this reagtg holds true in perfect markets, i.e.
when no restrictions are to be found when borrowing and fendiloreover, the hedged portfolio
remains non risky only a short period of time ahead, assuthiagduring a short period of time
market conditions remain unchanged. Thus, continuousaebag is needed. Under these condi-
tions, the conglomerate will be indifferent between hedgind reinsurance. But decision makers
confronted to liquidity constraints might be interestedeplacing — or complementing — their
hedging strategy.

By now, assume that central managers know the distributiootion of lossed’y and that
funds may be hired at the interest rajg with r, > ro, wherer, denotes the risk free interest
rate. Decisions are affected by thet cost of capitaly, = r, — ro. Moreover, notice the firm
simultaneously acts in two markets. So whenever a loss soash is demanded to avoid default,
while in the case a gain is obtained, the surplus can be udegd/tmore assets or to pay liabilities.
Assuming that investors keep different expectations abekit— as long as they own different
information, knowledge, social contacts and capabilitesnd denoting respectively yand 5
the types for lending and borrowingorporate EVAs given by:

EVA = E, [(X + k)f] —Ep [(X - k)JJ — k.

The term E [(X + k)_] denotes the value of the firm when the portfolio is solvert,when
X < —k, which is diminished by raising the level of surplus. On theen hand, the term
Es [(X — k), | represents theost of bankruptcy— or more properly, the cost assumingank-
ruptcy. Demanding more capital leads to a reduction of threldm of default. Thus, financial
intermediaries are able to create value to shareholdeangsb the cost of insuring the aggregate
exposure — which can be related to the credit quality, asgpezd by lenders — plus the cost of
raising capital is less than expected gains. Notice howi@rigcthe role played by the differences
in expectations and the symmetry of risks. Under homogenerpectations and symmetric risks,
keeping a surplus produces a total loss and so no capitaldshetnired — the value of the firm in

2Wheneverd > L the firm can afford the debt, but wheh < L the guarantor suffers a loss equallio- A.
Consequently, the guarantor’s claim equalis:(A — L, 0) which is identical to that of a put option — where the
promised paymenkt corresponds to the exercise price and the value of assetssponds to the common stock’s
price. See also Cummins and Sommer (1996).
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this case is zero, which is a reasonable claim in a compesiting. In this way, the result of the
Modigliani and Miller proposition is obtained, see Stigl{L972).

The Wang’s risk principleallows for a characterisation of the mathematical expextatith
respect to alistortedprobability distribution, which is obtained by applyinglatortiontransfor-
mation — i.e. a continuous, strictly increasing functioefided on the unit intervap : [0,1] —
[0, 1] such thatp(0) = 0 andp(1) = 1 — to thedecumulative distribution functiofx (z) =
1 — Fx(z) = P[X > ] in the following way:

E, [X] = / dF x(x) = / 1= F,(2)] do = / (S (2))da.

The traditional expectation operator is obtained whemthgral distortion equal to the iden-
tity operatoryp(x) = z, V z, is introduced. Further, Wang and Young (1998) state thpastes:

@ concave= p(y) >y Vy €[0,1] = E,[X] > E[X]
pconvex = ¢(y) <y Vy e [0,1] = E,[X] <E[X].
Therefore,concavedistortion functions characterise the decisionseérse-to-risknvestors —

who overestimates risks — amdnvexdistortions the behaviour ofsk lovers— who underesti-
mates risks. Moreover, applyinglaylor seriesaround zero leads to:

OE, [(X+Fk)_]
ok

E, [(X+k) | ~E [X ]+ (k=0)| -k

Let us accordingly define:

OE, [(X +k)_]
.

The coefficientr,, x corresponds to premium for solvency— specifically, it expresses the mar-
ginal reduction of the insured return when hiring an addgiounit of equity. When the risk
accumulates more probability in gains — remember the viridbrepresents an aggregated loss
— a higher premium has to be paid. On this basis, the levEkohomic Capitais determined in
order to maximise corporate EVA

(k’ - O) - F¢7x(0).

Man Ego [X_] — Eﬂ [(X — k?)+] — (T%X + nk)k
Applying Lagrange optimisatiogields the first order condition:

_9
Ok

3The distorted probability principle is extended to redkiea random variables as, see Wang et al. (1997):
E, [X] = ffoo [p(Sx (t)) —1]dt + [;° ¢(Sx(t))dt. Hence, after performing a change of variables, we can write
E, [X]+E, [X_] = E, [X]. Theright-hand-side of the equation shows the price of #gar containing an insured
version of the asset, while the left-hand-side shows theepf a fund containing the asset and a guarantee to pay the
loss incurred by X. Both portfolios have the same value atete of period, and hence both should be assigned the
same market price. Therefore the condition is consistetht thie no-arbitrage principle.

4A raising principle is presented in this fashion by Dhaenal &2003) though they propose to minimise the total
capital cost, see also Goovaerts et al. (2005), Laeven anddads (2004) and Froot et al. (1993).

Es [(X - k)JJ — (rox + 1K) = Spx(k*) — (rp.x +m) = 0.
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Hence, the firm attracts debt until the marginal benefit exjtia¢ total cost of capital and the
optimal level of surplus is given by:

k* = Fﬁi)l((l T, X — M) = Sﬁiﬁ(("’cp,X + ) = S;(l (ﬁil("’cp,X + nk)) .

The term(r, x + n;) accounts for theotal costof holding an additional unit of capital. When
this index is high — i.e. when a high premium is asked for sotyeor a high cost is confronted
when attracting liabilities — less equity is provided. Thlatrary occurs when the total cost is low
— i.e. when the premium for solvency or the price of capitdbis. Whenever(r, x + n;) > 1
and(r, x + ne) < 0, the minimum and the maximum level of cash are preferredesely.
There is an additional motivation to demand as much sur@ysoasible in the later case, for the
deterioration in the credit quality of the firm might raise thet cost),. Moreover, averse-to-risk
investors, for whom the distortion function is concave, latp—!(n) < 5, underestimate the price
of equity.

The optimal amount of capital — or tlieconomic Capital— is thus expressed asvalue-at-
Riskunder a transformed probability measure. This criteriana@des with the capital requirement
established by the Basel Capital AccardAccordingly, theRegulatory Capitals obtained by
applying theneutral distortionand introducing devel of confidencer — in this way implicitly
determining the premium for solvency as well as the cost pftahby lettinga: = r, x + 7.
Typically, « = 5% or a« = 1%. Since the same confidence level is asked for every company,
the most efficient — which are asked a higher premium for thalg better investments — are
forced to keep more surplus than the optimal level. This lnosSfficiency makes sense from the
perspective of the regulator, as long as the social lossetuped because of the simultaneous
default of many firms in the industry might be huge — by affiegtihe economic activity and the
aggregate demand. But on the other hand, the minimum legreirezl for the intermediaries that
perform badly might be underestimated.

3. OPTIMAL ALLOCATION OF ECONOMIC CAPITAL AMONG LINESOF BUSINESS

In order to hold the viewpoint of central managers, or a raguy authority, confronting a multi-
business environment, let us suppose fhatenotes the aggregate loss of a financial conglomerate
consisting ofn € N subsidiaries, or lines of business, such tRaequals the sum of individual
risks:

X=X+ -+ X,.

Marginal distributiong 7, . . ., F,,) are assumed to be known and since a failure in any division
may damage the reputation of the whole conglomeratecdh®onotonic dependence structise
considere®l When capital decisions are centralised, the cost of theagtee can be diminished by
merging the individual lossésfor in this way funds can be assigned only to insolvent @tivis —

5See Basel Committee on Banking Supervision 1996 and Baseh@itee on Banking Supervision 2004.

8Comonotonicity characterises an extreme case of depeage@hen no benefit can be obtained from diversifica-
tion, see Dhaene et al. (2002).

’Mathematically, this result is sustained by the fact thatdistorted probability principle preserves the first sto-
chastic order, defined byt <Y < Sx(t) < Sy(t), Vt. Therefore, E [(X — k), | < E, D7, (Xi — ki)
when)"" | k; = k. See Goovaerts et al. (2005) and Laeven and Goovaerts (2004)

+]
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and no idle surplus is maintained. Accordingly, let us dgthtan allocation principle based on the
minimisation of the sum of exposures — the value of the firmrsaaly maximised by choosing
the levelk* as the total surplus kept by the conglomerate:

Ming, E, [i (X — ki)+]

=1

subject to Z ki = k*.
=1

Therefore, a diversification effect exists, but it dependdiquidity constraints — and not
on covariances. The only condition imposed is full allogati— as long as capital decisions on
business units are taken by central managers, no otherrcenaee needed. For theagrange
multiplier v the first order conditions are the following:

a n
o B [Z(Xz‘ — ki),

=1
Zn: k= k"
=1

Let us denote by'x. the probability distribution of theomonotonic sunX© = X7+ - - -+ X¢,
where( X7, ..., X%) represents theomonotonic random vectavith same marginal distributions
as(Xjy, ..., X,). Since the inverse distribution of the comonotonic sumvegiby the sum of the
inverse marginal distributions, see Dhaene et al (2002get¢haty is determined such that:

+v = —S%Xi(kgk)—i-”)/ =0 V’L:L,n

Flxe(l=7) = Y F X (1=7) = > k = k"
=1 =1

Thus, the optimal risk capitals allocated to the busineds ane given by:

ki = Fox (Foxe (k%) Vi=1,...,n.

(2

These levels of equity determine thentralised solutior— for both the raising and the al-
location principles have been established according toisheattitude and knowledge of central
managers.

4. OPTIMAL DECENTRALISED MECHANISM

Full allocation suffices for centralised organisationst @uisions are run by managers who access
better information about investment opportunities, aatitn that leads shareholders to incur in
agency costs, see Jensen (1986). So let us consider suiesidia separate units that maximise
value but do not assume the reduction of the insured returmé-heance do not internalise the
premium for solvency in decision making. By putting the maf bankruptcy on their shoulders,
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central managers attain a gain due to the diversificatiomefliquidity constraint, as stated in
Section 3 Accordingly, as long as subsidiaries hire capital fromte@mmanagement at the net
internal cost), divisional EVAIs defined in the following way:

oo (X5 — ki), ] — k.

Therefore, divisions maximise value by minimising the ktdas E,, [(X; — ;). | + nk. After
the first order condition, thstand alone risk capitak determined by:

EVA = E, [(X,)_] - E

ki) =F,'x(1-n) Vi=1,...n

By means of the net cost the capital decisions of subsidiaries may be distorted +eirig
them to internalise bankruptcy according to the intereghefconglomerate. So in order to en-
courage averse-to-risk managers to raise less capitahstanight be overcharged. A return over
the market rate, should be assigned in this situation such that 7,. On the contrary, risk
lovers might be subsidised so thak 7, — for giving them incentives to hire more capital. The
optimal levels of economic capital and internal cost areuiameously determined by introducing
the following allocation principle, see Diamond and Veotda (1982):

Max., E,[X_]-E, [(X - k)+} — (ro.x + k) -k

subjectto k; = k;(n) and Zkz = k.
=1
Applying Lagrange optimisatioteads the solution to be characterised by:
Sex (k) =rox+m and > kf =k
=1

Hence, the same optimal surplusS¥ction 4s obtained for the conglomerate, while the inter-
nal cost of capital is determined such that full allocatisassured:

ZchlX (1—n") =Fk"
i=1

.....

sum when marginal distributions are given @y, x,, ..., F,, x,,), then the optimal level of the
net internal cost of capital is given by:

nt=1-F,

In this way, adecentralisedallocation is determined — the same benefit as undecéme
tralisedprescription is obtained and so no efficiency is lost. Whernypes of subsidiaries are not
observable, central managers may calibrate their esbmaby comparing the preferred amounts
of equity with the optimal levels;. Therefore, by letting divisional managers to act inde @erbigt
they are forced to reveal their type. We can then say the gezpmechanism provides a basis to
measure the disagreement between central managementsnddsuunits.
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5. CONCLUSIONS

According to the Modigliani and Miller (1959) propositiotine capital structure of a financial in-
stitution does not affect its value for it is always possitolgaise or release funds in the market.
However, this is not a suitable assumption for imperfectkeis: Actually, after Merton (1997),
the level of surplus matters for averse-to-risk lenders ateosensible to the possibility of bank-
ruptcy of the borrower. Accordingly, the decisions of magrag whose reputation depends on
performance, are also affected by risk aversion. In thiseednthe value of the firm depends on its
capital structure, and tieconomic Capitals defined such that tHeconomic Value Added (EVA)
is maximised.

TheWang's principle see Wang et al. (1997), allows expressingabst of bankruptcys an
expectation with respect tadistorted probability distributionThe — functional — distortion type
simultaneously accounts for risk attitude and knowledge, iavestors are supposed to maintain
different expectations — an approach already adopted [git3t{1972). The optimal level of
surplus is then a function of the total cost of equity — defiasdhe premium for solvency plus
the net capital cost — as well as the risk involved, and sireceestrictions are imposed on the
distribution functions of returns, the model is suitabléhbio financial and insurance applications.
Thus, decision makers internalise the price of equity, ¢fom is underestimated by risk averse
investors who apply a concave transformation to the praibpaliistribution, and consequently
demand more capital.

Specifically, theEconomic Capitais expressed as\&alue-at-Riskinder a distorted probability
measure, at the time theegulatory Capitais obtained by applying no distortion and fixing a
confidence levelr — which in this way plays the same role as the total equity emst hence
in the model both coefficients are given the same meaningitaaecisions over the minimum
regulatory requirement are then explained by risk aversiofor payments are overestimated in
this case. However, risk lover investors may overestimgp@gures as well, as long as the type
also accounts for information and knowledge. In this contire excess of surplus induces a gain
in efficiency, and not the opposite.

A centralisedallocation of equity is determined by maximisiogrporate EVAand minimising
bankruptcy costaccording to the expectations of central managers. For entiatised organi-
sation, anoptimal mechanisns proposed whose instrument is the internal cost of capitae
same level of surplus is maintained by the conglomeraterdmaté principles. When central man-
agers do not know the types of subsidiaries, the estimatmasbe calibrated a posteriori — by
looking for the functional types which are consistent witk preferred levels of equity. Thus, the
mechanism promotes transparency within the institutionrédver, the burden of arithmetic op-
erations may be reduced if the distortion function is pataicedly determined, such that a single
real number accounts for the informational t§pe

Finally, the mechanism can be useful for regulatory purpdisedetermining the types which
are consistent with the levels of risk capital observed @ittdustry. Institutions demanding the
minimum capital requirement might be expecting a highefgearance from their investments,
than suggested gverageknowledge. Moreover, though it is not possible to know whempa-
nies are underestimating their risk, as long as some infibomes private, rational decision makers
reveal their type — for they maximise value.

8In Mierzejewski (2006) the model is presented in these tesers also Wang (1995).
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Abstract

In this review paper we discuss a nonlinear model of Bladke®xs type for pricing derivative
securities in the presence of both transaction costs asawétle risk from a volatile portfolio.
The model is derived by following the Risk Adjusted Pricingtflodology approach proposed
by Kratka (1998). It turns outs that prices of plain vanillations can be computed from a
solution to a fully nonlinear parabolic equation in whichiffusion coefficient representing
volatility nonlinearly depends on the asset price and ofgiGamma. It gives rise to explain
several striking phenomena in option pricing analyticatigluding, in particular, the volatility
smile behavior of the implied volatility.

1. INTRODUCTION

According to the classical theory due to Black, Scholes amdtdh the price of an option in an
idealized financial market can be computed from a solutidgheavell-known Black-Scholes linear
parabolic equation (see e.g. Black and Scholes (1973), Kiv@88), Dewynne et al. (1993), Hull
(1989)). Assuming that the underlying asset follows a ggamBrownian motion one can derive
a governing partial differential equation for the price af@tion. We remind ourselves that the
equation governing time evolution of the prig¢s, ¢) of an option is the following parabolic PDE:

1
OV + (r —q)SosV + 5&252@%\/ —rV =0 (1)

whereg is a constant volatility of the underlying asset price pesce > 0 is the interest rate of
a zero-coupon bond, > 0 is the dividend yield rate. A solutiori = V' (.S, ¢) represents the price
of an option at timg < [0, T if the price of an underlying asset # > 0. If the volatility ¢ is
assumed to be constant the above equation is called the-Blawies equation derived by Black
and Scholes (1973), and, independently by Merton (c.f. K{&®©8)). The linear Black-Scholes
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equation has been derived under restrictive assumptikag lg. perfect replication of a portfolio,
frictionless, liquidity, complete markets, etc. Followithis theory we can find a value of an option
over moderate time intervals assuming transaction costshenrisk from a volatile portfolio are
negligible. A solution to the linear Black-Scholes equatibhen provides a perfectly replicating
hedging portfolio.

In recent years, some of these restrictive assumptions lese relaxed in order to model,
for instance, the presence of transaction costs (Hoggaall €1994)), imperfect replication and
investor’s preferences (Barles and Soner (1998)), inttdn of a given stock-trading strategy of
a large trader (Frey and Patie (2002), Frey and Stremme )98k from unprotected portfolio
(Kratka (1998), Jandacka asavEovit (2005)). These models lead to a generalizeckBlatoles
equation for the price of an option in which the volatilityatenot be necessarily constant and it
may depend on the asset price as well as the option price. preasely, in these models the
volatility has the general form:

0? = 0*(S*0:V, S, T —t). 2)

For instance, if transaction costs are taken into accouert the classical Black-Scholes theory
is no longer applicable. In order to maintain the delta healge has to make frequent portfolio
adjustments yielding thus a substantial increase in tcizsecosts. The effect of nontrivial trans-
action costs can be described by the so-called Leland mofigti¢ggard et al. (1994)). In this
model the volatilitys is given byo? = 6%(1 — Le sgr{d2V')) wheres > 0 is a constant historical
volatility of the underlying asset price process andt @) is the so-called Leland constant given
by Le = \/2/7C/(6+v/At). HereC > 0 is a constant round trip transaction cost per unit dollar of
transaction in the assets market akt > 0 is the time-lag between portfolio adjustments. Since
S > 0 we have

o?(S?0%V, S, T —t) = 6%(1 — Lesgn(ozV)). )

By assuming that investor’s preferences are charactebizad exponential utility function, Barles
and Soner (1998) derived a nonlinear Black-Scholes equatith the volatilityo given by

o2 (S2RV, S, T — 1) = 6 (1 + U(a2e’ T 5202V))”

wherea > 0 is the risk-aversion coefficient antl is a solution to the ODEY'(x) = (¥ (x) +
1)/(2y/xV¥(x) — x),¥(0) = 0. Another popular model has been derived for the case when the
asset dynamics takes into account the presence of feedfiectseFrey and Stremme (1997) (see
also Frey and Patie (2002)) introduced directly the asset piynamics in the case when the large
trader chooses a given stock-trading strategy. The vit¥atilis nonconstant and it is given by:

o (SP0V, S, T —t) = 6% (1 — 0S&2V) >

whereg, o > 0 are constants.

The last example of a nonlinear Black-Scholes equatioreistihicalled Risk Adjusted Pricing
Methodology model proposed by Kratka (1998), revisited medlified by Jandacka argbveovic
(2005). The idea of derivation of this model is simple: in@rtb maintain (imperfect) replication
of a portfolio by the delta hedge one has to make frequent@ioradjustments yielding thus a
substantial increase in transaction costs. On the othat, mare portfolio adjustments may lead
to the increase of the risk from a volatile (unprotected}fpio. Minimization of the sum of the
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measure of transaction costs and the risk from unproteatetbfio yields the optimal time lag
between two consecutive portfolio adjustments. The reguihodel is again a nonlinear Black-
Scholes type equation with the volatility of the form

o%yﬁu&T—w:#@fﬂw%ma 4)

for T'—t > 0 large enough wherg > 0 is a coefficient proportional to the risk from volatile
portfolio and transaction costs measures. In the nextseete recall key steps and ideas of
derivation of the Risk Adjusted Pricing Methodology (RAPMbddel. We will furthermore present
explanation of the volatility smile based on the RAPM modak also discuss calibration of the
RAPM model to real market data. We also introduce two new iedptuantities: the implied
RAPM volatility and implied RAPM risk coefficients. Finallwe will present results of calibration
of these new implied quantities to real option and stock micdkta.

2. RISK ADJUSTED PRICING METHODOLOGY MODEL

In this section we recall key steps of derivation of the RAPMd®l. The original model was
proposed by Kratka (1998). In Jandatka &®¥covic (2005) we modified his approach (we chose
a different measure for risk from unprotected portfoliopmder to construct a model which is scale
invariant and mathematically well posed. These two imptiffisatures were missing in the original
model of Kratka. The model is based on the Black-ScholeshodicaPDE in which transaction
costs are described by the Hoggard, Whalley and Wilmottnsibe of the Leland model (cf.
Hoggard et al. (1994), Kwok (1998), Hull (1989)) whereas tis& from a volatile portfolio is
described by the average value of the variance of the syimtteportfolio. Transaction costs as
well as the volatile portfolio risk depend on the time-lagMeen two consecutive transactions. We
define the total risk premium as a sum of transaction costsrendsk cost from the unprotected
volatile portfolio. By minimizing the total risk premium fictional we obtain the optimal length
of the hedge interval. It also gives us a new strategy for imgdderivative securities based on
option’s Gamma parameter.

Concerning the dynamics of an underlying asset we will agstimt the asset pricé =
S(t),t > 0, follows a geometric Brownian motion with a drift standard deviation > 0 and it
may pay continuous dividends, i.e.

dS = (p —q)Sdt + 6SdW (5)

wheredV denotes the differential of the standard Wiener processqand 0 is a continuous
dividend yield rate. This assumption is usually made wheaivuig the classical Black-Scholes
equation (see e.g. Hull (1989), Kwok (1998)).

Similarly as in the derivation of the classical Black-Sas¢quation we construct a synthesized
portfolio IT consisting of a one option with a priééandj assets with a pricé per one asset:

=V +48S. (6)

We recall that the key idea in the Black-Scholes theory isxemene the differential\I1 of equa-
tion (6). The right-hand side of (6) can be differentiatedusing Itd’s formula whereas portfolio’s
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incrementAll(¢) = I1(t + At) — I1(¢) of the left-hand side can be expressed as follows:
All = rIIAt + 0gS At (7)

wherer > 0 is a risk-free interest rate of a zero-coupon bond. In thewedd, such a simplified
assumption is not satisfied and a new term measuring thertsitadhould be added to (7). More
precisely, the change of the portfolibis composed of two parts: the risk-free interest rate part
rITAt and the total risk premium:z S At wherery is a risk premium per unit asset price. It means
that AIl = rIIAt 4+ rgSAt. The total risk premiunmrz consists of the transaction risk premium
rrc and the portfolio volatility risk premiumy p, i.e.rg = rrc + ryp. Hence

AIl = rlIAt 4+ §¢gSAt + (roe + rvp)SAL. (8)

Our next goal is to show how these risk premium meastresry, » depend on the time lag and
other quantities, like e.gr, S, V, and derivatives o¥. The problem can be decomposed in two
parts: modeling the transaction costs measyreand volatile portfolio risk measureg, p.

2.1. Modeling transaction costs and volatile portfolio ri&k measures

In practice, we have to adjust our portfolio by frequent Ingyand selling of assets. In the presence
of nontrivial transaction costs, continuous portfoliowstments may lead to infinite total transac-
tion costs. A natural way how to consider transaction codtsimthe frame of the Black-Scholes
theory is to follow the well known Leland approach extendgdHoggard, Whalley and Wilmott
(cf. Hoggard et al. (1994), Kwok (1998)). In what follows, wexall crucial lines of the Hoggard,
Whalley and Wilmott derivation of Leland’s model in orderdloow how to incorporate the effect
of transaction costs into the governing equation. Moreipey, we will derive the coefficient of
transaction costs;c occurring in (8).

Let us denote by’ the round trip transaction cost per unit dollar of trangactiThen

C = (Sask - szd)/s (9)

whereS,,, and.S;; are the so-called Ask and Bid prices of the asset, i.e. th&eharice offers
for selling and buying assets, respectively. H8re (S.q. + Spiq)/2 denotes the mid value.

In order to derive the termy¢ in (8) measuring transaction costs we will assume, for a nmme
that there is no risk from the volatile portfolio, i.g:p = 0. ThenAV + §AS = AIl = rlIAt +
0qSAt + rrcSAt. Following Leland’s approach (c.f. Hoggard et al. (1994iping 1td’s formula
and assuming-hedging of a synthetised portfolid one can derive that the coefficient. of
transaction costs is given by the formula:

CcaoS 1
rre = —— |03V| —
e \/271" o ’\/At
(see (Hoggard et al. 1994, Eq. (3)) and also formula (3)).
Next we focus our attention to the problem how to incorpogatisk from a volatile portfolio

into the model. In the case when a portfolio consisting ofas and assets is highly volatile an
investor usually asks for a price compensation. Notice ¢lxgpbsure to risk is higher when the

(10)
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time-lag between portfolio adjustments is higher. We shiapose a measure of such a risk based
on the volatility of a fluctuating portfolio. It can be measdiby the variance of relative increments
of the replicating portfolidl = V' + 4.5, i.e. by the termvar((AIl)/S). Hence it is reasonable to
define the measure,  of the portfolio volatility risk as follows:
var (A1)
=R——==. 11
rvep =R Al (11)

In other words,ry p is proportional to the variance of a relative change of afpbot per time
interval At. A constantR is the so-calledisk premium coefficientlt can be interpreted as the
marginal value of investor’s exposure to a risk. If we appdysl formula to the differential\IT =
AV + 6AS we obtainATl = (9sV + §) 6SAW + 1625°T(AW)? + G wherel' = 92V and
G = (0sV + 0)pSAt + 0,V At is a deterministic term, i.e2(G) = G in the lowest orde\¢-term
approximation. Thus

ATl — E(ATL) = (9sV + 0) 6SopvV At + %&252@2 — 1)L At

where¢ is a random variable with the standard normal distributischghatAW = ¢v/ At. Hence
the variance ofAIl can be computed as follows:

var(AIL) = E ([AIL - E(AIN?) = B ([(asv +0)6SHVAL + 157S°T (¢* — 1) At]2> .

Similarly, as in the derivation of the transaction costs sueer- we assumeé-hedging of port-
folio adjustments, i.e. we choose= —0sV. SinceE((¢* — 1)?) = 2 we obtain an expression for
the risk premiumry p in the form:

1
rvp = 53545%2&. (12)

Notice that in our approach the increase in the timeAadpetween consecutive transactions leads
to a linear increase of the risk from a volatile portfolio wé¢he coefficient of proportionality de-
pends on the asset pri¢e option’s Gammal’ = 9%V, as well as the constant historical volatility
¢ and the risk premium coefficiert.

2.2. Risk adjusted Black-Scholes equation

The total risk premiumr = rrc + v p CcONsists of two parts: transaction costs premiyia and
the risk from a volatile portfolio p premium defined as in (10) and (12), respectively. We assume
that an investor is risk averse and he/she wants to minirheedlue of the total risk premiuny.
For this purpose one has to choose the optimal timedadpetween two consecutive portfolio
adjustments. As bothy- as well as-y p depend on the time-lafyt so does the total risk premium
rg. In order to find the optimal value af¢ we have to minimize the following function:
o5 1, Lpsisrreae.

V2r VAt 2

At —rgp=rrc +1VP =
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The unique minimum of the functioA¢ — r is attained at the time-lagt,,; = K2/(62|ST|3)
whereK = (C//(Rv/27)s. For the minimal value of the functiot — r(At) we have

3 (C2R\® , s
TR(Atopt) = 5 ( o ) 0'2|SF‘3 . (13)

Taking into account both transaction costs as well as rigcts from a volatile portfolio, we have
shown that the equation for the chanQyél of a portfolioIl reads as:

AV +0AS = AlIAL = rll + 6¢SAt + rpSAt

wherer i represents the total risk premiung, = rrc+7ry p. Onthe other hand, by the no-arbitrage
principle the chang@ll in the portfolioll is equal to the changdIAt of secure bonds with the
interest rate- > 0. Applying Itd’s lemma to a smooth functioi = V(S,¢) and assuming the
0-hedging strategy for the portfolio adjustments we finalbyain the following generalization of
the Black-Scholes equation for valuing options:

~2
A,V + %SQagv (= q)S9sV —rV —rpS=0.

By taking the optimal value of the total risk coefficient derived as in (13), the option pridéis
a solution to the following nonlinear parabolic equation:
(Risk adjusted Black-Scholes equajion

62 1 C2R %
atVJr?Sz <1 _ M(s@é‘/ﬁ) OV +(r—q)S0sV —rV =0, whereu=3 ( 5 ) . (14)
T

In the case there are neither transaction ca@sts:(0) nor the risk from a volatile portfolioR = 0)
we haveu = 0. Then equation (14) reduces to the original Black-Schatest parabolic equation
(1). We note that equation (14) is a backward parabolic PC#adf only if the function(H) =
%(1 — ,uH%)H is an increasing function in the variablé := ST = S92V. Hence, in order to
verify parabolicity of (14), we have to assume the followoandition:

3
SOV (S,t) < k = (%) : (15)

If we consider prices of either Call or Put options computeaf a solution to the classical
Black-Scholes equation (1) then the te$fii = S92V (S, t) becomes infinite af = E fort — T~
and the (15) condition is violated. The same feature is pitesethe generalized equation (14)
yielding thus the change of the sign of the diffusion coefiitiof (14) close to expiration time
T. This is why we have to modify the model equation (14) neardkgiration time, i.e. for
0 < T —t < 1. The idea of modified early exercise behavior was introdunedandacka and
Sevéovit (2005). It consists in determining the so-chBevitching timet, < T such that the
RAPM model is modified as follows: the price of an option isegivby a solutioid/ (S, ¢) to the
following problem:

1. V(S,t) is a solution to equation (14) on the time inter0ak ¢ < ¢,; whereas
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Figure 1: Explanation of the volatility smile based on RAPWhe implied volatility surface
(S,t) — a(S,t).

2. V(95,t) is a solution to the linear Black-Scholes equation (1) ortithe intervalt, <t < T
and satisfying the prescribed pay-off diagram at expiey T,

3. functionV' (S, t) is continuous irt = t...

The switching time, < T is chosen as nearest time to exglijor which the value ofT = S92V
is less or equal to the threshold valkieNow if we compute the quantityT" for plain Call or Put
1

options by using the original Black-Scholes model (1) weaohhaxg-o ST(S,t,) = oy

Then we can deduce o

" R&2
As t, must be positive we havE — ¢, < T it also turns out that we have to require the following
structural condition

T —t, (16)

0<C <6*RT. (17)
to be satisfied (see JandacCka Swiovic (2005) for details).

3. CALIBRATION OF THE RAPM MODEL TO REAL MARKET DATA

The purpose of this section is to discuss application of tA®R model to real market option
price data. We also introduce a concept of the so-calledi@adRAPM volatility oz 4 pys and the
implied risk premium coefficienk. First we discuss capability of RAPM model to explain the
so-called volatility smile analytically.

3.1. Volatility smile and RAPM model

One of the most striking phenomena in the Black-Scholesryhisahe so-calledrolatility smile
phenomenon. Notice that derivation of the classical Bl&ckoles equation (1) relies on the as-
sumption of a constant value of the volatility On the other hand, as it might be documented by
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Figure 2: Intra-day behavior of Microsoft stocks (April 40@3) and shortly expiring Call op-
tions with expiry date April 19, 2003. Computed implied vdlaes 6z 4py; and risk premium
coefficientsR.

many examples observed in market options data sets suclsampison is often violated. More
precisely, the implied volatility;,,,,; is no longer constant and it may depend on the asset Srice
the strike pricel’ as well as the time.

In the RAPM approach we are able to explain the volatilitylemanalytically. The Risk ad-
justed Black-Scholes equation (14) can be viewed as aniequaith a variable volatility coeffi-
cient, i.e.0,V + 152(S,t)0%V + (r — q)S0sV —rV = 0 wherel' = 92V and the volatilitys?(S, t)
depends itself on a solutidn = V/(.5, t) as follows:

7%(S,t) = 6% (1 — pu(ST)3) . (18)

In Fig. 1 we show the dependence of the functids, t) on the asset pric& and timet. It should

be obvious that the functiofi — &(S,t) has a convex shape near the exercise pric&\Ve have
used the RAPM model in order to compute value§' ef §%V. We chose: = 0.2,6 = 0.3,r =
0.011, and7 = 0.5. In Fig. 1 we show the dependence of the functidf, ¢) on the asset pricé

and timet. It should be obvious that the functich— (.5, t) has a convex shape near the exercise
price E.

3.2. Implied volatility and risk premium in RAPM model

Let us denotd/(S,¢; C, 5, R) the value of a solution to (14) with parametérss, R. Suppose
that the coefficient of transaction costds known from and is given by (9). In real option market
data we can observe different Bid and Ask prices for an oplign < V.., respectively. Let us
denote byV,,;, the mid value, i.e.V,,;; = 1(Viia + Vask). By the RAPM model we are able to
explain such a Bid-Ask spread in option prices. The lower @ide corresponds to a solution to
the RAPM model with some nontrivial risk premiuRwhereas the mid valug,,;;, corresponds to
a solutionV/ (.S, t) for vanishing risk premiunk = 0, i.e. to a solution of the linear Black-Scholes
equation (1).
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Figure 3. One week behavior of Microsoft stocks (March 20 - 2003) and Call options with
expiration date April 19, 2003. Computed implied volai@&s r 4 o), and risk premiumsz.

In order to calibrate the RAPM model we are seeking for a a®(pkarys, R) such that
Viia = V(S,t;C,6rapm, R) andV,,;q = V(S,t;C,6rapm,0). It means that we have to find a
solution to a nonlinear problem:

F(6,R) = (Vbid; Vinia) (19)

where the mapping’ : R? — R? is defined as:F (6, R) = (V(S,t;C,6,R),V(S,t;C,5,0)).

It can be solved numerically by means of the Newton-Kantcitoiterative method for solving
algebraic equations. A solutidri(S,¢; C,, R) can be computed from the Risk adjusted Black-
Scholes equation by means of finite difference (see Jaadat#iSeveovic (2005) for details).

As an example we considered sample data sets for Call optiondicrosoft stocks. We
considered a flat interest rate= 0.02, a constant transaction cost coefficiéht= 0.01 estimated
from (9), and we assumed that the underlying asset pays ndedws, i.e.q = 0. In Fig. 2
we present results of calibration of implied coupte;apar, R). Interestingly enough, two Call
options with higher strike priceE = 25, 30 had almost constant implied risk premiui On the
other the risk premium of an option with lowest= 23 was fluctuating and it had highest average
of R.

Finally, in Fig. 3 we present one week behavior of impliedatidities and risk premium coef-
ficients for the Microsoft Call option o' = 25 expiring at7’ = April 19, 2003. In the beginning
of the investigated period the risk premium coefficiévas rather high and fluctuating. On the
other hand, it tends to a flat value &f ~ 5 at the end of the week. Interesting feature can be
observed at the end of the second day when both stock anahgguices went suddenly down. The
time series analysis of the implied volatiligy; 4 o5, from first two days was unable to predict such
a behavior. On the other, high fluctuation in the implied psgmiumR during first two days can
send a signal to an investor that sudden changes can be estpretihe near future.
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4. CONCLUSIONS

In this paper we discussed the Risk Adjusted Pricing Metlagyomodel for for pricing derivative
securities in the presence of both transaction costs asawéhe risk from unprotected portfolio.
We showed that the option price can be deduced from a soltgi@nnonlinear parabolic PDE.
The governing equation extends the classical Black-Selexj@ation and Leland’s equation to the
case when the risk from unprotected portfolio is taken iimoant. We have performed extensive
numerical testing of the model and compared the resultsaicopion market data. Furthermore,
we introduced a concept of the so-called implied RAPM vétgtand implied risk premium co-
efficients. We have computed these implied quantities forga option data sets and we have
indicated how these implied factors can be used in qual@atnalysis of option market data sets.
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De Koninklijke VIaamse Academie van Belgié voor Wetenschappen en Kunsten co6rdineert
jaarlijks tot 25 wetenschappelijke bijeenkomsten, ook contactfora genoemd, in de domeinen
van de natuurwetenschappen (inclusief de biomedische wetenschappen), menswetenschappen
en kunsten. De contactfora hebben tot doel VIaamse wetenschappers of kunstenaars te
verenigen rond specifieke thema’s.

De handelingen van deze contactfora vormen een aparte publicatiereeks van de Academie.

Contactforum “4™ Actuarial and Financial Mathematics Day” (10 februari 2006, Prof.
M. Vanmaele)

De “4™ Actuarial and Financial Mathematics Day” is een vaste waarde geworden als contactforum. Niet alleen
academici maar ook heel wat collega's uit de bank- en verzekeringswereld blijven de weg vinden naar dit
jaarlijkse evenement. Het is de gelegenheid bij uitstek om op de hoogte te blijven van het recente onderzoek op
het vlak van financiéle en actuariéle wiskunde in Belgié en van nieuwe uitdagingen die ons te wachten staan
zoals in het kader van Basel Il. Naast twee gastsprekers kwamen doctoraatsstudenten, postdocs en mensen uit de
bedrijfswereld aan bod. In deze publicatie vindt u een neerslag van de voorgestelde onderwerpen. Alle
onderwerpen kunnen gesitueerd worden in het ruime gebied van financiéle en actuariéle toepassingen van
wiskunde, maar met een grote variatie: de bijdragen betreffen “capital allocation” problemen, modellen voor
kredietrisico, voor stop-loss premies en voor basket- en spreadopties, risicomanagement van coupon bonds, etc.
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