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PREFACE

This Contactforum “Actuarial and Financial Mathematics Conference (AFMathConf2008)”
attracted many participants, both researchers and practitioners. This year, we counted
98 participants from 15 different countries.

Many young researchers, in particular Ph.D. students and Postdocs, working in the field of
Financial and Actuarial Mathematics found their way to this event where they could discuss
recent developments in the theory of mathematical finance and insurance and their interplay,
and could interact with the guest speakers and practitioners.

We thank all our speakers and in particular the guest speakers: Laura Ballotta (Cass Business
School, City University UK), Pauline Barrieu (London School of Economics, UK), Nicole
Bauerle (Universitat Karlsruhe, Germany), Freddy Delbaen (ETH Zirich, Switzerland),
Paul Embrechts (ETH Zurich, Switzerland), Farshid Jamshidian (University of Twente, The
Netherlands), Thomas Mgller (PFA Pension, Denmark) and Antoon Pelsser (University of
Amsterdam, The Netherlands), for their enthusiasm and their interesting contributions which
made this day a great success. Special thanks also go to the discussants: Ann De Schepper,
Michael Kunisch, Zbigniew Matosek, Ragnar Norberg, Antoon Pelsser, Tim Pillards, Grigory
Temnov, Michel Verschuere, for their valuable suggestions and critical comments on the
presented contributed papers.

Eight out of nine papersrelated to the contributed talks are published in these proceedings. Also
a summary of the talk of the guest speaker Professor Jamshidian (member of the Advisory
Board of Advanced Mathematical Methods in Finance (AMaMeF)) can be found here.

We owe much gratitude to the members of the scientific committee, namely Michel
Denuit (Université Catholigue de Louvain, Belgium), Marc Goovaerts (Katholieke Universiteit
Leuven, Belgium), Rob Kaas (University of Amsterdam, The Netherlands), Ragnar Norberg
(London School of Economics, UK), Bernt @ksendal (University of Oslo, Norway) and
Noel Veraverbeke (Universiteit Hasselt, Belgium) for the scientific support and to the
administrative staff consisting of Wouter Dewolf and Sefanie Vermeire, both of the
Department of Applied Mathematics and Computer Science of the Ghent University, for the
administrative work.
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Finally, we could not have hold this very rewarding event, academically as well as socially,
without the financial support of our sponsors: Royal Flemish Academy of Belgium for
Science and Arts, Research Foundation - Flanders (FWO), Scientific Research Network
FWO “Fundamental Methods and Techniques in Mathematics’, Fonds de la Recherche
Scientific (FNRS), KULeuven Fortis Chair in financial and actuarial risk management,
Fortis Insurance Belgium, IAP P6/07 from the IAP programme (Belgian Scientific Policy)
and ESF program Advanced Mathematical Methods in Finance (AMaMeF). We are greatly
indebted to them.

The editors: The other members of the organising committee:
Griselda Deelstra Pierre Devolder

Ann De Schepper Jean-Marie Reinhard

Jan Dhaene Steven Vanduffel

Huguette Reynaerts Martine Van Wouwe

Wim Schoutens David Vyncke

Paul Van Goethem
Michéle Vanmagele
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NUMERAIRE INVARIANCE AND APPLICATION TO
OPTION PRICING AND HEDGING

Farshid Jamshidian'

FELAB, University of Twente and AtomPro Structured Products B.V., Amsterdam, The Netherlands
Email: faratra2eyahoo.com

1. INTRODUCTION

Numeraire invariance is a well-known technique in option pricing and hedging theory. It takes a
convenient asset as the numeraire, as if it were the medium of exchange, and expresses all other
asset and option prices in units of this numeraire. Since the price of the numeraire relative to itself
is identically 1 at all times, this reduces pricing and hedging to a market with zero-interest rates. A
somewhat controversial implication is that the modelling focus should be more on the asset price
ratios rather than on the asset price processes themselves.

The idea of numeraire invariance is already implicit in Merton (1973), and since then many
authors have contributed to its development. After a brief survey of its origins, we state and
prove the numeraire invariance principle for general semimartingale price processes, following
essentially Duffie (2001). We then present its application to unique pricing in arbitrage-free models
and discuss nondegeneracy and unique hedging.

Next, using numeraire invariance, we show that if the underlying asset ratios follow a diffusion,
then a payoff that is a homogeneous function of the asset payoffs can always be replicated (subject
to mild growth conditions) and hence also uniquely priced. The deltas (hedge ratios) are given
by the partial derivatives of either the “projective option price function”, or equivalently, of the
“homogeneous option price function”, either of which is the solution of a PDE. We illustrate the
classical multivariate lognormal case from this angel.

To illustrate replication under the presence of jumps, we work out a little-known exponential
Poisson model, first for the exchange option, and then for a multivariate generalization with an
arbitrary homogeneous payoff function. Here, the option price function satisfies a partial difference
equation, and the deltas are given by partial differences. We mention a connection to martingale
representation, from which the explicit formulae are actually drawn.

I'This paper is a short version of the paper Jamshidian (2007) on exchange options. For possible future updates
visit wwwhome .math.utwente.nl/~jamshidianft
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In the final section, we first highlight the role played by homogeneity, emphasizing that if
the covariation matrix of the underlying assets is nondegenerate, then nonhomogeneous payoffs
cannot be replicated. We then extend the discussion to assets with dividends. Finally, we derive
the ubiquitous bivariate lognormal exchange option formula by a change of measure.

We will confine the discussion to European options with expiration denoted 7.

2. A BRIEF SURVEY

2.1. Merton’s extension of Black-Scholes

Let be given a zero-dividend asset with price process A = (4;). Let C' = (C}) denote the price
process of a call option on A with strike price K and expiration 7', which we wish to find. So, the
option payoff is

CT - (AT - K)+
To replicate C, another asset is needed. Black and Scholes (1973) take as the second asset a money
market of the form e”*. Merton’s idea is to take the T-maturity zero-coupon bond B with principal
K,ie., Br = K. The payoff can now be expressed in terms of both assets:

CT - (AT - BT>+-

The payoft’s homogeneity allows one to factor out B:

Fr=(Xr-1)",

where A o
Xi=—= F.=—=
B’ B’

are the forward prices of the asset and the option. Merton (1973) argues that it is sufficient to
replicate the forward option by trading the forward asset, i.e., to find a ¢ such that

dFt — (5th15.

The same ¢ should then serve as the hedge ratio with respect to asset A.
Assuming F;, = f(t, X,) for some f, by Ité’s formula the equation dF' = 0d X is equivalent to
the following formula for 6; and PDE for f(¢, ) with terminal condition f(7,z) = (z — 1)*:
af

=—(t,X
515 ax (t7 t)7

of 1 4, ,0°f
or 20t gz =V

where oy 1s the forward-price volatility (assumed deterministic by Merton):
d[X), = o X dt.

(The first (second) equation follows by equating the martingale (drift) terms of the two equations
for dF'.) Thus by “factoring out” asset B, the problem with a stochastic interest rate reduces to a
call option struck at 1 in the Black-Scholes model with zero interest rate.

More generally, when asset A pays dividends at a constant rate y, the above applies with the
forward asset price X; = e ¥~ A, /B,.
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2.2. Margrabe’s extension to exchange options

Margrabe (1978) showed that Merton’s argument extends to an option to exchange any two assets
A and B. His idea was to replicate the exchange option price process C according to the SDE

Assuming C; = ¢(t, A;, B,) for some function c(t, a, b), he noted that by 1¢6 ’s formula this equation
is implied by the system of equations

dc dc

524 = %(tAhBt)v (5tB ab(t At7Bt)
de 1, 282 o 0%c D?c
g + 204 902 + UBb o —|—O’AUB,OCLba 5l =0,

where 04 and op are the Volatlhtles of A and B and p is their correlation, assumed constants.
The converse is also true if |[p| # 1. (Note however, this nondegeneracy condition excludes the
Black-Scholes and 1-factor short-rate diffusion models).
Margrabe stated that if the option payoff is homogeneous of degree 1 in (a, b) (such as (a—b)™*
as in the case of an exchange option), then the PDE above should have a homogeneous solution
c(t,a,b). But then, Euler’s formula for homogeneous functions implies ¢ = adc/da + bdc/0b.
Thus if we choose 5A Oc/da and 67 = Oc/Ob as above, we get

Ct = 524At+6tBBt

Together with the equation dC = §4dA + §8dB, this means these deltas are self financing.
Merton had made similar observations and provided the homogeneous solution ¢(, a, b) of the
above PDE by reducing it to the 1-dimensional PDE of Section 2.1 via the transformation

ft,x) =elt,a,b)/b=c(t,z,1), =z=ualb,

with volatility o in the 1-dimensional PDE given by that of asset ratio A/ B:

0 =04 + 0% — 2040p.

Coining the term numeraire, Margrabe presented (acknowledging Stephen Ross) a financial
interpretation of Merton’s algebraic reduction. He proposed to measure the asset and option prices
in terms of asset B, as in a barter economy where 5 serves as the medium of exchange. This
provided the intuition behind Merton’s reduction to zero interest rates.

Note, the exchange option is replicated here by dynamic trading in only assets A and B.

2.3. Equivalent martingale measures

Harrison and Kreps (1979) and Harrison and Pliska (1981) pioneered the application of martin-
gale theory to option pricing. They showed that no-arbitrage in the sense of no free lunches is
essentially equivalent to the existence of an equivalent measure under which discounted prices are
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martingales. (See Delbaen and Schachermayer (2006) for the general theory.) Options can thus be
priced by computing the discounted payoff expectation.

For discounting, they utilized the finite variation money market numeraire exp( fot rsds), where
r; 18 the instantancous interest rate. This included the Black-Scholes and short-rate models, but did
not address Merton’s and Margrabe’s approach where the numeraire had infinite variation. With
the advent of the forward measure, it was clear that the discounting could also be done with a
zero-coupon bond, and this often simplified the calculation as discounting was in effect performed
outside the expectation (e.g., Jamshidian (1993) and El-Karoui et al. (1995)).

Another useful numeraire, “the annuity”, was used by Neuberger (1990) to price interest-rate
swaptions. It serves as the industry standard to this date for quoting swaption volatilities. Eventu-
ally, El-Karoui et al. (1995) showed that one can change numeraire to any asset 3 and associate
to it an equivalent probability measure under which A/ B is a martingale for all other assets A. In
some problems (such as certain Asian options or the passport option), it is advantageous to take
the underlying asset itself as the numeraire.

3. THE PRINCIPLE OF NUMERAIRE INVARIANCE

We fix a stochastic basis (Q, F, (F;),P) with a finite time horizon ¢ € [0,7]. We denote the
stochastic integral of a locally bounded predictable integrand § = (#',-- - , ") against a (vector)
semimartingale X = (X', ---  X™") by

Q-X:Z/ idX!.
i=1 70
In what follows, A will denote a vector semimartingale:
A= (A ... A™). (m >2)

Each A represents the observable price process of a traded (or replicable) zero-dividend asset.
When A™, A™ > 0, we will set
. Al
Xt = —
Am’

and
X o= (X', X", n:=m— 1.

3.1. Self-financing trading strategies (SFTS)

A SFTS § for a semimartingale A = (A',---, A™) is a locally bounded predictable process § =
(61,---,0™) such that

iaw :i63A6+5-A. (1)
=1 =1



Numeraire Invariance and Application to Option Pricing and Hedging 7

This is equivalent to saying that C' = Cy + 9§ - 4, i.e.,

1C =3 sdA @

i=1

where C' is the SFTS price process defined by
C:= Zm: 5 A (3)
i=1
Clearly, C is then a semimartingale, AC' = ). d*AA;, and thus
C. = Z 5 AL
i=1

The hedge ratio 4} is interpreted as the number of shares invested in asset A’ at time .

3.2. Numeraire invariance

Theorem 3.1 Let 6 be a SFTS for A and S be any (scalar) semimartingale. Then § is also a SFTS
Jor SA=(SA--- [ SA™) ie, (withC .= " §'A"),

d(SC) = Zm: §'d(SAY). 4)

Proof. By Ito’s product rule, then substituting for dC and C_ and regrouping, followed by It6’s
product rule again,

d(SC) = 5_dC + C_dS + d[S, C]

=5 i A+ f: §' A dS + f: 6'd[S, A
i=1 i=1 =1

=) (S dA"+ A dS +d[S, AT]) = Y §'d(SA).
i=1 i=1
]

To our best knowledge, this result first appeared in the 1992 edition of Duffie (2001), where it
is called the numeraire invariance theorem. Duffie gives the same proof, but assumes that the A°
are (continuous) Ito processes. The only difference in the general case here is the use of left limits,
primarily, substituting C' = > 1" 6"A" instead of C' = >_]" §" A"

Interpreting S as an exchange rate, numeraire invariance means that the self-financing property
is independent of the choice of base currency, which is intuitively obvious.

If S, S > 0,then 1/S is also a semimartingale. The result applied to 1/.S implies that:
0 is a SFTS for A if and only if it is one for S A. Thus, if (3) holds then (2) and (4) are equivalent.
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3.3. Taking an asset as numeraire

Assume now A™, A™ > 0, and apply the result to S = 1/A™. It follows that:
Theorem 3.2 ¢ is a SFTS for A if and only if it is a SFTS for AJA™ = (X, 1), i.e., if and only if
F:= C/A™ satisfies I' = Iy + 6" - X where §' := (6, ,6"). Clearly then

ot =F — i&x =F_ - i&'xz (F = j:n).
=1 =1

Conversely, given &' = (6%, - ,6") and an [, then with 6™ as above, § = (&', 6™) is a SFTS
for (X, 1) with price process F' := Fy + §' - X. Hence by numeraire invariance ¢ is a SFTS for A
with price process C' = A™F. Numeraire invariance thus reduces dimensionality by one:

Theorem 3.3 In order to find a SFTS 6 with a given time-T payoff Cr, it is sufficient to find a
process &' and an Fy such that Fr = Cp /AR, where F' = Iy + 0’ - X, or equivalently to find a
process F such that Fr = Cp /A% and dF =Y} §'dX" for some &, - -+ | 6"

Since 6™ = F'— 3" | 'X", the m-th delta 6™ is like F' determined by ¢’ and Fp. As such, one
interprets the m-th asset as the numeraire asset chosen to finance an otherwise arbitrary trading
strategy 0’ in the other assets, post an initial investment of Cy = A Fy,.

3.4. Application to unique pricing

One calls A arbitrage free if there exists a state price density, i.e., semimartingale S such that
S,S_ > 0 and SA® are martingales for all 7.
The (bounded) law of one price then holds:

Theorem 3.4 If A is arbitrage free and § is a bounded SFTS for A then SC' is a martingale where
C:=3"" 6"A'; consequenily C = 0if Cr = 0.

Proof. By numeraire invariance, d(SC) = " §'d(SA"). Thus SC'is a local martingale. But
since 0 is bounded, SC' is dominated by a martingale. So SC' is a martingale. ]
By a simple and well-known argument:

Theorem 3.5 [f A™, A™ > 0, then A is arbitrage free if and only if there exists an equivalent
probability measure Q such that A/ A™ are Q-martingales, for all i.

The equivalent martingale measure () is related to S by
dQ  SrA7

dP  E[SpA7]

Theorem 3.6 If' § is a bounded SFTS, then C'/A™ is a Q-martingale, where C := " §'A’;
hence

C
Cy = ATEQ[A—Z; |Ft]-
T

Proof. By numeraire invariance, d(C'/A™) = > 6"d(A"/A™). So C/A™ is a local martingale.
Since ¢ is bounded, C'/A™ is dominated by a martingale. So C'/A™ is a martingale. |
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3.5. Unique hedging

Let A be arbitrage-free and § be a bounded SFTS for A. Then, as before, X* := A’/A™ and
F := C/A™ are Q-martingales, and dF = > | §'d X" by numeraire invariance. Assume that X"
are Q-locally square-integrable (e.g., continuous). Then, d(F)® = 37", §'67d(X*, X7)?. (Here,
(X', X7)Qis the Q-compensator of [ X, X7]; so it equals the latter in the continuous case.) Clearly,
(FY¢ = 0if Fr = 0. Thus:

Theorem 3.7 If (X"} are absolutely continuous and the n x n matrix (4(X*, X7)%) is nonsin-

gular, then given any random variable R, there exists at most one bounded SFTS ) for A with
2111 opAp = R.

When there are “redundant assets”, the matrix is singular, and replication is not unique.

4. APPLICATION TO DIFFUSION PROCESSES

4.1. Pricing and hedging

Let A = (A',--- ) A™) be a semimartingale with A, A_ > 0 such that the price ratios X* :=
A?/A™ follow the SDE system

k
AX} = X}y oyt X)dZ + $d),  (i=1, ni=m 1)

j=1

where Z7 are independent Brownian motions, ©i;(t,x) are bounded continuous functions, and
T 1 .
Eez sl 007 o o (Note, we allow A* be discontinuous.) Define the martingale

M 1= o Shaa] 67427 45 [ (6°)2dr)
and the measure Q by dQ = MpdP. Then W’ := Z7 + [ ¢/dt are Q-Brownian motions and are
Q-independent since [W7, W*] = 0 for j # k. The X* are Q-martingales since

k
dX} = X7 o(t, X)dWy (5)

j=1

and ;;(t, z) are bounded. Thus A is arbitrage-free.

For each s < T and x € R}, there is a unique continuous positive Q-square-integrable martin-
gale X*% = (X,"*) on [s, T| with X% = r satisfying this SDE, and we have X = X%%o,

Now, let h(a), a € R} > 0, be a homogeneous Borel function of linear growth. Define

g(z) = h(z,1), =R}
Define the function f(¢, x) satistying f(T, ) = g(z) by,

f(t,x) == E? g(X7°). (6)
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(Intuitively, f(¢,z) = Elg(X7) | X; = z].) Then the Markov property holds, i.e., we have,
F = f(t, X)) = E%(g(Xr) | o). ()

Thus F = (f(t, X;)) is a Q-martingale, and since X" are too, assuming that f(¢, z) is C12, Itd’s
formula yields (setting the martingale and drift parts equal),

dF, = X_; 7 1 XX, (8)

and

of "L 0%f o

X Xy)d[ X', X), = 0.

=t X)dt + 5 ; 8%8% (t, X,)d[ X', X7), =0 9)

By (8) and numeraire invariance, ¢ is a SFTS for A, where
T . af . m . - 1
8= a—%(t,xt), i<n, 08 .:F—;5 X;. (10)

Clearly, the price process of this SFTS is ¢' = A™F (by the definition of §"). Moreover,
Cr = h({Ag) since Fr = g(Xr) and h{a) is homogeneous.
By (9), on the support X, f (t x) satisfies the PDE

O f
+ Zxx]awtxa S =0 (11)
J

2 ] =
where

O-’Lj(t z ngzl t z @jl(t ZL’)
=1
By the invariance of It0’s formula under the change of coordinates, the change of variable

Li= % —1(i <n), L™ = X" — 1, transforms (11) into the Libor market model PDE.

4.2. The homogeneous solution

The option price process and the deltas are already found, but let us also discuss the homogeneous
option price function defined by
ay (079
t = Sl — e, — ).
olt,0) = an [t 2 22
Then C; = c(t, A;). Agreeably, §; = aa_;(t> Ay) by (10). (For i = m use Euler’s formula for
c(t, a)). By the continuity of X and (10), §; = 5= (t, A, ) too. Therefore by It6’s formula,
dc 1 = 0% o
—(t, A, )dt t, Ay )d[AY, A7]f = 0. 12
ot ( y L3t ) + aa a ( t— ) [ s ]t ( )
(The surn of jumps term 1n Ito S formula drops out since AC' = Y~ 6’AA") This yields the PDE
5 T3 Z”alaj ol(t,a)52 Ju0a; — U for the special case d[A}, AT], = AjAloA(t, Ay)dt for some
functlons o} (t a). The quotlent space PDE (11) is more fundamental for it holds in general (even
when A is not a diffusion or is discontinuous) and has one lower dimension.
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4.3. Deterministic volatility case

Assume ¢;;, and hence o5, are independent of x. Then we simply have X b= e X /X,. Hence
by (6), 1
X X7
t,z) i=Eg(r1 L, o). 13
ft.2) =Byl g ) (13)
Conditioned on F; and unconditionally, X7/ X, is Q-multivariately lognormally distributed, with

mean (1,---, 1) and log-covariances ftT oij(s)ds. Let P(t, T, z), denote its distribution function.
Then by (13), we obtain

flt,z) = / g(xiz, -+ xpzn) P, T, dz). (14)
R
If 0g/0x; and g(x) — > x;09/0x; are bounded, then so is 9, since

of
aﬂfi

Xr X7

Xt dg
—_ 1)(_tl’... ’an—tn>]

_ wQ
(t3) = E°(5f 5

(x

5. APPLICATION TO EXPONENTIAL POISSON MODEL
5.1. Option to exchange two assets
Let A and B denote the asset price processes. Assume A = BX, where
X, = Xpel P e x (15)

for some constants 5 # 0, A > 0 and semimartingale P such that [P] = P and P, = 0 (so,
P=> <t Lap,20), €.., a Poisson (or Cox) process. Equivalently, by 1t0’s formula, X follows

dX, = X, (&’ — D)d(P, — \t). (16)

Define the function f(¢, z), z > 0 by

= n—(ef — — )\n n,— -
flt,z) = Z(xeﬁ (P—DXNT—t) _ 1>+W(T —t)me MT—t), (17)
n=0 ’

Clearly f(T,z) = (x — 1)T. Define u(t, p) := f(t, XoePP~(¢"=DM) One directly verifies that

du

5 (t,p) + AMu(t,p+ 1) —u(t,p)) =0,

Using this, one can show that

dF = §%X, F,:= f(t, X}), (18)
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where,

f(tv eﬁx) _ f(t7£L’)
(e —1)x

Thus by numeraire invariance (5%, 57) is a SFTS for A with price process C' = BF, where

(5tA = (5A(t,Xt_), 5A(t, ZE) =

0B = F —§X_=F - §X.

Further, Cr = (Ag — By)™ since Fr = (Xp — 1)7.
Also, this is a bounded SFTS. In fact, 0 < 64 < 1and —1 < 6% < 0.

5.2. Multivariate exponential Poisson model

Let A > 0 be an m-dimensional semimartingale with A_ > 0. Set X := (A*/A™)"_,n :=m—1.

Assume
k

X} = Xjexp(d (8P — ("1 = 1)\;t),
7j=1
(1 <k < n)orequivalently,

k
dX} =X} (% = 1)(dP! - \dt),

j=1

where, 3;; are constants with the . x k matrix (efii — 1) of full rank, A; > 0 are constants, and Pi
are semimartingales such that [P7) = P7, P/ = 0 and [P/, P/ = 0 for j # [.
Let h(a), a € R be a given payoff function, assumed homogeneous of degree 1 and of linear
growth in a. Define
g(z):=h(z,1), xRl n:=m-1

Define N
f(t,z) = Z glaieZi=1 Bra = -DX@=0)
q1,,gn=0
xnezjﬂ(ﬁm’qﬁ(eﬂ J *1)/\j(T*t))> H q_Z'(T _ t)qie—/\i(T—t).

=1

Let a = () be any n X k matrix such that for 1 < j, 1 < k, 37" (e — 1)y = 1if j =1
and O otherwise. Define ’
6, = 0;(t, Xy ), (1<i<n) (19)

where .
1 , ,
6i(t,x) = SC_z Zlaij(f(t, Py, ,eﬁ’”xn) — f(t,x)).
j:

Then one can show

dF =) §'dX',  F, = f(t,X)). (20)
=1
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Hence by numeraire invariance, § = (6, 6" 6™) is a SFTS for A, where §™ := I' —
Sor 6P X" Tts price process C' = > 1" 6" A' = Cp + § - A is clearly given by A™F:

= AP f(t,X0). 1)

Further, C7 = h( A7) because h(a) is homogeneous of degree 1 and f(T', z) = g(z) := h(z, 1).
Moreover, 0° are bounded if +;(z) are bounded, where v,,,(2) := g(z) = Y., vi(z)x; and

vi(zx) = E Zaij(g(eﬂ”:cl, ce ,eﬁ"jxn) —g(x)) (1 < mn).

5.3. Relation to Poisson predictable representation

Let P = (P',---, P*) be a vector of independent Poisson processes P’ with intensities )\; >
0. Let v(p), p € R*, be a function of exponential linear growth. Then, one has the following
representation:

o) k . k
A - ! ;
v(Pr)= Y i, ,%)HET%@ W+Z/ Agu(t, P,_)d(P! — Agt),
q1,,q,=0 i=1 1* i=1 70
where Aju(t,p) := u(t,p1,- -+ ,pi + 1, pa) — ult,p)) and
o0 ko yai
u(t,p) = Z i h(T=t),
q, ,q=0 i=1

Also, u(t, p) satisfies the partial difference equation and the SDE

ou

i (t,p) +Z)\Autp)—0

u(t, P,) ZAutP — \it).

6. MISCELLANEOUS CONSIDERATIONS

6.1. The role of homogeneity
Let A be continuous semimartingale and § be a SFTS for A. Assume C; = c(t, 4;) for a C'?
function c(t, a). Since dC' = >~ §'d A", by Itd’s formula,

(9 1 “ 820 o T 80 4
VA ,ADdAY, A, 1 A))dAS. 22
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In general, 3, (0" — —)(53 )d[A’ AJ] = 0 since the (left so) right hand side of (22) has

finite variation and hence zero quadratlc variation. Thus, if [A’] are absolutely continuous and the
m X m matrix (L[A?, A]) is nonsingular, then 6} = %(t, Ay), and so by (22),

%mw+%§y (t, A)d[A", A1), = 0 (23)
ot 2 Oazaaj ! e

Moreover, since C' = Y. 6" A’, we then have ¢(t, A;) = >, %(t, A AL So, if the support of
A, is a cone, then it follows that c(¢, a) is necessarily homogeneous of degree 1 in a on that cone.
Consequently, only homogeneous payoffs can be so replicated in this nonsingular case.

In some singular cases, e.g., the Black-Scholes or Markovian short-rate models, there also exist
infinitely many nonhomogeneous functions c(t, a) satistying C; = ¢(t, A;). This is simply because
for each ¢ the support of A, is a proper surface in R™ in these models, and obviously there exist
infinitely many distinct functions on R™ that coincide on any surface.

Assume M' := e~ Jo™¥ A" are local martingales under an equivalent measure for some pre-

dictable process r. Then dA? = rAldt + e/ " d M. Thus, using C' = 3, §' A’ and (22),

dc 1 & D% o " dc
ioAJ] o
ot (t At>dt —I— aala (t At)d[A ,A ]t = 7}<Ct —aa/i

i=1

(t, A,)Ab)dL. (24)

This “PDE” is valid also for nonhomogeneous functions. It is the type of PDE encountered in
the Black-Scholes or Markovian short-rate models. Of course, if we choose ¢(¢, ) to be homoge-
neous — which we can thanks to numeraire invariance — then it simplifies to (23).

6.2. Extension to dividends

Consider m assets with positive price processes A? and continuous dividend yields y!. When there
exist traded or replicable zero-dividend assets A’ such that A% = AiT, the problem reduces to
pricing and hedging (European) options on the A°.

All that is required is that the 2m assets A’ and A’ be arbitrage free, where

~. [ ~
Al = elovids 4

is the price of the zero-dividend asset that initially buys one share of A and thereon continually
reinvests all dividends in A itself. (When 3" is deterministic, this requires Al = e i dsfli )

For instance, consider an exchange option (m = 2). Say A and B are the yen/dollar and
yen/Euro exchange rates viewed as yen-denominated dividend assets. Then A is the yen-value of
the U.S. T-maturity zero-coupon bond and A is the yen-value of the U.S. money market asset. This
exchange option is equivalent to a Euro-denominated call struck at 1 on the Euro/dollar exchange
rate A / B. The ratio A / B is the forward Euro/dollar exchange rate. If it has deterministic volatility,
we are as in a setting of Jamshidian (1993) with results similar to next section.
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6.3. Change of numeraire

For the exchange option, one has to calculate E (X — Y')* for certain integrable random variables
X and Y > 0. Such expectations often become more tractable by a change of measure as in
El-Karoui et al. (1995). Define the equivalent probability measure QQ by

daQ Y

dP " E(Y)
Clearly,

o, X, _ E(X)

Replacing X by (X — V)™ in (25) and using the homogeneity to factor out Y,

JMX—YVZEWEW§—Df (26)

If X/Y is Q-lognormally distributed then (25) and (26) readily yield,

log(EX/EY) ViR log(EX/EY) V1@

where 1% := var?[log(X/Y")] and N{(-) denotes standard the normal distribution function.
If X and Y are bivariately lognormally distributed, as in Merton’s and Margrabe’s models,

then it is not difficult to show that X/Y" is lognormally distributed in both P and Q@ with the same
log-variance ¥ = v := var[log(X/Y)]. Then v/? can be replaced with v in (27).

E(X — V)" =E(X)N(
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Abstract

In complete markets, pricing financial products is easy (at least from a theoretical point of
view). In incomplete markets (e.g. when the underlying process has jumps with random size,
such as an insurance loss process), the price is no longer unique. So on the one hand, it
becomes difficult to provide a tractable price of insurance-linked derivatives. On the other
hand, when facing catastrophic losses, using the pure premium as a price might not be relevant
(e.g. for solvency issues). Both financial market and (re)insurance industry have proposed
techniques to price identical hedging products that can be related (e.g. Esscher transform and
more generally distorted risk measures in insurance, Gerber-Shiu transform in finance). In
this paper, we focus on indifference utility techniques, assuming that stock prices have jumps,
related to major catastrophic losses, and thus, partial hedging should then be possible.

1. INTRODUCTION AND MOTIVATIONS

1.1. Notations and definition

The buyer of an insurance contract buys the right to get reimbursed — by the insurance company —
all the losses which occurred during a given period of time, (for which the loss amount exceeded a
deductible, if any). The buyer of a call option buys the right to buy the underlying stock from the
seller to capture its increased value above the strike price.

Both (financial) options and insurance policies have the objective to transfer a risk from one
part to another, against a specific payment (called premium in insurance). But classical techniques
in insurance (based on the use of the pure premium, Ep[(X — d),]) and finance (based on the
assumption of complete market and no-arbitrage, so that the price of a call option is Eg[(X — K')])
are no longer relevant.

On the one hand, most of the techniques designed to price insurance contracts have been devel-
oped for standard risks, not to hedge against catastrophes. Pricing reinsurance, where events are
rare and with high severity, is more challenging, and the use of the pure premium might not be rel-
evant, for solvency issues. On the other hand, the closed-form model for pricing financial options

19
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obtained in the beginning of the 70’s, assumed that a volatility of the underlying stock was avail-
able, known and constant, and that the underlying price was continuous. Those two assumptions
were related to the idea of complete markets.

The challenge in insurance-linked derivatives is to find a price for those financial products, and
to relate them to classical insurance covers, since the question asked by any risk manager is “which
risk transfer technique is the cheapest one 7. But, as mentioned in Finn and Lane (1997), one has
to keep in mind, “there are no right prices of insurance, there is simply the transacted market price
which is high enough to bring forth sellers and low enough to induce buyers”. From a terminology
point of view, Holtan (2007) suggested to distinguish the price of an option or the premium of an
insurance contract, and the so-called value of those products. The difference depends mostly on
market conditions.

1.2. Trading insurance risks

Insurance risks are traded as long as there are insurance contracts, buyers and sellers, but they
are traded within the (re)insurance market only. To compare with the financial market, derivatives
are traded on a structured market, as well as the underlying stock, which will make replication
possible (and therefore hedging and pricing derivatives). In the case of insurance risks, we can
image that some standard contracts could be — somehow — concluded with financial companies, but
the underlying risk (cumulated insurance claims for indemnity covers, or weather related index)
is not traded on financial market: in that case, there is few chance that insurance risks could be
replicated, and therefore classical techniques to price are no longer valid.

Assuming that financial markets integrate information about catastrophes (and more generally
any insurance related information), it might be possible to hedge insurance risks on financial mar-
kets. But most of the assumptions underlying the Black & Scholes assumptions are usually not
fulfilled with insurance-linked derivatives

o the market is not complete, and catastrophe (or mortality risk) cannot be replicated,
o the guarantees are not actively traded, and thus, it is difficult to assume no-arbitrage,

o the hedging portfolio should be continuously rebalanced, and there should be large transac-
tion costs,

o if the portfolio is not continuously rebalanced, we introduce an hedging error,
e equity prices are not driven by a geometric Brownian motion process.

The goal of this paper is to focus on catastrophe options and to find a price for those financial
products.

1.3. Outline of the paper

In Section 2, classical results on financial pricing will be recalled, focusing on assumptions un-
derlying the fundamental theorem of asset pricing. Then, in Section 3, classical insurance pricing
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methods will be presented (based either on expected utility principles or using distorted risk mea-
sures). In Section 4, classical financial methods to avoid drawbacks of incompleteness will be
presented (and related to insurance pricing), to find a possible martingale measure.

And finally, in Section 5, we will study a model based on indifference utility pricing. The under-
lying idea is that financial markets can be affected by shocks related to major insurance losses. As
mentioned in Shimpi (1997) with a qualitative point of view, “from an insurance industry perspec-
tive, the closer the index is to the loss experience, the better the ability to hedge the loss exposure
of insurers”. Even, if a stock price is not perfectly correlated with insurance losses, at least its
discontinuous part can be. The goal here will be to see if those jumps in financial prices can be
used to hedge against catastrophes.

2. PRICING FINANCIAL PRODUCTS IN COMPLETE MARKETS

Harrison and Pliska (1981) said that a market is complete if there is only one equivalent martin-
gale measure to the underlying stock price. Insurance markets would be complete if there would
be a unique price for each risk, and if each contract could perfectly be hedged in the market. As
mentioned in Embrechts and Meister (1997) market incompleteness can be explained by jumps in
the underlying stochastic process, with random size, by stochastic volatility, or by the existence of
transaction costs (or more generally any friction). Hence, in complete markets, all relevant market
information is supposed to be known and integrated in the price: no investor will expect a higher
return than the risk free rate of return. The technique is to tune the historical probability P into
an equivalent probability measure (Q, so that the price process of the underlying financial asset
becomes a martingale under probability Q, i.e. Eq(S. 4| F:) = S:. Hence, it becomes impossible
to use the history of the stock to earn money: all possible relevant information is already included
in its spot price. This link between no-arbitrage assumption and martingale processes is the funda-
mental theorem of asset pricing (see Delbaen and Schachermayer (1994)): the price of a contingent
claim X (e.g. the payoff of the European call with strike K and maturity 7 is X = (Sp — K))
is m(X) = Eg(e™™" X), assuming constant risk free rate r, where Q stands for rhe risk neutral
probability measure equivalent to P.

The Black & Scholes model assumes that the price of a risky asset (.S );> satisfies Sy = Spexp (X;)
where (X;)i>o is a Brownian process, i.e. S; = Sgexp (i + 0 X}) where (X))o is a standard
Brownian motion. Having a geometric Brownian motion reflecting uncertainty on financial mar-
kets (for stock prices (,5;)) yield simple and nice pricing formulas. The most difficult practical
issue is that the only unknown valuation parameter is the stock volatility o, making option dealers
simply “volatility dealers”: the value of a financial option depends on the volatility of the underly-
ing financial stock, and not its expected return (which has to be equal to the risk free rate of return),
leading to a “risk neutral” pricing.
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3. PRICING INSURANCE PRODUCTS

The basic principle of insurance is the law of large numbers: if the premium asked is Ep(.X'), then
the insurance company makes a null profit, on average. Feller (1945) called Ep(X) the fair price
(of a game, in his terminology). In the terms of d’ Alembert, the pure premium is the “inner product
of probabilities and losses”. Thus, Ep(X) is called pure premium, but using it as the price of a
risk, the company is very likely to lose money (since the balance is only on average). Therefore,
traditional premium calculation principles are

m(X) = Ep(X
(X

) = Ep(X): equivalence principle (pure premium)

) = Ep(X)
(X) = Ep(X) + AVarp(X): variance principle

) = Ep(X)

Ep(X) + AEp(X): expected value principle

=\

=\

X

=\

Ep(X) + Ay/Varp(X): standard-deviation principle

\

Remark 3.1 For the standard-deviation principle, if X has a Gaussian distribution, then m(X) is
simply a quantile of X.

3.1. Pricing using expected utility principles

The fact that the pure premium might not be appropriate has been mentionned starting from Saint-
Petersburg’s paradox. One of the answers was to introduce a moral utility of X. A utility function
U is an increasing twice differentiable function on R, strictly increasing (U'(-) > 0, i.e. “more is
better”) and concave (U"(-) < 0, i.e. “marginal utility decreases”). Concavity is related to risk
aversion; since we assume that the agent is willing to transfer a risk, it is relevant to assume that U
is concave.

Example 3.1 Three types of expected utility are frequently used in the context of expected utility,

Vo € R, Up(z) = log(x): logarithmic utility
p
Vo € R%, Up(z) = - where p €] — 00,0[U]0, 1] - power utility
D
Ve e R, Ug(z) = — exp(—i): exponential utility.
Ty

Functions Up and Uy, belong to the set of functions having constant relative risk aversion (CRRA).
Functions Ug belong to the set of functions having constant absolute risk aversion (CARA).

Given utility function U, the premium 7 that an agent is willing to pay to transfer loss X is a
solution to the following equation

Ulw—m) = Ep(U(w — X)) (D)

where w denotes the initial wealth of the insured. Using Jensen’s inequality (since U is assumed
to be concave), note that = > Ep(X).
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Example 3.2 Assuming exponential utility, i.e. U(x) = —e™*/* (with constant risk aversion
1/x0), then ™ = 20 log Bp(eX/*0) (also called entropy measure).

Borch (1962) observed that the price of reinsurance contracts obtained with HARA utility
functions (more general than CARA and CRRA) is quite similar to the financial formulas: “7This
indicates that the theory of insurance premiums and the theory of asset prices are special cases of
a more general theory”. This emphazises the idea that it should be possible to relate insurance and
finance valuation techniques.

3.2. Pricing using distorted risk measures

Using the duality principle (see Yaari (1987)), instead of distorting losses using a utility function,
an alternative is to use a distortion of probabilities (leading to the dual approach, since the expected
value can be seen as an inner product, as mentioned already by d’Alembert). Hence, the agent
solves the dual version of Equation (1), i.e. (with an abuse of notation to highlight duality, see
Remark 3.2)

w—m=Egpw—-X)= /(w —x)g o P(dx), (2)

or equivalently, 7 = / zgoP(dx) = / g(P(X > x))dx in the case X is a positive random

variable, where g is a distortion measure, i.e. an increasing function on [0, 1], with ¢(0) = 0 and
g(1) =1L

Remark 3.2 Note that this probability distortion does not necessarily define a probability mea-
sure, but only a capacity: if Q = go P, Q(@) = 0 (since g(0) = 0), Q(Q2) = 1 (since g(1) = 1),
and Q(A) < Q(B) if A C B (since g is an increasing function). Hence, in Equation (2) Eop is
not an expected value, but a Choquet integral with respect to the (nonadditive) measure g o P.

Example 3.3 Ifg(z) = 1(x > a), then7 = F (1 —a), a € (0,1) and F(z) = P(X < x).

As a particular case of distorted probabilities, an important principle is the use of the Esscher

transform,

]E]}D(X . €aX)
=Fp(X)= ————~
7 = Eq(X) B ()

for some o > 0. More generally, Delbaen and Haezendonck (1989) considered the following
change of measure, so that the cumulative distribution function of the Radon-Nikodym derivative
dP/dQ is
1 T
Gle) = gy | 0 (wIarw). w0

where F' is the distribution function of X under P, and 3(-) : [0,00) — (—00,00) satisfies
Ep(e?X)) < 0o and Bp(Xe’™)) < .

Example 3.4 If §(z) = log (1 +b(x — Ep(X))), then m = Eq(X) = Ep(X) + bVarp(X), which
E]}D(X . eaX)

is the variance principle. If (z) = ax — log Ep(e®X), for some a > 0, then m = Ep(e™)
ple”
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4. PRICING FINANCIAL PRODUCTS IN INCOMPLETE MARKETS

4.1. A natural framework based on Lévy processes

As mentioned in Section 2, market incompleteness arises when the underlying stochastic process
has jumps with random size. Hence, in a general framework, assume that the price of a risky
asset (S¢)i>o satisfies S; = Spexp (X;) where (X;)i>o is a Lévy process. Recall that (X;):>0
has independent, infinitely divisible and stationary increments, thus X,.;, — X, has characteristic
function ¢". The cumulant characteristic function satisfies the Lévy-Khintchine formula, i.e.

1 Tooo .
U(u) =log ¢(u) = iyu — 5021&2 + / (e — 1 — fuzlyjy<ry) v(dz),

where v € R, 02 > 0 and v is the so-called Lévy measure on R \ {0}. Hence, the Lévy process
is characterized either by ¢ (the characteristic function of X;), or by the triplet (v, 02, v) in the
Lévy-Khintchine formula.

Remark 4.1 Again, except the case when (X,);>¢ is a (pure) Poisson process or a Brownian mo-
tion, any Lévy model is an incomplete model.

Market completeness is related to the existence of a unique martingale measure, also called the
predictable representation property of a martingale: a martingale (M,),>( satisfies this property
if and only if for any square-integrable random variable Z € Frp, there exists a F;-predictable
process (a;)icjo,r) such that 7 = E(Z) + fOT asdM,. Actually, (ag)cpo,r) is related to the self-
balancing strategy. Nualart and Schoutens (2000) proved that under some weak assumptions, a
Lévy process (X;):>o can also have a predictable representation property of the form

0 AT
Z=E7)+Y / (O d(HD —E(HD)),
i=1 Y0

(2)

where the (agi))te[O’T} s are JFy-predictable processes, and where (H;).cjo,7] is the power jump
process of order i, i.e. Ht(l) = X, and Ht(l) = 20<5§t[X3 — X, |ifori =2,3,....As mentioned in

Schoutens (2003), the predictable integrands (af))tem ’s appearing in this representation can be
interpreted in terms of minimal variance hedging strategies. Hence, those processes for: = 2,3, ...
together correspond to the risk that cannot be hedged away. The term (a%l) )e>o0 leads to the strategy

that realizes the closest hedge to the claim.

A first idea, related to the classical pricing process in complete markets is to find an equivalent
martingale measure, and to use it to derive a price. Hence, in Section 4.2 we will mention two ideas
widely used to obtain one equivalent martingale measure (Q: one based on Gerber and Shiu (1994)
(i.e. Esscher transform from insurance pricing) and the other one based on some mean-correcting
martingale measure. The main problem in incomplete markets is that there is no replication port-
folio. But it is still possible to super-replicate.
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4.2. Finding one risk neutral measure
4.2.1. USING THE ESSCHER TRANSFORM

Following Gerber and Shiu (1994) we can — by using the Esscher transform — find in some cases
at least one equivalent martingale measure Q. More generally, Bithlmann et al. (1998) discussed
the Esscher transform for specific classes of semi-martingales, with applications in finance and
insurance.

Given a Lévy process (X;);>o under P with characteristic function ¢ or triplet (v, 02, v), then
under the Esscher transform probability measure Q, (as defined in Section 3.2), (X;);>o is still a
Lévy process with characteristic function ¢, such that

log ¢a(u) = log ¢(u — ia) — log ¢(—icv),
and triplet (v,, 02, v,) for X1, where 02 = 02, and

+1
Yo =7+’ —I—/ (e —1v(dr) and v,(dzr) = e v(dz),

-1

see e.g. Schoutens (2003).

Example 4.1 A particular case is given when (X.);>o is a Brownian motion under P, then if
a = (r—u)/o? (Xy)iso is still a Brownian motion under Q.

Proposition 4.2 [f the price of a risky asset (Sy)i>q satisfies Sy = Spexp (Xy), where (Xi)i>0
is a Lévy process, such that the random variable X, is non-degenerate and possesses a moment
generating function M(t) = Ep(e'X1) on some interval (a,b), and if there exists u € (a,b — 1)
such that M(1 + u) = M(u), then (€ "' S;)>0 is a Q,-martingale.

Proof. See Shiryaev (1999). u

In order to have unicity, additional assumptions are necessary (see Kallsen and Shiryaev (2002)).

4.2.2. A MEAN-CORRECTING MARTINGALE MEASURE

Another way to obtain an equivalent martingale measure is inspired from the Black & Scholes
model, and is related to some mean-correcting martingale measure. The underlying idea is to note
that given a Lévy process (X;);>q under P with characteristic function ¢ and triplet (v, 02, v), then
the shifted process (Y;)i>0 = (Xi — mt):>o is also a Lévy process with characteristic function
D) = ™ p(u) and triplet (v, 02, V) = (v +m, o2, v) for X, see e.g. Schoutens (2003).

In the Black and Scholes model, we just switch from mean p — 02/2 to 7 — 02 /2. In the Lévy
model, the idea is to use the same kind of transform, me, = mog + 7 — log ¢(—1) (in the Black
and Scholes model, log ¢(—i) = a). The choice of mye, Will be such that the discounted price is a
martingale.
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5. THE INDIFFERENCE UTILITY APPROACH

As pointed out in Swiss Re (1999) about the pricing of financial stop loss contracts, “the risk-
neutral valuation technique traditionally used for the pricing of financial derivatives cannot be
applied directly”. Nevertheless, practitioners need « price for insurance-linked derivatives.

Let (S;)t>0 denote the accumulated insurance claim process, S; = Zf\il X;. Consider the
classical stop-loss contract with (S — K'),. The payoff of a call option is also (Sr — K'). Hence,
those two covers are identical for an insurance company, willing to transfer risk claims exceeding
priority K.

The idea of the pricing model here is to assume that the price of the financial asset has jumps
related to the occurrence of catastrophes. This assumption can be validated by stylized facts, e.g.
stock price of reinsurance companies and WTC 9/11 in 2001 (see Figure 1, with Munich Re and
SCOR - European markets since Wall street has been closed after the catastrophe), oil price and

Katrina in August 2005 ... etc.

Impact of WTC 9/11 on stock prices (Munich Re and SCOR)

- MW

60
|

55
350

50
L

45

300

Munich Re stock price
40
|

35

30
L
250

2001 2002

Figure 1: Catastrophe event and stock prices.

The following model and results are based on Quéma et al. (2007).

5.1. Description of the model

The occurrence process is a (F;)-adapted process denoted by (N;);>o. Under P, assume that
(Ni)e>0 1s an homogeneous Poisson process, with parameter A, i.e. with stationary and independent
increments. Further, recall that Ep(Nr) = AT and Var(N7) = AT.
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At time t the number of catastrophes that already occurred is N;. Define the sequence of
stopping times (77, ),,>0 corresponding the dates of occurrence of catastrophes, i.e.

T():O and ﬂl+1 :inf{t|t>Tn7Nt7§NTn}.

Let (M, )¢ be the compensated Poisson process of (V;);>o, i.e. My = Ny, — At

The 4" catastrophe has a loss modeled by a positive random variable Fr,-measurable denoted
X;. Variables (X;);>o are supposed to be integrable, independent and identically distributed. De-
fine L, = Zf\ﬁl X; as the loss process, corresponding to the total amount of catastrophes occurred
up to time ¢.

Assume that the financial market satisfies the no-arbitrage assumption, and consists in a risk
free asset, and a risky asset, with price (S;);>o. Without loss of generality, the value of the risk free
asset is assumed to be constant (hence it is chosen as a numeraire). The price of the risky asset is
driven by the following diffusion process,

dSt = Stf (Mdt + O'th + ngt) with S() =1

where (W) is a Brownian motion under [P, independent of the catastrophe occurrence process
(Ni)is0. Parameters p and o2 are respectively the trend and the volatility of the risky asset, per
time unit. Parameter £ corresponds to the relative variation of the asset value when it jumps.

Note that the stochastic differential equation has the following explicit solution

52
S; = exp {(u -y )\§> t—i—aWt} (1+ &M

5.2. Indifference utility

As in Davis (1997) or Schweizer (1997), assume that an investor has a utility function U, and
initial endowment w. The investor is trading both the risky asset and the risk free asset, forming a
dynamic portfolio 6 = (J;);>0 Whose value at time ¢ is [T, = II; + fot 0,dS, =Ty + (6 - S); where
(0 - S) denotes the stochastic integral of ¢ with respect to S.

A strategy ¢ is admissible if there exists A/ > 0 such that ]P’(Vt €[0,7],(0-5) > —M) =1,
and further if s | [ 5252 dt] < +o0.

t~i—
If X is a random payoff, the classical Expected Utility based premium is obtained by solving

ww, X) =U(w—7) =Ep(U(w — X)).
Consider an investor selling an option with payoff X at time 7',

e cither he keeps the option, us« (w, 0) = supse 4 Ep [U(w + (6 - S)T)] ,

e or he sells the option, us (w + 7, X) = supsc 4 Ep [U(w +(6-S)r— X)]
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The price obtained by indifference utility is the minimum price such that the two quantities are
equal, i.e.
m(w, X)=inf{r e R| use{w 4+ 7, X) — us(w,0) > 0}.

This price is the minimal amount such that it becomes interesting for the seller to sell the option:
under this threshold, the seller has a higher utility keeping the option, and not selling it.

Based on optimal control results, Quéma et al. (2007) derived some analytical expression, that
can be related to Merton (1976), in the case of exponential utility.

5.3. Following Merton’s work

Assume that the asset has no jump, i.e. dS;, = Si(udt + odW;) (ie. £ = 0), and that we
wish to price a derivative with payoff ¢(Sr), then in the case of exponential utility ug(t,7) =
Us |7+ 83T - 1)] .

In the case where the asset has jumps, i.e. dS; = Si- (udt + odW; + £€dM,) (i.e. £ # 0), and
that we wish to price a derivative with payoff ¢(Sr), then ug(t, 7) = Ug (7w + (T — t)C) where
C(t) satisfies

2
(e %oy o I 5,
Clt)= -+ (a———&ND - —0a°D
(t) ¢ (2 e 2 S0
Ozﬁ)\—orl—a—D—f)\eXp[—g—D]
Lo o

with also a boundary condition, C'(7') = ¢(St), and where D is related to the optimal strategy,
and is obtained also from the previous system.

Here, we wish to price a derivative with payoft ¢(Lr), when the underlying asset has jumps.
Then, assuming that the investor has an exponential utility, U (z) = — exp(—x /), we find:

Theorem 5.1 Let ¢ denote a C* bounded function. If the utility function is exponential, the value
Sfunction associated to the primal problem,

u(t,m, s,1) = IgleezcEp [U (HT — gf)(LT)) | ]:t]

does not depend on s and can be expressed as u(t,w,l) = U (7T - C(t, l)> where C'is a function
independent of T satisfying

2. 5%

0 = er—p+t o%sd ~exexp [_ £sd +C<t’l)i|E]p> (e%C(t,HX))
02 . Xy
oC oy _ kw0 0t e Lo s
T (t,1) = ¢ + (1 ¢ EN)sd 2%0 (s6%)
C(T,l) = o)

where 6* denotes the optimal control.

Proof. Theorem 19 in Quéma et al. (2007). ]
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5.4. Numerical issues and properties of optimal portfolios

From Theorem 5.1 we have to find the pair of functions (C, ¢) as a solution to an integro-differential
equation. Hopefully, using a simple discretization on a finite grid, it is possible to obtain a (stable)
numerical approximation of C', and therefore of function C', and thus of the price of the derivative.
Note further that two nice results have been derived in Quéma et al. (2007):

Lemma 5.2 C(t,-) is increasing if and only if ¢ is increasing.

Lemma 5.3 If ¢ is increasing and 1 > 0, then the optimal amount of risky asset to be hold when
hedging, is bounded from below by a strictly positive constant.

For a numerical example, assume that the trend is null (1 = 0), i.e. the amounts to be hold are
uniquely determined by the hedging strategy. Prices are decreasing in xg, and therefore, increasing
with risk aversion (the higher z(, the lower risk aversion), see Figure 2. When xy — 0, risk
aversion is infinite, and thus, whatever happens, the agent wants to hedge against any losses: the
price tends to the super-replication price i.e. ||¢||~, since if he holds the underlying, he might loose
money.

4 T T T T T T T T

Loi Exponentielle(1)

Lol Pareto(1.2)

6

34 f -

32

26

24

Figure 2: Price as a function of the risk aversion coefficient o with 7' = 1, p = 0, 0 = 0.12,
A=4,£=005and B=14
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Abstract

In contrast to insurance companies, regulatory authorities or regulators typically have access
to only limited information about the companies’ value. It hence leads to some effect in the
regulation design, which is however often overlooked in the literature. This paper characterizes
the limited/imperfect information as Knightian uncertainty (ambiguity). In order to stress the
analytical effects of ambiguity on the regulation decisions, we carry out an analysis in a simple
default and a liquidation model setup, i.c., a standard immediate bankruptcy regulation. It is
particularly noted that an ambiguity-averse regulator requires more “ambiguity equity”. We
show then that the standard immediate bankruptcy regulation may declare false liquidation
under ambiguity. A new regulation rule is thus designed with an additional auditory process.

1. INTRODUCTION

This paper is concerned with the issue on the information transparency of regulators in the regu-
lation rules design. In the standard insurance regulation literature, it is often supposed that regu-
lators have full information on the insurer’s asset value. The nullification of this assumption can
be however justified by the fact that insurance companies have some firm-specific information and
regulators are able to use only information external to the firm, for instance, some industry-wise
measures. Indeed, the classical model rules out the situation where regulators are not sure of the
likelihood of states of the world, i.e., the future asset evolution of each single insurance company.
In other words, it adopts a strict assumption about regulators’ belief: they are perfectly certain
of the objective probability law of the state process and this belief is perfectly identical to the
true probability law. However, regulators, as outsiders, may not have perfect confidence on the
perceived probability measure for insurance companies’ future asset value. With imprecise infor-
mation, he may claim the possibility of other probability measures and has no idea of the true
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plausibility of those measures. This is exactly the ambiguity defined by Knight (1921). Through
experiments and theoretical proofs, it has been long demonstrated that such uncertainty is not re-
ducible to a single probability with known parameters and has a great effect on decisions. In the
present paper, we incorporate ambiguity in a default and liquidation modelling setup. Our work
hence focuses on the impact of ambiguity on the insurance regulations and on the design of proper
regulation rules under ambiguity. To our knowledge, it is the first paper involving the ambiguity
feature in an insurance modelling framework.

This paper first aims at showing the impact of the ambiguity on the regulation decisions. The
analysis is carried out in a simplified framework as proposed in the literature (c.f. e.g. Grosen
and Jargensen (2002)) to model default and bankruptcy, i.e., a standard bankruptcy regulation
which does not distinguish between default and bankruptcy. We mainly examine how regulators
establish an optimal regulation (barrier) level as an intervention under ambiguity. The barrier
level is chosen such that the default probability is restricted to some fixed limit, say, to have a
default probability not higher than 5%. For instance, we show that risk-neutral but ambiguity-
averse regulators determine the optimal barrier level by choosing the worst scenario in all possible
probability measures. Ambiguity-averse regulators require regulated firms to carry more equity
(to meet the default probability constraint), which is defined in this paper as “ambiguity equity”.
Both analytical and numerical results demonstrate that ambiguity obviously affects the default
probability and hence the regulation parameter determination. In this sense, ambiguity issue should
be taken into consideration when designing insurance regulation.

As a second contribution of this paper, we design a new default and liquidation model under
ambiguity. The conventional default modelling framework has an obvious drawback under ambi-
guity. Bankruptcy may be declared according to regulators’ knowledge of insurance company’s
asset value, even when the real firm value is still sufficiently high. Such situations cannot be
avoided when default and liquidation are put into action simultaneously. Another regulation rule
is hence required to well incorporate ambiguity. Instead of immediate liquidation, our default and
liquidation formulation contains a regulatory auditing rules and hence prevents the mistaken lig-
uidation resulted from ambiguity. In principle, firms can only be liquidated when the firm’s asset
value indeed falls below the barrier level. We then analyze the impact of debt ratio, the riskiness
of the firm’s asset and the auditing frequency on liquidation probability.

The model we develop in this paper follows two streams of literature. On the one hand, it
is related to the insurance default and regulation literature. In the existing literature of default
modelling, Briys and de Varenne (1994, 1997, 2001) first interpret the work of Merton (1974,
1989) in an insurance context, in which only default at maturity is possible. Grosen and Jergensen
(2000, 2002) extend the model by allowing possible default at any instant before maturity. Bernard
et al. (2005, 2006) and Chen and Suchanecki (2007) further extend Grosen and Jorgensen by either
incorporating stochastic interest rate or discussing more realistic bankruptcy procedures. In all the
literature, the regulators act very passively in the sense of not taking any actions against the collapse
of the insurance company when it runs into default. This is apparently counterfactual. In reality,
regulators always try to help the insurance company not to go bust. Moreover, the regulation is still
to be strongly strengthened, because the collapse of many insurance companies is closely related
to insufficient regulations. For instance, the fall of First Executive Life Insurance Co. provides
important lessons in regulation of life insurance companies'. To this end, Bernard and Chen (2008)

'C.£. Schulte (1991) provides an insider’s view on the the fall of First Executive Life Insurance Co.
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investigate how regulators establish regulatory rules to meet some regulatory objectives and finally
to improve the benefits of policyholders.

On the other hand, our work is related to the work of decision making under ambiguity. The
Ellsberg (1961) paradox first demonstrates that risk and uncertainty are (behaviorally) meaning-
fully distinct from each other. The ambiguity theory is further developed prominently by Schmei-
dler (1989) (the Expected Utility Theory) and Schmeidler and Gilboa (1989) (the Multiple Ex-
pected Utility theory). The present paper carries on the formulation of the second theory, using the
continuous-time implementation by Chen and Epstein (2002). The incompleteness caused ambi-
guity is also applied by Nishimura and Ozaki (2007) in irreversible investment.

The remainder of this paper is organized in the following way: Section 2 gives the model
framework and introduces Chen and Epstein (2002) model of ambiguity. The impact of ambiguity
on the determination of the regulation rules is demonstrated in Section 3 by using the standard
but simplified model of immediate bankruptcy regulation. Section 4 then designs a new audit
regulatory rule under ambiguity. Numerical results are provided on how the riskiness of the firm,
debt ratio and auditing frequency affect liquidation probability. Finally, Section 5 concludes the

paper.

2. MODEL SETUP

Contract Design In this paper, we examine the regulation of an insurance company that offers
only one type of policy. These contracts grant policyholders a participation clause in the surpluses
of the company’s value and a minimum interest rate guarantee at the maturity 7', when there is no
premature default. The guaranteed amount corresponds to an initial investment (=, accumulated
with a minimum continuously-compounded interest rate g.

GT = GoegT. (1)

As conventionally assumed in the literature, a premature default results in an immediate lig-
uidation. A premature liquidation occurs when the firm’s assets hit the barrier level (which is
set by the external regulators) before the maturity date and is constructed as a first passage time
problem. Generally, the critical barrier level B, is set up by regulators. Since the firm’s assets A;
should be high enough to meet the increasing guaranteed amount, it is not unreasonable to assume
a time-increasing barrier:

Bt(na ¢) = 77G0€¢t7 n < (2)

fort € [0, T]. The inequality < é—g ensures that the insurance company is solvent at the contract-
issuing time. Here, both n and ¢ can be used by the regulator to control the strictness of the
auditing rule. A high 7 or a high ¢ would lead to a high barrier level.

Ambiguity: Uncertainty in the Underlying Probability Measures According to Knight (1921),
risk is the so-called “uncertainty” which can be reduced to a single probability; while the true
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uncertainty is not reducible. In the famous urn experiment®, Ellsberg (1961) demonstrated that
uncertainty, different from risk, has an impact on decisions: one prefers known to unknown or
ambiguous probabilities. Besides in experimental settings, there are many obvious instances in our
real life. For example, ambiguity is addressed to explain the equity premium puzzle whereby the
representative agent model fails to fit historical averages of the equity premium and the risk-free
interest rate. With uncertainty in the underlying probabilities, it is argued that part of the premium
is indeed due to the greater ambiguity associated with the return to equity, which hence reduces
the required degree of risk aversion. Meanwhile, Ellsberg’s findings suggest that decision makers
tend to be uncertainty or ambiguity averse. In the following, we formulate the ambiguity in such
a way that the regulator is not sure that a given (i.e. predicted for the entire industry) probability
measure is the true one, and that he assumes a set of probability measures instead and maximizes
the minimum of expected payment to the insured based on each probability measure.

In case of ambiguity, the regulator is assumed to be able to observe only the insurer’s initial firm
value Ay and terminal value Ap. The regulator’s ambiguity about the firm’s assets A;, t € (0,7)
is characterized by a set of priors P which are equivalent to the real world measure P. The set
of the priors is determined by constructing a set of suitable densities which is further specified by
a series of density generators ©. Each density generator (6,) € © is assumed to be an R-valued

process for which the process (z) is a P-martingale, i.e.

dzl = =206, dw;,, =1,

where W, is a Brownian motion under P and 6 satisfies 2 [exp {% fOT |9|2ds}] < 00, the Novikov
condition. Solving this stochastic equation leads to

1 t t
zf:exp{—§/ |93|2ds—/ GS‘dWS}, 0<t<T.
0 0

Given the set © of density generators, the corresponding set of priors is
S] 0 g - ng 9
P =<S0Q":0€0 and @ is defined by d—P:ZT 7

which is mutually absolutely continuous with respect to P. Furthermore, all the candidate prob-
ability measures are naturally not widely from the industry-specific measure, but with a small
deviation. In particular, the density generators (6;) € © are supposed to be restricted to the range
[—k, k|. It is the so-called k-ignorance (c.f. Chen and Epstein (2002)) and « can be considered as
the degree of Knightian uncertainty or ignorance.

Given any 6 € O, the regulator builds up a set of probability measures under which the firm’s
assets evolve as

dA? = Aldt + o AldW! = (i + 00,) Aldt + o ADdW,. (3)

2To roughly outline the Ellberg paradox, suppose that we have two urns. There are exactly 10 red and 10 blue balls
in the first urn. The second one contains also altogether 20 balls either in red or in blue. However, there is no clear
number of red or blue balls. The experiment is designed to check the willingness of persons who are offered a bet on
drawing a red ball from the two urns. The result shows that a majority of persons choose to draw from the first urn
rather than the second. The result remains when drawing a blue ball.
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where 1 and o > 0 are instantaneous rate of return and volatility of the asset and the initial value
Ab = A takes the same value for all 6. Nevertheless, the real stochastic evolution of the firm’s
value is independent of the regulator’s knowledge, following

dA; = pAdt + o AdW,. “4)

Clearly, those stochastic processes in the set P vary only in the drift term. The ambiguity in
the probability measures gives rise to some different stochastic processes to specify or interpret.
Moreover, their confidence over probability measures is supposed to be not (greatly) improved
over time. Formally, it is not possible to learn the distribution of 8 € ©, neither to reduce the set
P over time.

3. OPTIMAL STANDARD IMMEDIATE BANKRUPTCY RULE UNDER AMBIGUITY

This section aims at investigating the impact of ambiguity on the regulation decisions analytically.
To this end, a simple default and liquidation model setup is taken, which we call “standard immedi-
ate bankruptcy rule under ambiguity”. Under this standard rule, the regulator declares liquidation
of the firm immediately when the proxy A? breaches the predetermined default threshold, no mat-
ter how high the real firm’s value A; is. The premature default time or premature liquidation time
is defined as

% =inf{t <T | A? < Bi(n,0)}. (5)

Proposition 3.1 (Default Probability) A “default-probability minimizing " regulator with QQ°- be-
liefs, who is concerned with the default probability

Q' (r<T), (0)

under k-ignorance, i.e., (0;) € © are restricted to the range [—k, k|, achieves the minimum default
probability when the ambiguity parameter equals to the “lower-rim density generator” —k

,Qﬂ*

@ r<T) = QD)= NdE)+ ()T NEE) 0

nin pren

With i =p+ok—¢— ”—; The maximum default probability is obtained when 0 = k:

g K T [ %k AO 72;1 T [~ %%
max Q' (7 <T) = Q" (7 <T)=N(dz (i) + | —=- N (di (@) (8)
€0 nGo
with [ = 1 — ok — ¢ — G and d (1) = =[In(Z2) + i)
Proof. See Chen and Xu (2008). ]

The regulator will establish the regulation level, or more specifically the barrier level, in order to
meet the solvency requirement. In this model, 7 and ¢ are the two regulation parameters. Trivially,
the default probability decreases with both 7 and ¢. Moreover, the barrier level becomes a constant
equal to nG), as ¢ approaches zero. Thus, we assume that the regulator aims at achieving a default
probability constraint £, which in turn helps us (numerically) determine the optimal regulation
level 7.
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Proposition 3.2 (Ambiguity Attitude) An ambiguity-averse regulator behaves according to the
worst scenario rule. Namely, he chooses the optimal regulation level which makes the worst sce-
nario — maximal default probability — below the default probability constraint’, i.e.,

6/ 6
max max 7 <T)<e.
nor ¢ 06(9@( - >_

In contrast, an ambiguity-friendly regulator is taking —r degree of ignorance and chooses an
optimal regulation level to make the most optimistic scenario — minimal default probability —
binding, i.e.

maxmin Q% (1% < T) =e.

nor ¢ €O
Proof. See Chen and Xu (2008). [ ]
c=0.10 o =0.15
€ * * * * * *
v o | oma v o | .

0.01 | 0.73818 | 0.68413 | 0.79078 | 0.47162 | 0.43378 | 0.51114
0.02 | 0.79008 | 0.73536 | 0.84197 | 0.52718 | 0.48629 | 0.56934
0.03 | 0.82347 | 0.76879 | 0.87437 | 0.56479 | 0.52211 | 0.60839
0.04 | 0.84867 | 0.79431 | 0.89853 | 0.59424 | 0.55032 | 0.63875
0.05 | 0.86915 | 0.81524 | 0.91799 | 0.61888 | 0.57405 | 0.66400
0.06 | 0.88653 | 0.83314 | 0.93436 | 0.64031 | 0.59478 | 0.68583
0.07 | 0.90169 | 0.84887 | 0.94855 | 0.65942 | 0.61335 | 0.70521
0.08 | 0.91519 | 0.86297 | 0.96110 | 0.67676 | 0.63027 | 0.72271
0.09 | 0.92738 | 0.87578 | 0.97238 | 0.69271 | 0.64589 | 0.73873
0.10 | 0.93853 | 0.88756 | 0.98263 | 0.70752 | 0.66045 | 0.75355

Table 1: Optimal 7 levels with parameters:
Ag =100, Go =80, T =10, u = 0.06, g = 0.02, K = 0.01/0, ¢ = 0.02.

Table 1 and 2 provide some optimal 1 and ¢ values, respectively. n* (¢*), n; (¢%) and n* . (97 ,)
denote the optimal 77 (¢) obtained for regulators with ambiguity-neutral, -averse and -friendly reg-
ulators. First, a positive relation between 1 and the default probability constraint < is observed,
and also that between 1 and ¢. Besides, 1(¢) declines with the volatility o. A higher volatility
leads to a higher default probability, as a compensation, either 1 or ¢ shall be set lower to meet
the same default constraint £. More importantly, regulators’ attitude towards ambiguity delivers
an obvious effect on the optimal 7 and hence the barrier level. Moving from the extreme case of
0 = k (ambiguity aversity) to ¢ = —« (ambiguity-friendliness) results in an increase in the optimal
n value by over 10% and a quite big difference in the barrier level between 6.4 and 8. Comparing
n: and n* _ with n*, if the regulator uses 7; to determine the optimal barrier level, the real firm’s

3Note that the default probability is observed (and calculated) by the regulator under measure ( instead of the real
world probability measure P.
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value falls below the barrier indeed with a smaller probability than . On the contrary, the real
firm’s value falls below the barrier with a larger probability than e, while using 7* ..

c=0.10 c=0.15

e | e [ e o | o | ¢,

0.01 | 0.06625 | 0.05625 | 0.07625 | 0.01278 | 0.00278 | 0.02278
0.02 | 0.07509 | 0.06509 | 0.08509 | 0.02660 | 0.01660 | 0.03660
0.03 | 0.08068 | 0.07068 | 0.09068 | 0.03532 | 0.02532 | 0.04532
0.04 | 0.08489 | 0.07489 | 0.09489 | 0.04185 | 0.03185 | 0.05185
0.05 | 0.08831 | 0.07831 | 0.09831 | 0.04715 | 0.03715 | 0.05715
0.06 | 0.09122 | 0.08122 | 0.10122 | 0.05165 | 0.04165 | 0.06165
0.07 | 0.09376 | 0.08376 | 0.10377 | 0.05559 | 0.04559 | 0.06559
0.08 | 0.09605 | 0.08605 | 0.10605 | 0.05911 | 0.04911 | 0.06911
0.09 | 0.09812 | 0.08812 | 0.10812 | 0.06231 | 0.05231 | 0.07231
0.10 | 0.10003 | 0.09003 | 0.11003 | 0.06525 | 0.05525 | 0.07525

Table 2: Optimal ¢ levels with parameters:
Ay =100, Gy =80, T =10, u = 0.06, « = 0.01/0, 7 = 0.5.

Clearly, an ambiguity-averse regulator requires a much lower regulation level (and hence the
barrier level) to achieve the same default probability. If an optimal regulation level " (optimal for
an ambiguity-neutral regulator) is applied to an regulator who is indeed ambiguity-averse, a higher
default probability (than the default probability constraint) results. In other words, an ambiguity-
averse regulator will ask for some “ambiguity premium” (c.f. Chen and Epstein (2002) in the
context of equity premium puzzle) to achieve the same default probability. This ambiguity pre-
mium could be e.g. a requirement to increase the investment of the equity holder, which decreases
the default probability. We call this additional equity requirement “ambiguity equity”. Table 3
illustrates the ambiguity equity as a function of the default probability constraint € and of igno-
rance degree x for three volatility levels. The higher the allowed default probability level ¢, the
more tolerant the regulator, the less ambiguity premium an ambiguity-averse regulator requires.
Furthermore, the ambiguity equity increases in the degree of ignorance. That is, the more ambi-
guity averse the regulator is, the more ambiguity equity results. Please note that the ambiguity
equity is indeed quite high overall. For instance, fora x = 0.7 (0 = 0.2), the required equity shall
be increased by 8.55075, which corresponds to an increase in equity by 42.75%. The ambiguity
equity is then observed to rise with the volatility of the firm value.

Ambiguity is usually ignored in the literature and regulators considered in the most models are
assumed to be ambiguity-neutral. The designed default probability ¢ is then not able to be achieved
in reality where incomplete information or ambiguity is observed and especially when the regulator
is ambiguity-averse. Ambiguity-averse regulators behave themselves more “conservatively” and
admit the “worst-scenario” rule, which corresponds to the case § = « in this context where a
maximum default probability results and the optimal regulation level turns out to be lower than the
ambiguity-neutral case. As a result, by both theory and practice a special attention to ambiguity
issues in the regulation design and optimal barrier level determination is called for.
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Ambiguity equity Ambiguity equity

* o=010]o=015]0=020 " Je=010]s=015] 0 =020
0.01 || 585795 | 6.41898 | 6.65300 0.005/c || 2.43446 | 2.90925 | 3.12005
0.02 | 5.54101 | 620525 | 648772 0.006/c | 293338 | 3.48877 | 3.73554
0.03 || 531166 | 6.04629 | 636416 0.007/c || 3.43583 | 4.06728 | 4.34808
0.04 | 5.12418 | 59132 | 626013 0.008/c | 3.9416 | 4.64467 | 4.95766
0.05 || 496221 | 57957 | 6.16774 0.009/0 | 4.45046 | 522084 | 5.56422
0.06 | 4.81775 | 5.68878 | 6.08317 0.010/c | 496221 | 57957 | 6.16774
0.07 || 4.68623 | 5.58958 | 6.00424 0.011/0 | 547662 | 636916 | 6.76818
0.08 | 4.56474 | 549628 | 592958 0.012/c || 599347 | 6.94113 | 736552
0.09 || 445132 | 540768 | 5.85825 0.013/0 | 6.51256 | 7.51152 | 7.95972
0.10 || 434457 | 53229 | 578959 0.014/0 | 7.03365 | 8.08025 | 8.55075

Table 3: Ambiguity equity with parameters:
Ap =100, Go = 80,7 = 10, p = 0.06, g = 0.02, K = 0.01/0, ¢ = 0.02 and € = 0.05 (right table).

4. REGULATORY AUDITING RULES UNDER AMBIGUITY

As ecasily observed, the regulation determination heavily depends on the regulator’s estimation,
AY which is however not the true evolution of the insurance company’s value A;. Thus, under
ambiguity, the standard immediate bankruptcy rule may declare a false bankruptcy.

Proposition 4.1 (False Bankruptcy Declaration) An ambiguity-averse regulator (with k-ignorance
equal to k) falsely declares liquidation, although the firm’s asset does not hit the barrier, with the
probability of

. Do—ﬂ*T> <A0 ># (D0+ﬂ*T)
P <T and T7>T = N{—— )+ | — N|——
({T =T }) ( oT nGo oT

() (@) T ()

where 7= inf{t <T | A, < By(n,¢)}, m = p— ¢ — 20° Dy zln%, 0 =pu+ok—¢— 02—2
and P is the real world probability measure.

Proof. See Chen and Xu (2008). ]

This probability can be analogously considered as Type-I error in statistics “the null hypothesis
is correct but still be rejected”. Table 4 analytically shows the probability of type I error in the
standard immediate default and liquidation framework. The more risky the insurer’s assets are,
the more likely the Type I error occurs. Through this, the standard regulation rule turns out to
be suboptimal with the time going on. This ex-post sub-optimality fact is due to the information
lackage/ambiguity issue. Especially, we design in this section a more realistic regulation rule
by introducing an auditing process, in order to mitigate the effect of ambiguity and the possible
mistaken liquidation resulted from ambiguity.
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| o J o010 012 014 016 018 020 |
[ Probability [ 0.012 0.0282 0.0443  0.0566 0.0645 0.0684 |

Table 4: Probability of Type-I errors with
Ap =100, Gy = 80,7 = 10, . = 0.06, g = 0.02, K = 0.01/0, ¢ = 0.02.

Auditory Regulation Design A regulatory auditing process against the insurer’s firm value A,
is initiated whenever the monitored proxy hits the deterministic time-dependent barrier B;(7, ¢)
over the monitoring times. In reality, monitoring and auditing cannot be carried out continuously
due to high monitoring and/or auditing costs*. Therefore, in what follows, we suppose that the
regulator monitors the proxy AY at a set of selected equidistant time points on (0,7) : 7 =
{tite, ..., tn1}, 8 = %, j=1,...,N—1, with ty = T. Both proxy monitoring and
regulatory auditing occur only at the time points containing in 7 U {0, T'}.

Suppose that it holds that A? < Bi(n, ¢) for the first time at some particular ¢ € 7. Then, the
auditing process is immediately in effect and there are two possible auditing outcomes at t:

1. Ay < Bi(n, 9),
2. and A7 > Bi(n, ¢).

We assume that at time ¢ the regulator resets A? to the insurer’s true firm value immediately,
i.e. A?. = A;. When case 1 occurs, the insurer is liquidated immediately as the insurer’s true firm
value has hit some “dangerous” level from the regulator’s viewpoint. An immediate liquidation is
therefore called for to protect the policyholder from further loss. Under scenario 2, the liquidation
is not to be carried out since the insurer’s prevailing true value is above the auditing level set by
the regulator. Upon updating the insurer’s proxy, the auditing process is stopped and the regulator
resumes its usual monitoring process against the proxy. Note that in this case the auditing process
may be initiated again at a later time depending on the future evolution of the proxy. Though the
regulator has full access to all historical data of A; for ¢ < t at time ¢, we have assumed that the
regulator has to “forgive” and “forget” even if the regulator finds A; < By(n, ¢) for some ¢ < ¢
in situation 2. This assumption is not completely unreasonable since only the prevailing value is
relevant to the insurer’s insolvency at the current moment, but not its past values. Let 7, denote
the liquidation time of the insurer. The specification above allows us to write

m,=inf {t e TU{0,T} | A} < Bi(n, ¢), A < Bi(n,9)} .

Under this setup, the auditing triggering event is not equivalent to the liquidation event.

Numerical Results Monte Carlo simulation is applied to approximate the newly designed audi-
tory regulation rule. Throughout the simulation, a sample size of 100,000 is used.

The analysis is firstly carried out to investigate the impacts of the volatility o under different
debt ratio (D/E) and Table 5 provides the corresponding values. With Ay = 100, assuming a D/E
of 4 and 1 is equivalent to setting Gy to 80 and 50, respectively. From the table, it is clear that the

4Cost of enforcement includes both the necessary public funding (e.g. salaries of bureaucrats and judges, paper-
work, investigations, etc.) and the compliance costs borne by audit firms.
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D/E has a great impact on the liquidation probability. For example, for o = 0.16 and x = 0.01 /0,
default happens to the firm with a probability of 14.09% when D/E = 4 (under the regulation of
an ambiguity-friendly regulator), whereas the probability reduces to 1.39% when D/FE = 1. This
suggests that the insurer has a high probability to be liquidated if its initial equity contribution is
too low compared to its initial debt. It interprets exactly the ambiguity equity introduced in Section
3.

o]
DE 0.10 0.12 0.14 0.16 0.18 0.20
LP (Amb.-friendly) | 4 | 0.0171 | 0.0472 | 0.0864 | 0.1409 | 0.1848 | 0.237
(k =0.01/0) 1 | 0.0001 | 0.001 | 0.0063 | 0.0139 | 0.0304 | 0.0487
LP (Amb.-averse) 4 10.0308 | 0.0698 | 0.1204 | 0.1724 | 0.2388 | 0.2844
(k =0.01/0) 1 | 0.0005 | 0.0021 | 0.008 | 0.0203 | 0.0401 | 0.0719
LP (Amb.-friendly) | 4 | 0.0082 | 0.0323 | 0.0688 | 0.1134 | 0.1668 | 0.2084
(k =0.02/0) 1 | 0.0001 | 0.0011 | 0.0037 | 0.0098 | 0.0238 | 0.0424
LP (Amb.-averse) 4 1 0.0346 | 0.0804 | 0.1304 | 0.1881 | 0.2494 | 0.3003
(k =0.02/0) 1 1 0.0002 | 0.0039 | 0.0112 | 0.0244 | 0.0456 | 0.0665
LP (Amb.-friendly) | 4 | 0.0006 | 0.0079 | 0.0239 | 0.0516 | 0.0825 | 0.133
(k =0.05/0) 1 | 0.0001 | 0.0002 | 0.0004 | 0.0032 | 0.0078 | 0.0184
LP (Amb.-averse) 4 1 0.0400 | 0.0988 | 0.1492 | 0.2194 | 0.2887 | 0.3397
(k =0.05/0) 1 | 0.0003 | 0.0033 | 0.0112 | 0.0259 | 0.0514 | 0.0853

Table 5: Liquidation probabilities (LP) for different o values with parameters:
Ay =100, 7 = 0.8, = 0.05, 7 = 0.03, T = 10, N = 10, g = 0.02, ¢ = 0.03.

As expected, the default probabilities are increasing in o. For ¢ = 0.1, quite low liquidation
probability results. However, a lower liquidation probability does not necessarily mean that the
policyholder is better protected. For example, the regulator can always achieve a lower liquidation
probability by reducing the magnitude of 1 or ¢. By doing so, however, the amount of payment
received by the policyholder in the event of liquidation is expected to be lower. Hence, the poli-
cyholder is less protected from this viewpoint. In practice, the bankruptcy of a large-sized insurer
can leave many households in financial distress which imply a large amount of settlement, admin-
stration, and legal costs born by the regulator. Hence, it is nevertheless of great importance for
the regulator to ensure that the insurer has a reasonably low shortfall probability. If one takes the
insurer’ standpoint, then a lower shortfall probability, of course, is always advantageous.

the k-value determines the attitude of the regulator towards ambiguity. According to the
analysis of Section 3, ambiguity-averse regulators act following the worst-scenario rule, whereas
ambiguity-friendly regulators act extremely optimistically. The more ambiguity-averse the regula-
tor is, the higher the default probability turns out to be. In contrast, the more ambiguity-friendly
the regulator is, the smaller the liquidation probability results. An ambiguity-averse regulator uses
an underestimated proxy for monitoring and auditing, which leads to more frequent auditing pro-
cesses. Consequently, it is more likely that the company is found to be bankrupt. Certainly, a
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reversed reasoning shall hold for the ambiguity-friendly regulators. An ambiguity-neutral regula-
tor behaves moderately and causes a shortfall probability in between.

N
DIE 10 20 40
LP (Amb.-averse) 4 | 0.1724 | 0.2177 | 0.2509
(k =0.01/0) 1 | 0.0203 | 0.0245 | 0.0250
LP (Amb.-friendly) | 4 | 0.1409 | 0.1717 | 0.2023
(k =0.01/0) 1 | 0.0139 | 0.0154 | 0.0196
LP (Amb.-averse) 4 | 0.1881 | 0.2349 | 0.2671
(k =0.02/0) 1 0.009 | 0.009 | 0.0140
LP (Amb.-friendly) | 4 | 0.1134 | 0.1395 | 0.1636
(k =0.02/0) 1 |0.0244 | 0.0273 | 0.0294

Table 6: Liquidation probabilities (LP) for different /V values with parameters:
Ag=100,7=10.8, 4 =0.05,r=0.03, 0 = 0.16, T = 10, g = 0.02, ¢ = 0.03.

5. CONCLUSION

This paper highlights the crucial effect of ambiguity, i.e., the imperfect information the regulator
holds about the insurance company’s future asset’s evolution, on insurance regulator’s optimal
regulation decisions and therefore stresses the transparency of the insurance undertaking. We
calculate ambiguity equity for an ambiguity-averse regulator. Furthermore, the paper provides
a possibility of how to incorporate ambiguity into a realistic default and liquidation (regulation)
framework.
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Abstract

We consider an arbitrageur who takes advantage of market misvaluations. The market mis-
valuation is assumed to be mean reverting around zero and to be affected by the arbitrageur’s
actions. We propose a simple realistic model and explicitly solve the problem of finding opti-
mal trading schemes.

1. INTRODUCTION

A major type of arbitrage involves taking long and short positions in different assets, the so-called
long/short strategies. These strategies often take the form of a spread trade, where, for example,
the arbitrageur may go long a particular stock which he or she believes is undervalued with respect
to some market factors, and short a certain number of these factors in a way that zeros out the
exposure to global market moves.

First, some type of analysis is applied to identify stocks that are undervalued and market factors.
To fix ideas, one can think of individual high tech stocks, in which case, factors would be Microsoft
shares and/or the Nasdaq index. Second, the investor enters into a portfolio that exploits these
perceived misvaluations by going long the stock and short the factors in a way that minimizes the
risk of the portfolio with respect to global market moves. Finally, the portfolio is held until the
trade converges and the relative value of the stock comes back into line with that of the factors.

A very detailed presentation of these strategies in fixed income can be found in Duarte et al.
(2007).

Once the anomaly has been found, a major issue of the hedge funds industry is to implement
that strategy. Indeed, due to liquidity issues, especially when trading the undervalued stock, these
trades often have a market impact that makes misvaluations disappear as soon as they are exploited.
Arbitrageurs must limit the size and speed of the trade execution so that they take advantage of the
misvaluation. Market practioners also face transaction costs, which is another, although different,
market imperfection.

45
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The present paper first presents a simple model for such arbitrage opportunities and for two
market imperfections: transaction costs and market impact. Then, we are going to compute the
optimal arbitrage strategy. The model for the misvaluations is based on the Ornstein-Uhlenbeck
process since in the mind of the arbitrageur, the misvaluations tend to mean revert around zero.

1.1. Modelling the market misvaluation

To fix ideas, let us consider a stock S that is misvalued relative to a certain number of traded
factors . Let us imagine an arbitrageur who believes in a linear regression model for explaining
the return on the stock by means of the returns on the factors. This can be written as

dS;  ~— LdF}  de
Y -
St l—zl Ftl St
where ' are regression coefficients and &, is the error term normalized by the stock price. This
error term is also the value of a self-financing portfolio based on going long one share and short
'S,/ F} of the ith factor at each time ¢:

dey = dS; =) :5Fde;.
i=1 1

We will assume that this error term has the Ornstein-Uhlenbeck dynamics:
dEt = a(b—gt)dt+Uth (1)
where W is a Brownian motion, o is the volatility, a is the mean reversion speed and b is the mean
reversion level. The case b = 0 is most interesting for the situation at hand and we will henceforth

assume b = 0.
Suppose that at time ¢ = 0, our arbitrageur finds that

80250—265;0ng (1—251>50<0
=1 0 i=1

and decides to implement a self-financing strategy by holding ¢, of the above portfolio at each
time £. Assuming a constant risk free rate » > 0, the value V; of the strategy satisfies

d‘/t = TI/;dt + QOt(dZ‘:t — Tgtdt)

since ¢, is itself the value of a self-financing strategy. We did not take dividends into account but
these are easily incorporated if necessary.

Due to market impact and transaction costs, the arbitrageur faces a trade off: either he/she acts
too rapidly and his/her impact and transaction costs make the strategy unprofitable, or he/she acts
too slowly and the opportunity may disappear before he/she can make a profit.
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1.2. Modelling the market impacts
1.2.1. TRANSACTION COSTS

We choose to model the transaction costs in the following way. We assume that they are due to the
speed at which the trade is executed, more precisely they induce a loss of

A
o
dollars per unit of time, where ¢, represents the time derivative of ¢,. The parameter A is positive
and depends on the particular market.

To understand the model’s rational, let us look at a strategy that is discretely rebalanced. Trad-
ing at the bid/ask prices instead of the mid-price introduces an overhead cost of X' |Ay;| dollars
where X is half the bid/ask spread and Ay, is the change in stock holdings between ¢ and ¢ + At.
In the continuous time limit, the overhead cost becomes a rate of X' || dollars per unit time.
Our model therefore assumes that the bid/ask spread will depend on the execution’s speed. It is
an attempt to better take into account the market microstructure. Indeed, only a finite number of
shares are available at the bid and ask prices. By selling or purchasing more than that number,
the actual overhead cost will be higher. That effect is called “temporary market impact” in Alm-
gren and Chriss (1999, 2000). One could easily propose more elaborate models. We aim here at
transparency and simplicity.

1.2.2. MARKET IMPACT ON THE STOCK DYNAMICS

In addition to transaction costs, our strategy may influence the price evolutions. To this end, we
make the dynamics of ¢ dependent on ¢, the execution’s speed. The model then introduces a
change in the long term mean reversion level proportional to ¢;.

dey = (—agy + ppy)dt + odWy, (2)

with 1 a positive parameter depending on the particular market. It says that if we buy rapidly,
¢ > 0, the mean reversion level will be positive, and the market imperfection will tend to return
faster to zero. That second effect is often called “permanent market impact”, see for instance
Almgren and Chriss (1999, 2000).

Here again, one could easily propose more sophisticated models, where, for instance the trading
scheme affects the mean reversion speed as well as the mean reversion level.

1.3. Finding the optimal trading strategies

Let us fix a time horizon 7T". Due to the market imperfections, our arbitrageur would like to maxi-
mize his discounted terminal wealth. He faces a stochastic optimization problem of the type

sup E {e_TTVT} .
{e}
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We did not include a penalty due to the risk of the position, but as we will see later, it can easily be
incorporated. In the present analysis, we assume that the trader only tries to maximize his or her
expected terminal wealth.

The above problem can be rewritten as

r A
supE { / et [%(dgt —reydt) — §<pfdt] } , (3)
0

{wt}

where ¢; has dynamics given by (2). The supremum is taken over admissible strategies that will be
defined for each problem.

Very often, we will assume that ¢, = 0, which simply says that the arbitrageur has no position
in the different assets at the beginning of time, but our results can easily be changed to handle the
case ¢y # 0. On the other hand, we would also like to be able to add the constraint o = 0,
which imposes that we exit the trade at the horizon 7". We will treat the cases with and without
that additional constraint separately.

2. SOLUTION TO THE OPTIMIZATION PROBLEM

Let W be a standard Brownian motion on some probability space (£2, F, P). Its filtration is denoted
by (Fi)ezo-

2.1. The Bellman equation

In the full observation case, the problem faced by our arbitrageur can be written as in equation (3).
We now need to carefully define the set of admissible strategies. These are strategies ¢, which are
(F:) adapted and almost surely absolutely continuous with derivative denoted by ¢;. Moreover
they satisty the following integrability conditions

T
E{/ gof+<,b?dt}<oo
0

for both It6 and Lebesgue integrals to be well-defined. Due to (2), for such strategies the problem
can be rewritten as

T
, X A
sup [E {/ e " {—(a + 7r)ewpr + e — 5‘??} dt} :
{ot} 0

In order to solve this problem, we introduce the following bivariate controlled diffusion X:

Xt — |:€t:| .
Wt

dX, = [_a& o at] dt + m AW,

Ol

It has the following dynamics:
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where o = ¢ is the control of the problem. Using matrix notation, the model can be expressed as

dX, = (MX, + oy N)dt + SdW,

o[58 oo -}

Moreover, the set of admissible controls A is characterized by

T t 2
A= {a | o is (F;) adapted and E {/ (/ asds> +afdt} < oo}.
0 0

The problem is now cast in the following familiar form (see, for instance, Bensoussan (1992) or
Oksendal (2003)):

with

r 1 A
sup E {/ e "t {——X{AXt +o,B'X, — —Ozf] dt} , 4)
acA 0 2 2

=Lt ] o=l
at+r 0 L

Starting from this formulation, we introduce the indirect value function v:

with

r 1 A
v(t, X) =supE / e ™| —=X/AX, + a,B'X, — —ai du
acA t 2 2

the Bellman equation then reads

0 1 1 A
sup [8_715] + (MX +aN)Vuv + §E’V2v2 —rv — §X’AX +aB'X — 5042} =0 ()

with Vo and V?v denoting the gradient and the Hessian with respect to the variable X. The
terminal condition is v(7, X') = 0.

2.2. Explicit solution

The expression between brackets in equation (5) is quadratic in « and the supremum can be com-
puted explicitly. This leads to the following nonlinear partial differential equation (PDE) for the
value function v.

9 1 1 1
a—: + X'MVv+ SEVE — 1o — SXAX + L (BX + N'Vo) =0,

with terminal condition v(T', X') = 0. The optimal feedback policy is

1
o = X(N,VU + B'X).
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We are looking for a solution of the form
1 !
"U(t, X) = §X QtX +ﬂt,

where €; is a deterministic function of time taking values in 2 X 2 symmetric matrices and 3 is a
scalar deterministic function. It can be easily seen that {2 must solve a matrix Riccati equation

. BB’ r NB' r BN’ NN’

with terminal condition (27 = 0, and with I denoting the identity matrix. Furthermore, 3 solves
the linear ordinary differential equation

- 1
ﬁt — Tﬁt + izlﬂtz = O
with terminal condition 37 = 0. Once the Riccati equation has been solved, (3 is given by
1 T
@:—/mgwwyaﬁm.
2 Jy
Proposition 2.1 The optimal strategy for problem (4) is given by
1
a; = X<N/Qt + B)X,,

where (1 is the solution to the matrix Riccati equation

/

. BB NB' BN’ NN
0, — A+ +m(M—f[+ )+<M—f1+ )m+9t 0, =0

A 2 A 2 A A

with terminal condition 0y = 0. The value function is given by
1 / 1 T r(t—u) g
U(t, Ety (;Ot) = §XtQtXt + 5 € b QUZCZU.
t

Proof. Since we found a solution to the Bellman equation for the problem, the proof follows from
the classical verification theorem. ]

Introducing a finite horizon 7" may not always be relevant for certain applications. In such
cases, it is interesting to know that as 1" goes to infinity, the value function v has a limit given in
terms of the solution €2 to the algebraic Riccati equation

/ ! ! /
—A+BB+Q<M—51+NB>+<M-%[+BN>Q+QNNQ:0

A 2 A A A

Indeed,

1 1
li 0 = -X'OX + YO,
TEEOOM &5 ¢) 2 - 2r



Optimal Trading Strategies in Presence of Market Impacts 51

2.3. Numerical example

The present section consists of a numerical example that will help us to understand the role of the
market impact parameter 1 on the optimal strategy.

We shall use the following set of parameters: the initial misvaluation ¢, = —1, the mean
reversion speed a = 2, the volatility o = 100% per annum and the horizon is set to 7" = 3 years.
We start with ¢y = 0 in stock, and we take the transaction cost parameter A = 1.
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Figure 1: How the value function changes with respect to the market impact parameter .

We first study the impact on the value function of the market impact parameter pi. As shown
in Figure 1, for values of p less than 0.6, the value function decreases as a function of y. This
is expected since market impacts lower our ability to take advantage of the misvaluation. It is
therefore quite surprising at first to see that for values of . larger than 0.6, the value function is
actually increasing in . However, this can be explained as follows: when  is large enough, the
arbitrageur has a large impact on the stock price movements, and he or she may decide to push the
price further down. This is illustrated in Figures 2 and 3.

Second, we consider for a given outcome w, two different values for the market impact param-
eter u = 0.2 or 4 = 1, and two different values for the initial number of shares ¢y = 0 or ¢y = —3.
For a small value of the market impact parameter, u = 0.2, changing ¢, has little qualitative effect
on the optimal strategy in the first 2 years. This can be seen by comparing the plots in Figure 2
where we plotted against time, the misvaluation path (in blue), the misvaluation path when there
is no market impact (in green), and with values on the right, the optimal number of shares held in
the portfolio ;.

On the other hand, if we had started with a large market impact parameter ¢ = 1, changing
o = 0 to py = —3 changes the qualitative shape of the optimal strategy. With a large short initial
position, it becomes optimal to further short the stock. This is seen in Figure 3. For reasonable
practical situations, the parameter i should therefore not be too large.
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p=024=-3
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Figure 2: 1 = 0.2 and ¢y = 0 (left) oo = —3 (right). Note the different scales for ¢* (on the right
of the plot) and for ¢ (on the left).
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Figure 3: 1 = 1 and ¢y = 0 (left) ¢y = —3 (right). Note the different scales for ©* (on the right of
the plot) and for ¢ (on the left).
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Figure 4: Optimal strategy with no constraint on ¢ (left) and with the constraint o = 0 (right).
Note the different scales for ¢* (on the right of the plot) and for ¢ (on the left).



Optimal Trading Strategies in Presence of Market Impacts 53

2.4. Adding the constraint o = 0

As shown in the numerical example above, it might be desirable to make sure that the positions of
the arbitrageur have been closed by time 7. This would rule out strategies where the arbitrageur
with a short position pushes the stock price down as to increase his or her marked-to-market value.
The classical way to add the constraint w7 = 0 consists of introducing a Lagrange multiplier # in
the objective function. Keeping the same notations as before, we reformulate the stochastic control
problem as

g AL
sup E {/ et [—((1 + 7)erpr + i — 5‘!’?] dt — Q‘P%} .
{ee} 0

It can also be cast into the familiar form

T 1
sup E {/ et [——X;AXt +oB' X, — éaf] dt — X’T@XT} (6)
ac A 0 2 2

with
0 0
0= [ 0 6 } '
Then proposition 2.1 easily extends to

Proposition 2.2 The optimal strategy for problem (6) is given by
* ]‘ ! /
Oét = X(N Qt + B )Xt7

where () is the solution to the matrix Riccati equation

/

. BB r NB r BN NN
Q= A+ = +Qt<M—§I+ 5 )+<M—§I+T>Qt+QtTQt—O

with terminal condition (p = ©. The value function is given by

1 1T
v(t, e, 00) = §Xt’QtXt + 5/ WSO, Ndu.
t

For § going to oo, the solution of (6) converges to the solution of (4) with the additional
constraint ¢y = 0 a.s. This is illustrated in Figure 4, where the parameters are the same as in
the previous section, with ¢ = 1 and ¢y = 0.

It is also interesting to see how the dependence of the value function on p changes when we
have the additional constraint. Not surprisingly, the value function is lower than in Figure 1 and it
is now decreasing in p (see Figure 5).
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Figure 5: How the value function changes with respect to the market impact parameter ¢ with the
additional constraint ¢ = 0.

2.5. Extensions

The objective of the arbitrageur in equation (4) only takes into account the expectation of the
terminal value of the strategy. Like any other agent, the arbitrageur is risk averse and he/she may
want to incorporate his/her attitude towards risk in his/her objective function. A simple way of
achieving this in our model is to introduce a penalty term of the form

T
— / olpdt
0

where 7 is a risk aversion parameter. The integral is the quadratic variation of the wealth process
V, so this penalty term is proportional to the volatility of the portfolio.

The model considered in the previous section can also be generalized to handle multiple strate-
gies at the same time. Indeed, one can think of an arbitrageur willing to take advantage of n
misvaluations at the same time. In such a case, one introduces a vector &; governed by a vector
Ornstein-Uhlenbeck process

where F', G, and S are matrices with the obvious financial interpretations and the vector ¢, repre-
sents holdings in each trade. W is a d dimensional Brownian motion.
The problem faced by our arbitrageur is

r 1
supE {/ e "t {got(det — reg,dt) — ic'pgAgbtdt} }
{e¢} 0

where A is a symmetric positive matrix representing the transaction costs.

The analysis and solution to this multi-dimensional problem is done in exactly the same way
by introducing a 2n-dimensional controlled diffusion. The solution is given in terms of a matrix
Riccati equation where the unknown deterministic symmetric matrix is now of size 2n x 2n.
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3. CONCLUSION

This paper discusses a simple model of market impacts and provides an explicit solution to the
problem of computing optimal long/short trading strategies. Extensions to the multi-asset case are
covered.
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Abstract

This paper develops a framework for the pricing of excess of loss reinsurance contracts using
derivative pricing techniques. The generalised Fourier transform method of Lewis (2001) is
applied to provide an analytical formula for the expected cost to the reinsurer of an individ-
ual excess of loss treaty with any number of free or paid reinstatements. The advantage of
this approach is that it does not require numerical approximations of the aggregate recovery
distribution using Panjer recursion or alternative methods. Instead, direct computation can be
carried out using efficient numerical integration techniques to evaluate the analytical pricing
formula. The generalised Fourier transform methodology is illustrated through a numerical
example using a Pareto claims severity distribution and is shown to provide accurate results by
verification with Monte Carlo simulation.

1. INTRODUCTION

In this paper we will explore the application of modern derivative pricing techniques for the pricing
of individual excess of loss (XL) reinsurance treaties. There are many natural analogies that can
be drawn between reinsurance contracts and financial derivatives, which suggests that the finan-
cial pricing methodologies applied for option pricing could also play a valuable role in actuarial
science. The connections between reinsurance and derivatives is clearly demonstrated by consid-
ering the form of many reinsurance contracts. For example, the payoff amount X for an aggregate
excess of loss contract attaching at K with no limit and expiring at future time 7" on an underlying
loss process S; is
Z = max(Sr — K, 0).

This has exactly the same form as the payoff function of a European call option with strike price
K. Similarly, the total recoveries under an individual excess of loss reinsurance treaty attaching at
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K with no limit and free reinstatements is given by

Nt
Z=> max(X; - K.0),

=1

where X; is the amount of the ¢th claim and N7 is the total number of claims by time 7'. This
again shows similarities to a derivative contract, in that each individual recovery has the form of
an option payoff. We refer the reader to Embrechts (1996) and Holtan (2004) for a stimulating
discussion of the connections between the actuarial and financial fields in this context.

This paper will focus on the specific problem of applying derivative pricing techniques to the
valuation of individual excess of loss contracts with paid reinstatements. We will not consider the
pricing of aggregate excess of loss reinsurance contracts and refer the reader to Haslip and Kaishev
(2008) for a detailed investigation into this area. This paper is organised as follows:

In Section 2 we will introduce the generalised Fourier transform method and show how it can
be used to provide market consistent pricing of derivative contracts under the framework provided
by Lewis (2001).

Section 3 sets out the problem of pricing individual excess of loss contracts and derives an
analytical expression for the price of a contract that provides unlimited free reinstatements.

Section 4 extends the pricing methodology to include individual excess of loss contracts with
limited paid reinstatements by setting up an equation of value that compares the total recoveries
to the total reinstatement premium and initial premium. This allows the correct level of initial
premium to be determined.

Finally in Section 5 we provide a numerical example of applying the pricing framework. This
considers an individual excess of loss contract that features limited paid reinstatements, with a
Pareto claims severity distribution and Poisson claims frequency distribution.

2. GENERALIZED FOURIER TRANSFORM MODEL

The generalised Fourier transform method was introduced to financial mathematics by Lewis
(2001) who demonstrated its use for option pricing under a Levy process. It provides a method for
evaluating the expectation of a payoff function, which makes it ideal for pricing options and other
contracts that depend on the value of a stochastic process at a future point in time. We define the
generalised Fourier transform § of a functionw : R — R as

Slw(z)} =w(r) = / "™ w(z)dz, where T = u + iv.

The inverse generalised Fourier transform is defined as

iv400

5 {0} = w(e) = o / e~ (r)dr,

—00
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where integration is performed along a straight line parallel to the real axis, along which 7 stays
within a strip of regularity.

The idea behind the generalised Fourier transform pricing method is to utilise the ability to
switch the order of expectation and integration, when applying a consecutive Fourier and inverse
Fourier transformation to the payoff function. Switching the order of expectation and integration is
equivalent to switching the order of integration under a double integral. This is permissible under
Fubini’s theorem provided that the integrand is an L'(IR?) function (see e.g. Weir (1973)). We
will proceed under the assumption that this technical requirement is satisfied. In practice, this will
normally be the case, since the usual choices of severity distributions such as the Gamma, Pareto
and Log-Normal are well behaved.

To illustrate how the method works, consider a financial contract that provides a payoft of
Y (St) at future time 7', where S; (0 < t < T) is a stochastic process. For instance, S; might
represent the price of a stock and v (Sr) could be the European option payoff function given by
max (St — K,0), where K is the contract strike price. The arbitrage free price V; at time 0 of
such a financial contract is provided by the fundamental theorem of asset pricing as

Vo = Eq {7 ¥(Sr)}, (1)

where 7 is the risk-free continuously compounded rate of interest and (Q denotes that the ex-
pectation is calculated under a risk-neutral probability measure. We will now explain how the
generalised Fourier transform method can be applied to evaluate this expectation. Consider the
following algebraic manipulation

Vo = Eq{e™(Sr)} = Eq{e™"§ {S[w(Sr)]}}

iv+00

/ &5 [(Sy)] dr

W—00

e—rT

2

:EQ

U400
—rT

_ / Ee (¢7757) 3 [0(S0)] dr

2

1W—00

w400
€

= S [ és s lsnlar

W—00
1W+00
€

—rT .
= 5 /ngT (—7)(T)dr (2)

W—00

where ¢g,. is the characteristic function of Sy. The integral in (2) will generally be computed
numerically along a strip parallel to the real axis in the complex plane within a region of regularity.
This region will be determined by the 7 € C for which § [)(S7)] is convergent and the character-
istic function of St evaluated at —7 is analytical. The simplest way to evaluate this type of integral
is to apply an efficient numerical integration algorithm. For instance, adaptive Gauss-Kronrod in-
tegration described by Calvetti et al. (2000) can be applied by making a substitution to remove the
complex limits.
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We will now consider how this financial pricing methodology can be applied to the problem
of pricing individual excess of loss contracts. In doing so we will make the assumption that the
claims distribution has been parameterised under a risk-neutral probability measure, so that we
may apply the fundamental theorem of asset pricing in the context of reinsurance. We will not
discuss the details of how one might select an appropriate risk-neutral measure, but refer the reader
to Delbaen and Haezendonck (1989) for a discussion of how to derive risk-neutral probability
measures corresponding to a number of actuarial premium principles.

3. INDIVIDUAL EXCESS OF LOSS

Here we consider the valuation of an individual excess of loss (XL) reinsurance treaty that applies
to a specific insured class of risk, for example motor liability claims.

This type of reinsurance contract provides a payment to the cedent equal to the amount of each
individual claim that exceeds a threshold limit L (the attachment point) and falls below an upper
limit U. That is, for a claim of amount X, the reinsurer will pay min [max (X — L,0),U — L] to
the cedent. In normal reinsurance terminology this is referred to as a U-L XS L contract.

The period of cover under the reinsurance treaty will normally be one year and we denote the
expiry time by 7', where 7' > (. Additionally we assume that the reinsurer settles all payments at
the end of the period of cover. The total recoveries Zr at the expiry of the treaty are calculated as

Nt
Zr = min [max (X; — L,0),U — L, (3)

=1

where each claim event occurs at time 7}, V; is the number of claims that have occurred by time ¢
and X is the severity of the jth claim. We follow the convention that Zr = 0 if Nr = 0. The price
of the reinsurance treaty at time 0 is therefore given by the fundamental theorem of asset pricing
as

Nr
Vo=Eq (e Zr) = Eq {e—rT Z min [max (X; — L,0),U — L]} : (4)
=1
where (Q denotes that expectation is to be carried out under a risk-neutral probability measure
and r is the risk-free rate of interest. This treaty may be priced analytically if we assume that the
individual claim amounts X; are independent identically distributed random variables by following

well known results for compound distributions.

For example, if we assume that claims arrive according to a Poisson process with arrival rate
A and the individual claim amount distribution is absolutely continuous with probability density
function fy () then we can calculate the expected individual recovery per claim as

u
Eq (R;) = Eq (min [max (X; — L,0), / LY fx(z)dz + P(X; > U)(U — L),

where R; denotes the individual recovery made on claim X;. The aggregate expected recoveries
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for the reinsurance treaty under the risk-neutral probability measure will then be given by
Eq(Zr) = Eq(Nr)Eq (Ri),

which follows from standard properties of compound distributions. For most choices of claim
severity distribution this can be calculated to give a closed form analytical solution.

However, in practice most individual XL reinsurance treaties are not this simple. They normally
will include clauses to limit the overall aggregate recovery allowable under the treaty and will only
allow a specified number of reinstatements of the layer, for which additional premium may be
payable. If a reinstatement premium is required this will be pre-specified in the treaty conditions
at inception.

If we now assume that the total recoveries under the treaty are limited to amount A/, with
free reinstatements, then the total amount recoverable at expiry of the contract will be given by
min(Zz, M). The price of the reinsurance treaty therefore becomes

Vo = Eq (¢ min(Z7, M)) .

This is more difficult to calculate analytically and in practice Monte Carlo simulation is normally
used for its evaluation. However, we will proceed to consider how this quantity could be calculated.
Writing out the expectation in full it can be seen that

o0 M
Vo= eTT/min(z, M)fz.(2)dz =e T /szT(z)dz +MP(Zr > M)}, (5)
0

0

which appears relatively simple, but requires knowledge of the probability density function f. of
the aggregate recoveries process Zr that was defined in (3). Several approaches exist to numeri-
cally approximate the aggregate distribution of compound processes, but these are computationally
intensive and can be numerically imprecise. However, what we can more easily calculate is the
characteristic function of Zr. For example, under many popular choices for the claims arrival pro-
cess, there are explicit formulae for the aggregate claims characteristic function. We will proceed
without loss of generality by considering the case where the claims frequency is modelled by a
Poisson distribution. A similar analysis can be carried out using alternative assumptions such as
the Negative Binomial distribution.

If claims occur according to a Poisson process with arrival rate A then the characteristic function
of Zr is given by

612(7) = TR,

where ¢p(1) = Eq (e™F) = Eq (emminlmax(X=L0.U=LI) g the characteristic function of the
individual recovery amount 2. We will now consider how to calculate the characteristic function
of the individual recovery amount R, before proceeding to explain how this helps in calculating
the price in (5).

We begin by noting that i has a mixed distribution: there is a mass of probability at & = 0
corresponding to claims that do not exceed the attachment point L. and there is another probability
mass at R = U — L which corresponds to claims that exceed the upper limit /. When calculating
the characteristic function of a random variable that has a mixed distribution, it often helps to first
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consider the probability mass function. By the law of total probability we have that

P(X < L) ifr =0
P(R<r)={ P(X<L)+P(L<X<r+L) if0<r<U—L . (6)
1 ifr>U—1L

This can be simplified to give

Fx(L) ifr=20
P(R<r)=< Fx(r+1L) fo<r<U-L (7)
1 ifr>U—-L

where Fy(z) is the cumulative distribution function of the individual claim amount X. We now
are able to calculate the characteristic function of R as

o0

onr) = [ e fatriar

U-L
= "P(R=0)+ / e fx(r+ L)dr + ™V P(R=U - L)

0
U-L

= Fy(L)+ / e fx(r + L)dr + ™ U=E 1 — Fy(U)]. (8)
0

As will be shown in Section 5, (8) is relatively simple to calculate and is tractable enough for
efficient numerical implementation. The next step is to compute the generalised Fourier trans-
form of min(Zr, M). We begin by noting that since Zr > 0, we have that min(Zr, M) =
max|min(Zr, M), 0]. Thus its Fourier transform f(7) is given by

f(r) = F(max[min(Zr, M),0]) = /e”zmax[min(z,M),O}dz

—x0

M 00
= /zemdz—l— M/emdz
0 M

6iTM -1
- 2 9)

T

where Im(7) > 0 is required for convergence.
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We can now apply the technique developed by Lewis (2001) to calculate Fq (min(Zr, M)).

Eq (min(Zr, M)) = Egq (max[min(Zy, M),0])
. eiT]VI_l
- rafs ()}
w+00
1 iy eiT]W_l
1400
1 iz eiT]M 1
= % E (6 )< 7_2 >d7'
1400
itM
_ 1 / Hlont=n-1 (€77 =LY ) (10)
21 T2

where we require /m(7) > 0. This means that integration must be carried out on a straight line that
lies above the real axis where v > 0. It is noted that this integral can be evaluated efficiently using
a number of numerical integration techniques that are described in Haslip and Kaishev (2008).

4. REINSTATEMENTS

As explained in the previous section, most individual XL treaties include provisions for a number
of reinstatements of the layer for a pre-specified premium. In this section we will consider how to
price a contract that offers a limited number of reinstatements, each at a fixed premium. The way
reinstatements operate, is that after notification of each individual claim that generates a recovery,
an additional reinstatement premium must be paid in order to reinstate the layer to its full level.
Normally the reinstatement premium is expressed as a percentage of the original reinsurance pre-
mium. If we denote the original reinsurance premium by p and the reinstatement premium payable
for each reinstatement as py, po, ..., p,—1 then the amount of reinstatement premium payable after
a claim leading to a recovery R is given by

P {Rlpm + Ropm+l} 5

where m = [%} is the integer + 1 of the argument, which provides number of reinstatements
required once the current layer is exhausted. R; = min(m(U — L) — Z, R) is the amount of the
recovery falling into the current reinstatement band and Rp = max(R — Ry, 0) is the amount of
the recovery falling into the next band of reinstatements.

The total reinstatement premium (TRP) received at the end of the period of cover can therefore

be calculated as

n—1

TRP:pE%mm[max(Z—(¢—1)(U—L),0)7U—L], (11)
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where it is assumed that premiums are settled at the end of the period of cover in aggregate. This
can be seen by considering that each rate of reinstatement premium will apply to all recoveries
within the corresponding band of reinstatements. For instance, reinstatement premium rate ¢
will apply to recoveries between (i — 1)(U — L) and i(U — L). Therefore in order to calculate the
expected total reinstatement premium receivable, we need to only be able to calculate

Eq {min[max (Z — (i = 1)(U — L),0),U — L|}. The Fourier transform F(r) of

min [max (Z — A,0), B — A] is given by

B x>
f(7'> = 3(111111 [max (Z — A, 0) 7B — A]) — eiTZZdZ + (B o A) eiTde
/ /

itB _ eiTA

2 9

€
T

where we require Im(7) > 0 for convergence. Using the generalised Fourier transform pricing ap-
proach, we can therefore calculate the expected recoveries falling into each band of reinstatements
as

1v+00

5 . B 1 b a(-m)-1] eiTB _ eiTA
q {min [max (Z — A,0),B — 4]} = o / 2 — dr, (12)
where A = (i — 1)(U — L) and B = (U — L) and integration is carried out along a straight line
that lies above the real axis in a strip of regularity by choosing a suitable v > 0. We therefore are
now able to calculate Eq(TRP) and can proceed to consider how to set the correct level of initial
premium, in the presence of limited paid reinstatements. In setting the correct initial premium we
consider the following equation of value

n—1

Eq min(Z.n(U — L)) = p |1+ Uff B {min [max (Z — (i = 1)(U = L),0),U ~ L]} .
i=1 (13)

where we allow n — 1 reinstatements and an initial free reinstatement that is provided by the initial
premium. Since the required reinstatement premium percentages are fixed, we can solve (13) for p
to calculate the required initial premium. We note that Mata (2000) provides a similar expression
for the calculation of the initial reinsurance premium under a pure premium framework.

5. EXAMPLE

To illustrate this methodology we will consider an example of pricing an individual excess of
loss treaty with limited paid reinstatements. It is assumed that under the risk-neutral probability
measure, losses arrive according to a Poisson process with rate A = 3 per annum and claim severity
follows a type Il Pareto distribution with parameters k¥ = 2, « = 0.5. The Pareto probability
density function is given by fx(z) = fﬁ—ﬁ and the cumulative distribution function is F'y(z) =

1— (9) . We will consider pricing an individual excess of loss treaty that provides recoveries on

T
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individual losses between L = 1 and U = 2 over a 1 year time horizon and allows a maximum of
3 reinstatements at rates p; = 100%, po = 75% and ps = 50% of the initial premium p. We begin
by calculating the characteristic function of the individual recovery amount R = min[max(X —
L,0),U — L]. Applying (8) we have

U-L
e k . kak . (8] E
— Y e gry Ve ir(U-L) <_>
Or(7) 1 <L> + / € <T+L)k+1dr—|—e U
0
. —iUr N
= 1- (%) + e g (—iar)F / e Yy Fldy 4 D) (%)

—ilL7T

N L e NEP( TR iru-L) [ & F
- (L) + e L(—iar)* [D(—k, —iL7) — T(—k, —iUT)] + ¢ <U>

o¢]

where I is the upper incomplete Gamma function defined by I'(a, z) = [ t*~le~'dt.

The next step is to compute the expectations required in (13) to solvi: for the initial premium.
This means that we should calculate the following quantities

l. By = Eq (min [Z,4(U — L)]) = Eq (min [Z, 4])

2. By = Eq(min [Z,U — L]) = Eq (min [Z, 1])

3. By = Eq (min [max (Z — (U — L),0),U — L]) = Eq (min [max (Z — 1,0), 1])

4. B3 = Bqg (min [max (Z —2(U — L),0),U — L]) = Eq (min [max (Z — 2,0), 1]).
We can then solve the following equation of value to determine the correct initial premium p

E() =P [1 + E] + 075E2 + O5E3] .

To determine Ey, Fy, Eo, E3 we can apply formulae (10) and (12) using numerical integration.
This can be carried out using any standard mathematical package or implemented in a program-
ming language using specialised algorithms for greater numerical efficiency. For simplicity in this
paper, we have performed the numerical integrations using the NIntegrate function in Mathe-
matica with v = 0.5. This yielded the following results

Ey = 0.375145928700
E, = 0.319450478900
E, = 0.050310246860
Es = 0.005023995497

and hence we find p = 0.275904. This premium calculation has been verified by applying Monte
Carlo simulation for 10 million trials which yielded an initial premium within 0.1% of this calcu-
lation.
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6. CONCLUSION

In this paper we have demonstrated how derivative pricing techniques can be successfully applied
to the problem of pricing individual excess of loss reinsurance treaties.

This work has some common themes with Mata (2000), in that it essentially is concerned with
the calculation of pure premium via expectations. The key difference is that rather than applying
Panjer recursion methods, we have demonstrated a direct analytical formula for the expectations
that can be computed to a high degree of accuracy in a single computation. An interesting extension
of this paper would be to apply the generalised Fourier transform methodology to other premium
principles under a real world probability measure. For instance, the method described in this
paper could be applied to calculate the variance of the contract payoff, thus allowing the standard
deviation premium principle to be applied. In this sense, the generalised Fourier transform pricing
method can be seen as an alternative to Monte Carlo simulation for actuarial pricing exercises.

One important consideration in the numerical implementation of the method proposed in this
paper, is the choice of the complex shift parameter v. Numerical studies in Haslip and Kaishev
(2008) for pricing catastrophe bonds and aggregate excess of loss contracts, indicate that the pric-
ing integral converges quickly, for normal choices of attachment point and time to expiry. However,
for attachment points closer to zero and contracts with short maturity times, the pricing integral
becomes oscillatory and difficult to compute. This problem is well documented in the context of
pricing financial options under the generalised Fourier transform method. Lord and Kahl (2006)
describe a method to identify the choice of v that provides optimal convergence, given a particular
strike price and expiry date. Their approach could be adapted to find the optimal value of v for
pricing reinsurance contracts.

Finally, to assess the practical value of the approach described in this paper, it would be valu-
able to perform a comparison of its numerical efficiency for pricing individual excess of loss
contracts compared to other methods such as Monte Carlo simulation, Panjer recursion and the
numerical solution of partial differential equations.
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APPENDIX: COMPUTATION OF NUMERICAL INTEGRALS

In order to evaluate (10) and (12) we have utilised the NIntegrate function in Mathematica.
Since (10) can be calculated as a special case of (12) where A = 0 and B = M, we only needed
to implement the second formula. This has been achieved by defining a function reinstate
(A, B) as shown in the following Mathematica code:

phiULInd[z ] :=
k (-\[ImaginaryI]«+\[Alphal=*z) ks (Gamma[-k, -\[ImaginaryI]L*z]
- Gamma [-k, -\[ImaginaryI]*Uxz])*Exp[-\[ImaginaryI]*zxL]
+ Exp [\ [ImaginaryIl+z+(U - L)1« ((\[Alphal/U)"k) + 1 - (\[Alphal/L)"k

reinstate[A , B ] :=

N[NIntegrate[l/ (2%\[Pi]) = ((Exp[\[ImaginaryI] xz+B]

- Exp[\[ImaginaryIl+zxAl) / z"2) % Expl\ [Lambdal *» (phiULInd[-z] - 1)1,
{z, -900 + 0.5 \[ImaginaryIl, 900 + 0.5 \[ImaginaryIl},

PrecisionGoal -> 10, WorkingPrecision -> 90], 10];
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Abstract

Credit risk modeling is about modeling losses. These losses are typically coming unexpect-
edly and triggered by shocks. So any process modeling the stochastic nature of losses should
reasonably include jumps. In this paper we review a few jump driven models for the valua-
tion of CDSs and show how under these dynamic models also pricing of (exotic) derivatives
on single name CDSs is possible. More precisely, we set up fundamental firm-value models
that allow for fast pricing of the *vanillas’ of the CDS derivative markets: payer and receiver
swaptions. It turns out that the proposed model is able to produce realistic implied volatility
smiles. Moreover, we detail how a CDS spread simulator can be set up under this framework
and illustrate its use for the pricing of exotic derivatives on single name CDSs as underliers.

1. INTRODUCTION

Credit Default Swaps (CDSs) have become in the last decennium very important instruments to
deal with credit risk. These financial contracts are now available in quite liquid form on thousands
of underliers and are traded daily in huge volume. A market has been formed dealing with options
or derivatives on these CDSs. The market is for the moment quite illiquid, but is expected to gain
in volume over the next years.

Credit risk modeling is about modeling losses. These losses are typically coming unexpectedly
and triggered by shocks. So any process modeling the stochastic nature of losses should reasonably
include jumps. The presence of jumps is even of greater importance if one deals with derivatives
on CDSs, because of the leveraging effects. Jump processes have proven already their modeling
abilities in other settings like equity and fixed income (see Schoutens (2003)) and have recently
found their way into the credit risk modeling. In this paper we review a few jump driven models
for the valuation of CDSs and show how under these dynamic models also pricing of (exotic)

I'This is a short version of Jonsson and Schoutens (2007).

69



70 H. Jénsson and W. Schoutens

derivatives on single name CDSs is possible. More precisely, we set up fundamental firm-value
models that allow for fast pricing of the ’vanillas’ of the CDS derivative markets: payer and receiver
swaptions. Moreover, we detail how a CDS spread simulator can be set up under this framework
and illustrate its use for the pricing of exotic derivatives on single name CDSs as underliers.

The standard available model to price swaptions is Black’s model and implied volatilities are
often extracted out of market data completely similar as in the classical Black-Scholes equity
model. In the scarce available market data a volatility smile is typically present. The model
proposed here is able to produce such a volatility smile.

The paper is organized as follows. In Section 2, we present the one sided Lévy firm value
model and give one example of a possible choice of Lévy processes to use, namely the Gamma
process. In Section 3, we discuss the pricing of receiver and payer swaptions, by mapping the
firm value to the spread value. We show how dynamic spreads can be generated by mapping the
firm value paths to spread paths and how this can be used to price exotic options by Monte Carlo
techniques in Section 4. Section 5 deals with the pricing of American options.

A full length version of this text is published in Jonsson and Schoutens (2007).

2. FIRM VALUE MODELS

The starting point of the model is the approach originally presented by Black and Cox (1976).
According to this approach an event of default occurs when the asset value of the firm crosses a
deterministic barrier. This barrier corresponds to the recovery value of the firm’s debt.

Black and Cox assumed a geometric Brownian motion for the firm’s value processes. It is
however well known that due to the continuous path nature of Brownian motion and the fast de-
caying tails of the underlying Normal distribution, the model cannot represent a realistic behavior
of short term default probabilities. Indeed, the Brownian motion needs a substantial amount of
time to reach a low barrier. In order to overcome these kind of shortcomings, many extensions
were already proposed. The CreditGrades ™ (2002) model for example tried to lift the short time
default probabilities to make the barrier stochastic.

Here we use the same methodology as Black and Cox but work under exponential Lévy models;
Default is triggered when the firm’s value is crossing a low-barrier. By doing that, due to the
jump nature, not only realistic default probabilities could be produced but also the other problem
of predictability of the default time is overcome. Different Lévy models (both firm value and
intensity) for credit derivatives pricing were explored by Cariboni (2007).

2.1. One Sided Lévy Processes

We first introduce some notation. Let Y = {Y},¢ > 0} be a pure jump Lévy process that has only
negative jumps, that is, Y is spectrally negative, and let X = { X, ¢ > 0} be given by

Xt:,ut‘f’}/t, tZO,

where 1 is positive real number.
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The Laplace transform of X,

Elexp(2X;)] = exp(tyx(2)),

where ¥y (z) is the Lévy exponent, which by the Lévy-Khintchin representation has the form

0

bx(2) = pz + / (e — 1+ =(|z] A 1))v(dz).

-0

The Lévy measure v(dx) satisfies the integrability condition

0
/ (|lz] A Dv(dz) < oc.

For the processes we consider in this paper the Lévy measure has a density and we can write
v(dx) = m(z)dx, where m(z) is the density function. For the general theory of Lévy processes
see, for example, Bertoin (1996) and Sato (2000).

2.2. Lévy Firm Value Models

We thus work under a firm’s value setting, where the fundamental process that we model is the
value of the reference entity of a CDS, and we opt to model the firm’s value by exponential Lévy
driven jump models. These Lévy models have proven their modeling abilities already in different
fields, but especially in the credit modeling setting we are absolutely convinced of the necessity of
jumps in the modeling of the fundamental underlying process.
So assume, X = {X,,¢ > 0} is a pure jump Lévy process. The (risk neutral) value of the firm
at time ¢ is then modeled by
V;f - %eXp(Xt)7 L= 07

and we work under an admissible pricing measure Q such that Eg[V;] = V{ exp(rt), where r is
the risk-free interest rate. We will refer to the process V' as the firm’s value process. For a given
recovery rate R, default occurs the first time

Vi = Voexp(Xy) < RV,

or, equivalently, if
Xt S lOg R.
Let us denote by P(t) the risk-neutral survival probability, or in other words the probability of
no-default, between 0 and ¢:

Pty = Py <miI<1tXS > log R)

0<s

= Eg {1 (gggt\@ > RVO)] ,

where we used the indicator function 1(A), which is equal to 1 if the event A is true and zero
otherwise; the subindex Q refers to the fact that we are working in a risk-neutral setting.



72 H. Jénsson and W. Schoutens

Consider a CDS with maturity 7" and a continuous spread c. The price of this CDS is then
given by

cos=u-r)(- [ ) exp(-rs)aP(s) ) e | " exp(—rs)P(s)ds,

where R is the asset specific recovery rate and 7 is the default-free discount rate. Note that in case
of a default event the protection buyer is receiving (1 — R) for every insured currency unit. From
this, we find the par spread C' that makes the CDS price equal to zero:

(1-R) (— fOT exp(—rs)dP(s))
c = . |
Jy exp(—rs)P(s)ds

where the denominator is the risky annuity, that is, the value of a one basis point premium leg.

During the life-time of the CDS, the protection seller receives the fair par spread C' on the
insured amount as a compensation for the default risk taken on.

As we can see the pricing of a CDS depends fully on the expression of the default probabil-
ity of the firm. In recent years, the calculation of these default probabilities (or equivalently in
this setting, the hitting time probabilities) under several Lévy driven models have been worked
out. We mention especially two approaches where the calculations can be done very fast, namely
the Partial Integral-Differential Equation (PIDE) approach and the double Laplace inversion ap-
proach based on the Wiener-Hopf Factorization. The first one can deal with general Lévy processes
and is worked out for the very popular Variance Gamma (VG) case in for example Cariboni and
Schoutens (2007), the second approach is only tractable for spectrally one-sided processes, only
allowing for negative jumps and can be found in Rogers (2000) and Madan and Schoutens (2007).
However, one could argue that in contrast to stock price behavior where clearly up and down
jumps are present, a firm tries to follow a steady growth (up trend) but is exposed to shocks (neg-
ative jumps). It thus seems quite natural to model the underlying firm’s value in a default model
by a process with a positive drift and allow only for negative jumps. In contrast to the double
sided situation, where the solution of the PIDE takes typically a couple of seconds on an ordinary
computer, the double Laplace inversion can be performed within a fraction of a second.

2.3. Example - The Shifted Gamma-Model

We present here the one well known example of Lévy model with positive upward trend and
negative jumps - the Shifted Gamma model. Two other models, the Shifted Inverse Gaussian
and the Shifted CMY, are described in Madan and Schoutens (2007) and Jonsson and Schoutens
(2007).

The density function of the Gamma distribution Gamma(a, b) with parameters ¢ > 0 and b > 0
is given by

a

[(a)

a

1 Lexp(—xb), x> 0.

fGamma(I; Q, b) =
The characteristic function is given by

¢Gamma(u; a, b) = (1 - iu/b)ia, u € R.
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Clearly, this characteristic function is infinitely divisible. The Gamma-process G = {G,t >
0} with parameters a,b > 0 is defined as the stochastic process which starts at zero and has
stationary, independent Gamma-distributed increments. More precisely, the time enters in the first
parameter: G, follows a Gamma(at, b) distribution.

The Leévy density of the Gamma process is given by

m(z) = aexp(=bx)z~", x> 0.

The properties of the Gamma(a, b) distribution given in Table 1 can easily be derived from the
characteristic function.

Gamma(a, b)
mean a/b
variance a/b?
skewness 2/\/a
kurtosis | 3(1+2/a)

Table 1: Mean, variance, skewness and kurtosis of the Gamma distribution.

Note also that we have the following scaling property: if X is Gamma(a, b) then for ¢ > 0, cX
is Gamma(a, b/c).

Let us start with a unit variance Gamma-process G = {G,t > 0} with parameters ¢ > 0 and
b > 0. As driving Lévy process (in a risk-neutral setting), we then take

Xi=ut—G,, >0,

where in this case u = r — log(é(i)) = 7 + alog(1 + b~1). Thus, there is a deterministic up trend
with random downward shocks coming from the Gamma process.
The characteristic exponent is in this case available in closed form

Y(z) = pz — alog(l 4 zb™1).

Calibrating the Shifted Gamma model to the term structure of BAE Systems on the 5th of
January 2005 gives the parameters ¢ = 1.2028 and b = 5.9720. The fit of the Shifted Gamma
model on the market CDSs is shown in Figure 1.

An extensive calibration study was performed by Madan and Schoutens (2007) and the fitting
error was typically around 1-2 basis points per quote.

3. OPTIONS ON CDS

The firm’s value approach is ideally suitable to set up a methodology for the pricing of options on
CDSs. The most common options are payer and receiver swaptions. They are the counterpart of
the classical European call and put options in other markets.
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Figure 1: Calibration BAE Systems. Underlying model is the Shifted Gamma with ¢ = 1.2028
and b = 5.9720.

A receiver option holder on a single name CDS has the right to sell protection at the strike
spread level on expiry, in return for buying protection on the same CDS at market spread level on
expiry. A payer option holder on a single name CDS has the right but not the obligation to buy
protection on the underlying CDS at the strike level on expiry, in return for selling protection at
par spread at expiry. Special rules apply for the case when default happens before the option’s
maturity. Most common situation on the single-name payer and receiver structures is a knock-out
clause, meaning that in case of early default the payoff is zero.

3.1. Swaption Valuation

Suppose we have a particular (Lévy driven) firm’s value model under consideration and want to
price options on CDS under that model. As explained above the par spread under such a model
depends on the following parameters:

e the initial firm’s value, V;;

the recovery rate R, which also implies the default barrier Vy R;

the risk-free rate r;

the time of maturity of the CDS, T';

the parameters of the underlying Lévy process, which we denote by the vector 6.
Hence let us write for the fair par spread (at time zero):

Co=C(Vo, R, T,0).



Single Name Credit Default Swaptions 75

Similarly we write:

CDSO(VE), R, T, T, 9, C)
for the price to enter into a CDS agreement at time zero for a contract paying ¢ premium. Note that
CDSQ(%, R, T, T’7 9, Cg) =0.

Consider a European option on a CDS and denote the maturity of this option by 7. For the
standard examples of the payer and receiver option, the payoft depend on the spread value at 7™
and in general the payoff can depend on the full evolution of the spread until the option’s maturity,
T*. Hence, it is important to have a (stochastic) model for the spread at a future time point or more
general on the evolution of the spread over a given time frame.

Such a model can be readily set up under a firm’s value approach by mapping it back to the
evolution of the firm’s value. More precisely, we will propose the following stochastic model for
the spread evolution over time:

Ci,=C(V,,R,r,T,0), t>0.
Similarly, we have also the evolution of the upfront price:
CDSi(c) = CDS{(V;, R, T,0,¢), t=>0.

Again, we have
CDSt(Ot) = CDSAVL R, r, ,1—‘7 9, Ot) = O

We will ignore in the modeling of the par spread the situation of early default and take this imme-
diately into account in the options payoff.

Let us write F({CDS;,0 <t < T*}, 1(r < T*)) for the payoff function to indicate that the
payoff can depend on the full path and on whether default occurred early 1(7 < 7™) or not.

The price of an option is by risk-neutral valuation theory given by

Iy = exp(—rT")Eg[F({CDS,,0 <t <T*}, 1{r < T7))] .
For a knock-out receiver and payer with strike spread K this simplifies to respectively:

NHT* K) = exp(—rT")Eg[(CDSr-(Vp=, R, 7, T, 0, Cr-)
—CDST*(VT*,R, T, T,Q,K))+1(T > T*)]
= exp(—rT*)Eq[(=C DSy (Vp=, R, 7, T,0, K))* |7 > T*|P(T*) ;

(T, K) = exp(—rT")Eg[(CDSp+ V=, R,7, T, 0, K)
_CDST* (VT*7 R7 T, 717 9, CT*))+]_(T > T*)]
= exp(—rT")Eg[(CDSp«(Vp«, R,r, T, 0, K))" |7 > T*|P(T") .

Cleverly studying and implementing the PIDE algorithm for the general Lévy case or the double
Laplace inversion method for spectrally negative processes, learns that it is actually not really
computationally more intensive to calculate C DS(Vyexp(z), R,r,T,0, K) for a whole range of
T’s.
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In Figure 2 one finds the prices for 1 year receiver options on the BAE Systems CDS with 5
year maturity for a whole range of strike spreads calculated using the Shifted Gamma model with
parameters ¢ = 1.2028 and b = 5.9720 given by calibrating the model to the BAE Systems spread
term structure on January 5, 2005. The spot (par) spread and the forward spread was Cy = 43 and
47 basis points, respectively.

Receiver option on BAE Systems 5 year CDS
0.025 T T T T

0.02

0.015F

Option price

0.01+

0.005F

0 20 40 60 80 100
Strike spread

Figure 2: One year receiver option prices - Shifted Gamma model - BAE Systems CDS with 5
year maturity. Underlying model is the Shifted Gamma with a = 1.2028 and b = 5.9720. The spot
(par) spread was Cjy = 43 basis points and forward spread of 47 bp.

3.2. Black’s Formulas and Implied Volatility

The market standard for pricing options on CDSs are the Black formulas, based on the assumption
that the credit spread follows a Geometric Brownian motion.

Before we write down the formulas, let us first introduce some notation. We denote by Fy(7™,7T’)
the forward spread and Ay(7™,T') the forward starting risky annuity at ¢ = 0 from swaption ma-
turity 7™ to CDS maturity 7" of a forward starting CDS. A forward starting CDS is an agreement
today to enter into a CDS contract at a future time.

We can now write down the Black formulas for payer and receiver swaptions respectively

Paye’rg(T, K) = AQ(T*, T)(FQ(T*, T)N(d]) — KN(dg))

Receivery(T, K) = Ao(T*, T)(KN(—dy) — Fo(T*, T)N(—dy)),
where
_ log(Fo(T*,T)/K) + 0T /2
- gy

Given the forward spread and risky annuities we can calculate the implied volatilities for payers
and receivers with different strikes. Implied volatilities for payers and receivers written on the same

d1 and dg :dl —oVT*.
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underlying CDS are given in Table 2. We have assumed a flat term structure of the interest rates
of 3%. The values of the options are generated using Shifted Gamma model (¢ = 1.2028 and
b = 5.9720).

Strike (bp) ~ Payer  Implied vol (%) Receiver Implied vol (%)

40.0 0.003710 42.4 0.001025 57.9
42.0 0.003414 52.0 0.001636 65.3
44.0 0.003164 59.1 0.002293 71.4
46.0 0.002948 64.8 0.002984 76.6
48.0 0.002758 69.7 0.003702 81.3
50.0 0.002589 73.9 0.004440 85.4

Table 2: The estimated values of an European payer and receiver, respectively, with maturity 0.25
year to enter into a single name CDS (BAE Systems) with a five year maturity and the correspond-
ing Black’s implied volatilities. The forward spread is 47 bp. The parameters of the underlying
Shifted Gamma model are a = 1.2028 and b = 5.9720.

4. A CDS SPREAD GENERATOR AND THE PRICING OF EXOTIC OPTIONS ON CDS

Using the same methodology of mapping spreads and firm’s values, it is straightforward to generate
spreads if a generator is available for the firm’s value process.

In order to implement the method, first calibrate the model on a given term-structure of market
spreads in order to find the model parameters 6 that matches best the current market situation. Next,
we precalculate spread values {C'(Vy exp(z;), R, v, T,0),i =1,...,n} for a fine grid {1, ..., 2, }.
Once this is done we start generating paths of the firm’s value process. For each firm value V;, =
Vo exp(X}), the corresponding spread is obtained by interpolating in X; the grid {z1, ..., z,} and
its corresponding function values {C'(Vy exp(z;), R, r,T,0),i =1,...,n}.

In Figure 3, we see a path of a firm’s value process under the Shifted Gamma model and its
corresponding spread evolution. The parameters of the Gamma model are obtained by a calibration
of the spread structure of BAE Systems on the January 5, 2005 (¢ = 1.2028 and b = 5.9720).

Once a fast spread generator is implemented we are set to price by Monte Carlo methods all
kinds of exotic European structures on the evolution of the spread of a single name CDS.

We illustrate this by pricing a knock-out Variance Swap (7T* = 1, t; = 1/252,i =0, ..., 252) :

252
VS = exp(—rT*)Eq | Y (log(Cy,) —log(Cy,,))*|m > T.| P(T.).

n=1

The corresponding price under 100, 000 Monte-Carlo simulations is 0.00187 and was obtained on
an ordinary PC in less than 5 minutes when implemented in MATLAB.
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Figure 3: Spread path - BAE Systems. Underlying model is the Shifted Gamma with a = 1.2028
and b = 5.9720. Spot par spread Cy = 43.

5. REGRESSION BASED PRICING OF BERMUDAN SWAPTIONS

With the approach to generate spread paths described above it is also possible to price American
and Bermudan swaptions using the same methods as for options written on equities. For example,
the regression based algorithms by Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy
(1999, 2001) can be adjusted to take into account the possibility that the option knock-out at the
event of a default before option maturity and between exercise dates. An extensive overview of
Monte Carlo methods in finance is given by Glasserman (2004).

Values for an European payer and Bermudan payers with semiannually, quarterly and monthly
exercise opportunities, respectively, all with maturity of one year, to enter into a CDS with a fixed
spread and five years maturity are shown in Table 3 for different strike spreads.

We used weighted Laguerre polynomials as a function of the spread value plus a constant as
the basis functions for the regression. We could use other basis functions, such as powers of the
state variable. We have however not noticed any difference in accuracy comparing the values and
standard errors using different basis functions.

For a set of 100, 000 paths it takes approximately 25, 30 and 60 minutes to price the semiannual,
the quarterly and the monthly Bermudan option, respectively, for the range of strikes given in Table
3, when implemented in MATLAB.

To test the algorithm we have used the diagnostic test proposed in Longstaff and Schwartz
(2001), namely, we first do the least squares estimation of the regression parameters based on one
sample of paths and then use these estimates to price the option using a second sample of paths.
The in-sample and out-of-sample option values do not differ significantly and the standard errors
are of the same magnitude.
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Strike (bp) European Ber. semiann. Ber. quarterly Ber. monthly
44 0.009299 0.010305 0.012064 0.017081
46 0.009007 0.009854 0.011290 0.015628
48 0.008732 0.009450 0.010728 0.014597
50 0.008473 0.009114 0.010256 0.013955
52 0.008229 0.008802 0.009818 0.013075
54 0.007999 0.008505 0.009428 0.012436
56 0.007780 0.008223 0.009011 0.011781

Table 3: The estimated values of an European payer and Bermudan payers with semiannual, quar-
terly and monthly exercise, respectively, all with maturity one year to enter into a single name
CDS with a five year maturity. The least squares estimate of the continuation value is based on
the spread value. The simulation is based on 100,000 paths for the firm value process with 250
discretization points per year. The standard error of the estimates all lies between 0.86 - 10~* and
1.25-107*, with the smallest standard error for the European payer and the highest for the monthly
Bermudan. Underlying model is the Shifted Gamma with ¢ = 1.2028 and b = 5.9720.

6. CONCLUSIONS

We showed how a CDS spread simulator based on a firm’s value model driven by a single-sided
Lévy process can be set up. The spread generator was used to price vanilla and exotic options
on single name CDSs by employing Monte Carlo methods. Essentially, after calibrating on a
CDS term structure, we simulate the firm’s value under the out of the calibration obtained jump
dynamics. The paths of the firm’s value are then mapped into paths of the corresponding CDS
spread. Out of this spread one can calculate straightforwardly the swaption payoff. We have
priced in that way, the classical vanilla payers and receivers and have moreover calculated the
corresponding (Black’s) implied volatilities. It is important to note that the proposed models were
capable to generate realistic implied volatility smiles. Next, we have illustrated the strength of the
method by pricing several exotic payoff structures of European type. Further, we have used the
already documented regression based techniques to price by Monte Carlo methods derivatives of
American or Bermudan style under the current jump model setting. From a numerical point of
view, the method is based on a double Laplace inversion together with the standard techniques of
random number generation and hence the calculations can be performed in terms of seconds on
an ordinary computer. Further research goes into the direction of pricing Constant Maturity CDSs
and other kinds of derivatives.
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Abstract

For this proceeding we summarize the content of our papers Kunisch and Uhrig-Homburg
(2007, 2008). In these two papers we provide theoretical and practical insights to a new ap-
proach in modelling dependent defaults within a top-down framework. As a result the proce-
dure combines the advantages of reduced form and structural approaches in modelling depen-
dent defaults. Using the smart construction of our default model, valuation formulas for the
three major payment blocks are easily derived and applied to credit derivative pricing.
Furthermore, we compute the dependency and the fair spreads of credit derivatives in our
framework for given parameter values and compare these results to those ones obtained within
basic multi-entity structural and reduced form models.

1. INTRODUCTION AND LITERATURE REVIEW

Recent problems in American subprime mortgage market have sparked oft a lively discussion
on the pros and cons of credit derivatives. The main focus concerns multi-name contracts such
as collateralized debt obligations (CDO’s) or CDO-squared contracts (a type of CDO where the
underlying portfolio includes CDO tranches). When evaluating these contracts, the crucial point
is to capture the dependencies within the portfolio. However, this poses a big challenge to existing
pricing models.

Reduced form models introduced by Lando (1998) and Duffie and Singleton (1999) have be-
come a popular tool for pricing credit derivatives like Credit Default Swaps (CDS’s) and Collat-
eralized Debt Obligations (CDO’s). These models are adapted to some economic state variables
so that they can relate credit spread correlations and rating downgrades to the business cycle.
However, conditioning on the state variables defaults become independent events within standard
doubly stochastic models. In particular, because of their inherent structure, these approaches are
unable to explain default clusterings. As a consequence, they produce default correlations that are
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too small compared to empirical observations'. In fact, they would never predict events such as
the subprime crisis in fixed income markets and therefore they effectively underprice the risks in
credit derivative contracts. To overcome this problem, Jarrow and Yu (2001) allow the intensity
to depend on the state of other firms in the economy. Specifically, for some firm 7 they assume
a piecewise constant intensity process with a jump at the default time of another firm j.> This
approach captures default contagion but loses manageability if the number of firms increases. In
particular, the valuation of defaultable claims within such a contagion model becomes quite com-
plicated as the formulas do not only depend on the macroeconomic variables used but also on the
current and possible future default statuses of the firms considered. Instead of modelling causal re-
lationships between firms directly, recent approaches put forward by Collin-Dufresne et al. (2003)
and Schonbucher (2004) assume that the market dynamically learns from defaults. Building on
unobserved frailty variables, new information is revealed through defaults and the market updates
its prior distribution.

In Kunisch and Uhrig-Homburg (2007) as well as in Kunisch and Uhrig-Homburg (2008) we
propose a new approach to model default dependencies in the context of reduced form models.
The main idea of our model is to incorporate contagion effects in addition to the dependence on
common state variables in such a way that the model remains to be in a doubly-stochastic setting.
This allows us to derive valuation formulas for defaultable claims along the lines of Lando (1998)
and therefore simplifies valuation in the presence of contagion effects considerably. Our approach
differs by focusing on firm portfolios instead of starting with a description of a default process
for each firm individually. By allowing two or more firms to default simultaneously the model
captures more realistic levels of default dependencies compared to standard doubly stochastic ap-
proaches. A key feature is that the default intensity of a set of firms can be characterized through
an economy-wide intensity process and random-thinning using structural firm information. There-
fore, both, economy-wide default risk and correlations between firm’s asset values induce default
dependencies. This is consistent with the idea of markets learning from defaults as well as direct
causal relationships between firms. As a result, we obtain a flexible tool for modelling default
dependencies that combines the mathematical attractiveness of reduced form models and the eco-
nomic appeal of structural models.

In the following two sections, Section 2 and Section 3, we give a brief overview of the underly-
ing economy in the model and specify the construction of the top-down approach. This construc-
tion 1s mainly based on the default intensity of sets and derived by random thinning. At this stage
structural firm information and relations between firm’s asset values are incorporated. After hav-
ing specified the default model we apply our framework to the valuation of defaultable claims and
derive valuation formulas for the three main building blocks in Section 4. In particular, we apply
these building blocks to price a credit default swap (CDS) on a single-name and a first-to-default
swap on a basket of firms. In Section 5 we show the results from Kunisch and Uhrig-Homburg
(2008) in which the impact of a variation of the main dependency drivers on the selected depen-
dence measure as well as on the fair spreads of credit derivatives is illustrated and compared to
the selected benchmark models. Section 6 concludes with some final remarks and ideas for further
research.

'See e.g. Hull and White (2001) and Das et al. (2007).
’In Schénbucher and Schubert (2001) jumps at default times are captured through a prespecified copula.
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2. A DEFAULT MECHANISM COVERING DEFAULT DEPENDENCIES

2.1. Economic framework

Consider an economy that consists of n firms, whose default status is represented by the vector-
valued counting process N = (N ... N®™) with NO(¢) = Y72, 1, - The random vari-
TS

able Tl(i) indicates the I** default time of company 7. This implies that a firm can default more than

once as it is the case after restructuring®. Alternatively one could think of replacing any defaulted
firm by an otherwise identical non-defaulted firm. In any case, from an economic point of view,
this ensures that the universe of firms is kept fixed in the economy instead of reducing the overall
number of firms more and more after each default.*

Motivated by the work of Davis and Lo (2001) who model a direct default of firm j after the
default of firm ¢ with some probability ¢, we explicitly allow for common jumps in the counting
process N. Since this is not in line with the assumption of a Poisson process for the individual
events®, we focus on sets of firms instead of single companies. Defaults of firms that are directly
caused by the default of another firm are interpreted as one common event. Therefore it is use-
ful to transform the counting process into an equivalent one based on sets, which is denoted as
N = (N Nth-nh) - This process has now 2" — 1 components which represent possible
default events. At default only one of these set-based counting processes jumps by one. In this
sense these events are called independent.

The uncertainty in this economy is described by the filtered probability space (2, F, (F;)o<i<rs
IP), where € represents the set of all possible states, 7 = Fr is the o-algebra on 2, and P is
the actual probability measure on F. Assuming arbitrage free markets, an equivalent martingale
measure Q exists.® Our valuation formulas for defaultable claims in Section 4 rely on this valuation
measure.

The model is based on an economy-wide state vector X; with macroeconomic and possibly
firm-specific variables generating the information filtration 7 = o (X, : 0 < s <t). Default
information concerning the n firms is captured by H, = \/;__, H} with H} = O'(Ns(i) 0 < s <.
The combined filtration F is the smallest sigma field that contains ¥ and H, i.e. F; = F* V H,.

Based on this economy, a general valuation framework can be developed in three steps. First,
the economy-wide intensity has to be specified. In a second step, we have to split up this economy-
wide default risk at the single entity or sub-portfolio level in order to get a representation for the
default risk of a single firm. For this purpose we apply random thinning on the economy-wide
intensity. Finally, using the conditional independence of the event times of N with respect to F/¥,
valuation formulas along the lines of Lando (1998) can be derived.

3Credit events by the ISDA are: bankruptcy, obligation acceleration, obligation default, failure to pay, repudiation,
and restructuring.

4This is similar to the case of the iTraxx portfolio in which defaulted CDS will be replaced by non-defaulted ones
each six month.

3 At this point neither the type of process driving NV nor a dependence structure among the intensities A(*) belonging
to N is assumed.

“Under Q discounted asset prices are martingales with respect to the filtration (F; )o<¢<7. See Harrison and Pliska
(1981) for details.



84 M. Kunisch and M. Uhrig-Homburg

2.2. Top-down approach

As a starting point of our top-down approach we model the sequence of economy-wide default
times (7;);en as jump times of a doubly stochastic Poisson process with intensity process A =
(Mt)o<t<r. The F¥-adapted’ process A = (\;)o<i<r describing the economy-wide default inten-
sity that at least one firm defaults corresponds to a jump in one component of N or equivalently
to a jump in at least one component of N.* Given a default time 7; based on the economy-wide
intensity process ), it is now necessary to identify the corresponding set of defaulted firms. In gen-
eral, there exist 2" — 1 possible combinations of firms that could default. These sets form the mark
space X =P ({1,...,n})\ 0. Ateach default time 7; we now draw one element A; € X from this
mark space. Together with the default times, they form a marked Poisson process ® = (75, 4;) en.
We define 74 = {7;|A; = A} as the subsequence of default times where exactly the set A defaults.
For each A € X we define a counting process N that is zero until the set A is drawn, then at uh
jumps to one and stays there until the next default of this set. By summing ¢ over all possible N VA we
get a counting process for the number of default times in the economy: N = Aex N4, Con-
sequently, this process obeys the same doubly-stochastic Poisson process that governs the credit
event times 7; in the economy. Furthermore, it holds that Ntz — fot Ayds is a F7-martingale. We
can interpret this intensity A as the systematic default arrival risk of a given economy. Based on
this economy-wide process we next derive a relationship between the intensities of the components
of N and the economy-wide default intensity.

Suppose that for each A € X there exists a F/*-measurable intensity /! which is integrable, i.e.
[y Ads < 00, P—a.s., and for which NA— [ Ads is a martingale. Then, the components N4 of

N are independent F;¥ -adapted doubly-stochastic Poisson processes’ with intensities A?* for each
AeX

In order to derive a relationship between the intensities A\ and the economy-wide intensity A,
a theorem from Brémaud (1981) is helpful. Since every component N4 has an intensity A/, then
for all A € X it holds' that

A ~
T=F (Aj — A|FY, AN = 1) = 7z (1)
Note that A, is the random mark associated to the next default time 7;. Especially, it holds for each
AeXandall j > 1that \2 /A, =P (Aj = A|Fﬁj,> on {7; < co}. As ), is the intensity of
N, italso follows that A, = 3, . A/

Roughly speaking, A\/*/), in equation (1) is the probability of having a jump in N/ at time ¢
given F and given that N2~ has a jump of one'' at time ¢.

"Instead of assuming an intensity adapted to the underlying state vector only, we could also allow an J;-adaption.
This would mean that the value of the economy-wide intensity can also be affected by individual default events.

8Therefore the jumps in N follow a Poisson process as only one event can happen at default. Note this does not
imply an assumption about the underlying point process of N because multiple simultaneous jumps can occur in V.

%See Brémaud (1981), Theorem 6, p. 26.

10See Brémaud (1981), Theorem 15, p. 34.

"'The jump-size of one is no restriction since default times 7; are identified with a unique set. Therefore only the
default of one set A € X can occur. A simultaneous default of an additional set B in the same short period of time is
not possible. The event that both sets default at the same time is already governed by the set AU B = C € X.
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This leads to a characterization of \:
N =2z (2)

The probability P (Aj = A|FX AN = 1) — P (dﬁ;“ = 1|FX, dNE = 1) — 7 defines the
random thinning process for the component A. Thus, we can interpret Z;' as the conditional
probability that the set of firms A defaults at the next default time given X and given that there

is a jump in N in the next time increment. Note that the 7 -measurability of the economy-wide
intensity is not sufficient to ensure the 7~ -measurability of A\*. In addition, the thinning process
must be FX-measurable. This issue is addressed in the next section where we focus on the question
how to express the thinning probabilities Z using structural firm information.

3. SPECIFICATION OF THE THINNING PROCESS

3.1. The concept of random thining

The concept of random thinning is used to construct the intensity of a single defaulted firm set
A from the economy-wide default intensity. Formally, a thinning process for the compensator

IN \sdNZ is a bounded, nonnegative predictable process Z = (21}, ..., z{L--7}) for which the

Stieltjes integral
t
/ 74\ ds
0

defines the indicator process of a totally inaccessible stopping time. If 7 is a thinning process, the
component Z* of Z replicates the counting process N;' = [, 7 AINZ . If Z4 is a thinning process
for the compensator fot \sds that replicates N4, then the compensator f(f Mlds to N/ is given by'?

¢
/ Z4\ds.
0

It can be easily shown, that the thinning process Z* satisfies the following properties almost surely:
(@) 24 €[0,1] (A € X),

(b) Y ,ex 2t =1

These properties can be interpreted in the following way. Firstly, the values of the thinning process
are bounded within the interval [0, 1]. This property ensures that the intensity A remains posi-
tive and that no set carries more default risk than the economy as a whole. Secondly, the entire
economy-wide default risk has to be divided across the possible sets. As these properties agree
with those of an ordinary probability measure, we refer to Z4 also as thinning probabilities. Usu-
ally'®, a third property is to set the Z4 to zero where A defaults. This restriction is not necessary

12See Dellacherie and Meyer (1982).
13See Giesecke and Goldberg (2007), p. 10.
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in our setup since multiple defaults are allowed. Technically, this ensures that the Z# can be kept
JF*X-adapted, and therefore do not depend on the default status of the n firms.

The central question is now how to specify this thinning process. As this process only has to
admit to properties (a) and (b), there are several degrees of freedom remaining. In what follows we
suggest connecting structural firm information, especially the dynamic of the firm’s asset values,
the structure of liabilities, and the asset correlations to the thinning probabilities. Using a simple
structural model like the Merton (1974) model, we can calculate how likely a certain combination
of firms ends up in a future state with debt values being higher than asset values (overindebtedness).
This fits our idea of firms being closer to overindebtedness being more likely to experience a
sudden default event. With these thinning probabilities we can reasonably split up the economy-
wide default intensity to the single entity level. Thus, the thinning process Z which in general
varies with time and state, partitions the economy-wide default intensity among all possible set-
valued events with no default mass being lost.

3.2. Thinning based on structural firm information

To specify the thinning probabilities Z4 (A € X) based on structural firm information, we in-
troduce the components of a structural model: assume that the value of the total assets of each
company follows an F*-adapted stochastic process V¥ = (‘/t(i))tzg (¢ = 1,...,n) and that the
asset value processes are correlated with each other. The matrix ¥ = (g;;); j—1,..., captures these
asset correlations. As L) we denote the value of firm 4’s outstanding liabilities. Based on these
specifications the actual likelihood for a set of firms to be overindebted within some given horizon

T from now is
) =PV, < L9 vie A, VY > LY vj e A9 FX),

where A° = {1,...,n} \ Ais the complement of the defaulted firm set A. To reach a partition, we
standardize p(t) with Z acx P (t) which yields to the desired thinning Z;* for set A. Obviously,
i)/ S Acx D p(¢) fulfills properties (a) and (b) by construction. By applying equation
(2) we get the desired default intensity A of set A. Note that this procedure holds for arbitrary
dynamics of V;(Z) and L®. In order to have a closed-form solution, adequate dynamics have to be
specified.
Using a generalized Merton (1974) model, we are able to derive a closed-form solution. The
dynamics of the asset value V® follow a geometric Brownian motion:

dv" = vt + o vPaw?  i=1,... n) (3)

with constant drift and volatility parameters y; and o;, respectively. The liabilities are assumed to
be constant. This leads to an extended version of the classical Merton framework that allows for
correlation among the firm’s asset value processes. In the next step, we compute the probablhty
that the firms are overindebted at the fixed horizon T" given the current value V . Because V; T
is log-normally distributed with

Vit = Ve (= 30T+ a1}, @
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it follows

(V" /LY + (u; — Lo2)T
O'i\/T

d;

(V9 < LW —= {UY < -

Note that the Ut(i) and Ut(j ) are standard normal random variables whose correlation is pi;- There-
fore, the probability p(t) = ®,(—di, ..., —d,; ¥) is the value of a n-dimensional normal distri-
bution with correlation matrix 3 and integration limits —d;. For the companies belonging to the
defaulted firm set A we integrate from —oo to —d; and for companies that are not in this set A from
d; to co. Having calculated ﬁA(t), ZtA results as shown above. So, we obtain a thinning process,
that reflects the likelihood that the set A of firms defaults, given at least one sudden default event
occurs in the economy.

4. VALUATION FORMULAS FOR DEFAULTABLE CLAIMS

After having introduced and specified our default mechanism, we derive valuation formulas for
defaultable claims within the proposed top-down approach in this section. Following Lando (1998)
we derive expressions for the three basic building blocks for the payments of defaultable claims and
give formulas for single-name credit default swaps and first-to-default swaps'#. All the expectation
are under the risk neutral measure (). The change from the physical measure to the risk neutral
one can be done analogously to Jarrow et al. (2005). Once the economy-wide default intensity A
is given under the measure (Q, we easily obtain the thinned process A* under Q using the same
thinning process Z* as before'*.

Our default model works on sets and not on the default status of the individual companies.
At the first sight, this seems to be a problem because defaultable products in the market typically
refer to a company and not to a set. Consider the event {7() > T'}, i.e. the outcome that company
i does not default by 7. This happens until 7" if and only if the sets that contain the company i
have not suffered a default, i.e. 7 = A\ AcK.ic 4. Since the components of N are conditionally
independent, the intensity of 7) is then simply'® 3~ , .« A%+ e ay.
Besides default risk a valuation model requires a model of the default-free term structure of interest
rates. The term structure is defined by an instantaneous short-rate process (7;)o<;<r Which is
an F*~-adapted stochastic process. The value of a default-free zero-coupon bond at time ¢ with
maturity 7’ is:

b(r,t;T) = B2 [exp (— /tT r(Xs, s)ds) |]-"tX] :

For ease of notation, we simply write 7, instead of r( X, s).
Basically, defaultable claims consists of three major types of payment: promised payments at a

'4The detailed proofs and derivations can be found in Kunisch and Uhrig-Homburg (2007). Here for the sake of
shortness we show only the resulting formulas.
ISOf course the alternative way consisting of changing the measure of A* directly can be done as shown in Jarrow

et al. (2005). The results stay the same, due to the multiplicative structure of thinned intensities Z# - \.
16See Duffie (1998), p. 3.
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fixed point in time 7', a payment stream up to default or maturity, and payments in the case of
default. These payments are now modelled in the following way.

e ApaymentY € F3 ata fixed time T occurs if there had been no default up to this point in
time.

e A payment stream such as coupon or swap payment is described by an F/* -adapted process
C;. This payment stops when a default occurs or when maturity is reached.

e At the time of default a recovery payment R_; is an J;*-adapted stochastic process. Note
that the timing and amount of this payment is random in general. After the expiration of the
referenced defaultable claims this payment is set to zero.

For those three blocks we get now the following identities!”:

- T T
EQ exp(— /7’st> Y. | RO ]—}] = EQ[exp<—/ (rs + Z Af)ds)Y
L t t

AEXicA

r pT s T s
EQ /exp(— / rudu>Cs . 1{T<¢>>S}ds ]—}} = EQ[/exp<—/ (ru —1—2 Af)du)Csds
L/t ¢ t ¢ AeXicA
r !
EY exp(—/ Tudu)Z,r(i)‘].{T(i)ST} ]:tX]
¢

With those three blocks most of the existing credit derivatives can be modelled and valuated. Next,
we apply these valuation blocks to derive expressions for several defaultable claims. We separate
the single-name defaultable claims from the multi-name products. Here, we focus on single-name
CDS’s and first-to-default swaps as multi-name defaultable claims.

Suppose now that every firm in the economy has a zero-coupon bond with maturity 7". The i**
single-name CDS only protects against the default of firm 7 whereas the first-to-default swap refers
to a basket containing all the outstanding zero-coupon bonds in the economy. In both cases the
protection buyer pays a constant, continuous premium w to the protection seller up to maturity or
default. The protection seller compensates the buyer in the case of default for his suffered losses.
This payment is specified as (1 — §)b(-, T'), where ¢ is the recovery rate and b(-, T') the value of
an identical default-free zero-coupon bond at the default time. By valuating cash-flow streams of

7

.
/tT Yoz eXp<_ /t (ru 3 Af)du) Z.ds

AeXicA AeXic A

ft :]EQ

both parties and using the identity these two values, we can solve for the fair premiums w** and
w/* in each case:
(1= 0) (b1, 1) = B2 [exp(~ £ (ru + Laensears ) du) | 7¥])
wcds _ i (5)

5 o Bt )47

o 29 (00T 2B oo (T + Ry 7] )
- : ) | (6)
EQ [ft exp(— [, (ru + Ay) du) ds| ]_-tx}

17For technical details like the existence of the expectations see Kunisch and Uhrig-Homburg (2007).
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The single-name CDS’s in the market are affected by the dependence structure. Those influ-
ences though the thinning can be interpreted as surcharges on the individual spread due to con-
tagion effects. In contrast to a single-name CDS, the first-to-default swap pays the protection
payment at first default time that ever occurs in the reference basket, not at the first default time of
a specific company . Since the first default time is the minimum of all jump times of /V, it has the
intensity \ . Therefore, the fair premium of this multi-name defaultable claim is only related to
and not affected by the dependence structure. As A > > Ack.ie 1A holds, the absolute height of
the premium is always above those for a single-name CDS contract.

5. COMPARISON OF DIFFERENT APPROACHES

In order to provide insights into the dependence structure induced by the proposed top-down ap-
proach, we compare the results of the top-down approach to those of several benchmark models.
We consider an extended Merton (1974) model with correlated asset value processes and an exten-
sion of the Lando (1998) model with correlated default intensities.

We compare the top-down approach via simulation to these two benchmarks in two different
ways: first, we analyze the differences between the models with respect to the default correlations
and the prices of credit derivatives such as first-to-default swaps and single-name CDS’s. Secondly,
we investigate which factors drive the dependence structure in the models. To this end, we perform
a comparative static analysis focusing on the asset correlation and the intensity level as the most
important parameters of the thinning and the economy-wide default process.

S.1. Model specification and simulation setting

To compute our model, we have to specify the components for the thinning and the economy-
wide default intensity'®. We assume that the economy-wide default intensity follows a mean-
reverting square-root diffusion process. The dynamics of firm values are according to Section 3
supposed to be geometric Brownian motions now under the risk neutral measure (. For simplicity
of illustration we restrict us to the case of two firms. Furthermore, all three increments of the
Brownian motions are assumed to be correlated.

The extended Merton model uses the same asset value processes. Default occurs when the asset
value process is below the related value of liabilities at the end of the horizon 7T'. Furthermore, we
consider a simple reduced form model with correlated intensities. We assume that each individual
intensity A\, ¢ = 1,2 follows a mean-reverting square-root process. The individual default prob-
ability, joint probability, fair premium for the credit derivatives and default correlation for both
benchmark models are computed straight forward!®.

In order to ensure consistency between the economy-wide intensity A and the individual inten-
sities of the standard doubly-stochastic model, starting values are chosen such that an aggregation

131n order to use the models for valuation of defaultable claims, we specify them under the risk neutral measure Q.
Consequently, we also compute the default correlations under this measure.
19See Kunisch and Uhrig-Homburg (2008) for details.
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of the individual values at time t = 0 reproduces the initial value of A\. A similar assumption
is made with respect to the long-term means, while we assume that the volatility and the mean-
reversion parameter are identical for all three processes. Furthermore, we select the values for the
different processes such that the individual default probability of the companies in the extended
Merton and the extended reduced form model are equal and the probability for at least one default
is the same in all three approaches. In the base case, we select the individual default probability to
be 1.2% and the probability of at least one default 2.4%. The detailed setting and the corresponding
parameters for the different processes can be found in Kunisch and Uhrig-Homburg (2008).

To evaluate the expressions for the correlations?® and the prices of credit derivatives we perform
a Monte-Carlo simulation. Therefore we discretise the continuous specified stochastic processes
by applying an Euler approximation. Then, we simulate the values of these processes up to the
horizon T of the simulation?!. Based on 10,000 simulation runs for a given set of parameters, we
compute the default probabilities, the default correlation and the fair spreads for the used credit
derivatives.

5.2. Results and interpretation

By varying the time horizon of the top-down approach and the two selected benchmarks, figure 1
(left) illustrates the impact on default correlation for all three models.
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Figure 1: Default correlation in the three approaches with different time horizons (left) and with
different asset correlations (right).

As we can see, the extension of the reduced form model is completely unable to produce sig-
nificantly positive default correlations. Its default correlation is of the order®? of 105, For short
maturities, both the structural and the reduced form models produce a negligible correlation. How-
ever, with increasing time horizon the default correlation in the structural model increases. This

20For the computation of the default correlations in the top-down setting see Kunisch and Uhrig-Homburg (2007).

2'We choose equidistant time steps with 50 time steps per year. At each time step, we compute the values for the
thinning process and calculate the integrated intensity processes.

22The value does not change significantly when using other parameters. In particular, an increase in the correlation
between the intensities as high as 1 scarcely changes the basic result.
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arises from an increasing volatility in the distribution of the asset-value process, 1.e. it is more likely
that the asset-value process will be below the default barrier. Such a behavior is consistent with
the empirical results reported by Lucas (1995). This reported increase of the default correlation
with increasing 7' can also be observed in the top-down approach. In addition, this approach has
significantly positive default correlations even for short horizons. So, our parameterization shows
that the top-down approach dominates the basic model extensions.

A main driver of the dependence between the firms is the correlation between the asset value pro-
cess of the two firms (asset correlation). In the extended Merton setting the impact of the asset
correlation on the default correlation is well understood. In our top-down approach the asset cor-
relation impacts the default correlation indirectly through the thinning process. To obtain a similar
impact in the extended intensity models the only way is through the correlation of the individual
intensity processes A(*). Figure 1 (right) illustrates the impact of the microstructure correlation on
the default correlation.

Not surprisingly, the increase of the correlation between the two intensities in the extended
Lando model has no significant effect on the default correlation. The opposite is true when turning
to the extended Merton model and our top-down approach. As we can see these models behave
similar when the asset correlation increases. The strong increase in the Merton model is specially
due to the fact that we have two symmetric firms and that therefore an increase in the asset corre-
lation has the strongest effects on the event that both will default within the horizon.

In the next step, we vary the starting values of the intensities Ao and )\g). To make the extended
Merton model comparable to these changes in the intensity, we vary the level of the asset value-debt
ratio so that the individual default probabilities will be equal. As in the given figures, the change
of the intensity level for the doubly-stochastic model has no impact on the default correlation as
shown in Figure 2. This is related to the fact that covariance and variance increase by the same
magnitude. However, the probability of default increases as expected. In our top-down model
and the extended Merton model we can observe an increase in the default correlation whereas
the increase in the Merton model is more pronounced. This is due to the fact that default events
become more likely and related to this also the intensity for joint events increases which results in
a higher default correlation. With the increase of the asset value-debt ratio in the extended Merton
model, it is more likely that both companies could be in default at maturity. This results in an
increase of the joint probability and leads directly to increasing default correlation.
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Figure 2: Default correlation with different intensity levels for all three models.



92 M. Kunisch and M. Uhrig-Homburg

Beside the effect on the dependence measure, a more interesting fact from a practical point of
view is how such changes in the default dependencies are affecting fair values of credit derivatives.
Here, we use the formulas for CDS and first-to-default swaps from Section 4. We assume that the
risk free rate is constant at 3% in order to isolate effects of changes in model parameters. Figure 3
shows the theoretical prices for the two selected credit derivatives under all the three models as we
vary the microstructure correlation. By construction the first-to-default swap has the same value
for all three approaches because all models are parameterized in such a way that they have the same
probability of at least one default. This probability does not depend on the asset correlation. For
low values of the asset correlation we only observe a slight difference between the models for value
of a single-name CDS. This owes to the fact that all three models have nearly the same individual
default probability. The value for a CDS does not change under the extended intensity model
and the extended Merton model with varying microstructure correlation because the values used as
individual default probabilities are not affected by this correlation. With increasing microstructural
correlation the probability that a simultaneous default occurs increases. This increase in the default
intensity directly leads to an increasing spread for the contract. We can conclude that only in our
model the CDS spread is sensitive to the changes in the asset correlation. The asset correlation in
our model controls for the likelihood that the firm defaults as a result of a contagion effect, while
the pricing benchmarks neglect this contagion risk.

Theoretical prices for fd and cds in %

DS oxt

- YT el
0.7} DS ext. intensity |

01 02 03 04 05 06 0.7 08 09 085
asset comelation

Figure 3: Impact of the asset correlation on theoretical prices of CDS and first-to-default swap.

6. CONCLUSION AND OUTLOOK

In this paper we have introduced a new approach towards modelling default dependencies that
is based on a top-down construction. Central element of this construction is the economy-wide
default intensity \. By using random thinning on this process we have been able to derive the
intensities for the basic entities. In our model, these entities are not single companies, but sets of
companies that can default. This new entity allows for simultaneous defaults of firms and opens a
new way in modelling dependencies. To deduce the intensities for the independent default sets we
derive the components in the thinning process by using structural elements in a setting similar to
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Merton (1974). This procedure incorporates structural information in the setting of a reduced form
model while maintaining the advantages of a reduced form model. Furthermore, we can capture
two main facts for default dependencies with this top-down construction: common risk factors
and contagion effects. The common risk factors drive the stochastic intensity and the correlation
between the asset values included in the thinning process. The contagion effects are modelled
through the default sets. All sets with more than one firm represent events in which contagion
causes multiple defaults. The tendency for simultaneous defaults is mainly driven through the
thinning process. Here, the asset correlation is the main driver of this component as illustrated in
Section 5. With increasing asset correlation between two companies it becomes more likely that
their combination defaults because of the increased value of the associated thinning components.
In fact, the model of Lando (1998) is a special case of our approach. When thinning factors for
default sets with two or more elements are set to zero, the contagion factors in the representation
of the intensity of company ¢ vanishes and default correlation in that case is only driven by the
state variables. Therefore, our approach can be understood as an extension of the standard doubly-
stochastic default models allowing for more flexibility in specifying the dependence between firms
and therefore producing a dynamic default correlation.
Our setting allows us to construct portfolios with different degrees of diversification and credit
derivatives written on these companies. Beside credit derivatives we can also apply our framework
to synthetic tranches of credit derivatives indices like, the Dow Jones CDX North American In-
vestment Grade Index or the Dow Jones iTraxx Europe. For this purpose we would have to build
a model for the losses that arise in case of a default. This could be easily done in a similar way
to Longstaff and Rajan (2008). This may be a promising area of future research on the correlation
skew of CDO tranches.
It remains as an open question whether the presented Merton-like approach to derive the thinning
process is a promising specification. Further investigation on possible alternatives for the thinning
process is needed as well as on other specifications for the economy-wide intensities like e.g. in
Errais et al. (2007) and their benefits. It is an empirical question whether this additional complexity
is warranted.
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Abstract

We show that the use of correlations for modeling dependencies may lead to counterintuitive
behavior of risk measures, such as Value-at-Risk (VaR) and Expected Shortfall (ES), when the
risk of very rare events is assessed via Monte-Carlo techniques. The phenomenon is demon-
strated for mixture models adapted from credit risk analysis as well as for common Poisson-
shock models used in reliability theory.

An obvious implication of this finding pertains to the analysis of operational risk. The alleged
incentive suggested by the New Basel Capital Accord (Basel i), namely decreasing minimum
capital requirements by allowing for less than perfect correlation, may not necessarily be at-
tainable.

1. INTRODUCTION

Since the initiation of the New Basel Capital Accord (Basel II) in 1999 when operational risk was
introduced to the regulatory landscape, the attention to this risk type has risen substantially. The
Committee (Basel Committee on Banking Supervision (2006)) defines operational risk as “risk of
loss resulting from inadequate or failed internal processes, people and systems or from external
events.” The fact that events like bookkeeping errors and terrorist attacks are both contained in this
characterization illustrates the broad range of risks, especially when compared to credit or market
risk. Taking this heterogeneity of loss events into account, the Basel Committee categorizes losses
into seven event types and eight business lines. Banks are supposed to calculate risk measures
for each of these 8 x 7 = 56 “cells”. Examples are “Internal Fraud” in “Trading and Sales” or
“Damage to Physical Assets” in “Commercial Banking”.

I'This author presented this paper at the AFMathConf2008 under the name Tina Novotny.
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The risk measure specified by the Committee is the Unexpected Loss at a confidence level of
99.9%. Generally speaking, this refers to the 99.9% quantile of the loss distribution (possibly re-
duced by the Expected Loss, referring to the mean of the distribution). This quantity is also known
as Value-at-Risk (VaR), which measures the maximum loss that will not be exceeded with a given
confidence level and is widely used in financial institutions since the 1990s.

The total risk capital under the Advanced Measurement Approaches (AMA) is obtained by sum-
ming over all 56 event-type/business-line VaRs, a strategy implicitly expecting the joint occurrence
of all loss types involved or, in other words, perfect positive correlation between all loss processes.
The Committee takes this into account by allowing a bank “. .. to use internally determined correla-
tions [...] provided it can demonstrate to the satisfaction of the national supervisor that its systems
for determining correlations are sound, implemented with integrity, and take into account the un-
certainty surrounding any such correlation estimates (particularly in periods of stress).” (Basel
Committee on Banking Supervision (2006)).

As moving from the highly unrealistic assumption of perfect dependence (summing the Unex-
pected Losses of all cells) to an approach relying on estimated correlations should lead to a de-
crease in risk capital, banks have a strong interest in developing and establishing adequate ap-
proaches.

This expected decrease in estimated risk capital caused by a lower correlation of loss processes
is the focus of our study. We want to find out if a general statement can be made about how risk
capital estimates might be altered by such consideration of less than perfect correlation. Secondly,
we want to analyze the impact of the concrete model setup on our findings.

In the following, we concentrate on rare event losses, such as natural catastrophes or terror-
ist attacks, rather than “everyday losses” such as typical bookkeeping errors. Furthermore, we
focus on models well-known from credit risk and reliability theory, but with broader parameter
ranges than those typically considered. We confine ourselves to analyzing the frequency part of
operational losses to check for the impact of dependent occurrences and disregard the severity di-
mension. Therefore, in our notion, “risk” measures the number of event occurrences rather than
monetary units.

Since the work of Artzner et al. (1999) it is well-known that Value-at-Risk (VaR) is not a
coherent risk measure. To be precise, it lacks the subadditivity property, which would imply in
the context of aggregation of operational risk capital that the joint risk measured for two event-
type/business-line cells should not be higher than the sum of the individual risks measured for
the two cells. This appears to be a reasonable requirement. Unfortunately, the widely used VaR in
general does not fulfil the subadditivity criterion. One recommendation is to calculate the marginal
contributions of each business line to the overall risk using conditional expectations and Expected
Shortfall (ES), i.e, the expected loss given that VaR is exceeded (Glasserman (2005)). However,
despite its deficiencies, VaR remains to be the dominant risk measure in practice. Therefore, we
consider the two risk measures VaR and ES.

The paper is organized as follows. Section 2 defines latent-variable models and describes the
relationship between latent and observed correlation. Mixture models as an alternative represen-
tation which offers greater flexibility are presented in Section 3. We introduce a simple common
Poisson-shock model in Section 4 and present the results from simulating dependent event occur-
rences in the aforementioned modeling frameworks in Section 5. Conclusions are presented in
Section 6.
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2. EVENT OCCURRENCES IN LATENT-VARIABLE MODELS

2.1. Latent-variable models

The idea common to all latent-variable specifications is that there exists a second layer of — pos-
sibly observable — latent variables which drive the discrete counting process for the observed loss
occurrences. Formally, a latent-variable model (LVM) can be defined as follows, cf. Frey et al.
(2005).

Definition 2.1 (Latent-Variable Model) Let X = (X,..., X,.), i = 1,...,n, be a random vector
and D € R™™ a deterministic matrix. Suppose that

Si=7 & d; <X;<dij, 1€{l,...,n},7€{0,...,m},

where diy = —00, dimi1 = 00. Then, (X, D) is a latent-variable model for the state vector
S = (S1,...,5n), where X; are the latent variables and d;; the appertaining thresholds of the
latent-variable model.

For our applications, we introduce a new variable Y; defined by
Y=15=0 and Y,=0& 5, >0,

to indicate event occurrence, as we only need to distinguish between the two states of “event oc-
currence” and “non-occurrence”. The probability of occurrence for individual/process ¢ is defined
by

In the credit risk literature, ¥; = 1 indicates “default” of counterparty 7, meaning that obligor :
cannot make his payments. In structural credit risk models, the latent variable is interpreted as
the obligor’s assets; if their value falls below some threshold (the default boundary), the obligor
defaults.

This approach can be adapted to suit operational risk settings, but with Y; € {0, 1,2, ...} the num-
ber of loss events rather than the two outcomes “default” or “no default”. As a consequence, the
Poisson distribution instead of the Bernoulli distribution is appropriate. The Poisson distribution
is a natural candidate since it is an approximation for sums of Bernoulli random variables with low
success probabilities. This will be realized below in the mixture model representation.

2.2. Latent versus observed correlation

We want to construct a setup in which the probability of the occurrence of an event can depend
on events in other processes. Clearly, the probability of a flood damaging equipment will increase
when that same event hits a nearby building. Similarly, a system breakdown in one corporate divi-
sion may propagate to another inducing a failure there. In latent-variable models, this is modeled
by allowing for dependence among the latent variables. Thus, dependencies are introduced in an
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indirect fashion through — typically unobservable — latent variables, X;, which affect the observed
variables, Y.

Restricting ourselves to linear dependence, we distinguish between latent correlation among the
X; and observed correlation among the Y, the latter being given by

~ Cov[vy, Y] EYy| — mim,
T Nl valY,] /(- mm (- )

: (1)

where E[Y}Y;] = P(Y; = 1,Y, = 1) = P(X; < d;, X; <d;1) denotes the joint cumulative distri-
bution function of the latent variables associated with processes ¢ and j. The observed correlation,
py, 1s often called “default correlation” in the credit risk literature, as opposed to (latent) “asset
correlation”, py, that refers to the linear dependence between latent variables.

From (1) it follows that observed correlations depend on marginal occurrence probabilities, 7; and
7;, and on latent correlation, py, the latter entering via E[Y;Y]].

2.3. The distribution of latent variables

Normal variance mixtures are obvious and widely used candidates for the distribution of latent
variables. In normal variance mixtures latent variables can be written as

X:,LL+\/WZ,

where Z ~ N, (0,3), W is a scalar random variable independent of Z and p is a constant. An
event occurs in process ¢ when X; < d;;, or

di —

Z; < v

The case of multivariate normally distributed latent variables is achieved by setting 1 = 0 and
W = 1. Alternatively, a joint Student-t distribution can be obtained by letting /W ~ \2, where v
is the degrees of freedom parameter of the t distribution and x? denotes the chi-square distribution
with v degrees of freedom. This latter model is often cited in the credit risk literature, e.g. Frey
et al. (2001), because it has the appealing feature of treating the KMV and the CreditMetrics model
as special cases for which v — oo, but admits lower tail dependence and greater flexibility due to
the additional parameter. Other types of latent-variable distributions will be discussed below after
having introduced the mixture model representation.

3. EVENT OCCURRENCES IN MIXTURE MODELS

3.1. Mixture models

Mixture models can arise when distributional parameters do not remain constant. For example, it
appears to be natural that in times of tectonic plate movements, the probability of an earthquake
occurrence rises, that storms are more likely to happen in one season than in others, or that a



Value-at-Risk and Expected Shortfall for Rare Events 99

management change in a global company can affect the probability of fraud. Therefore, in an
operational risk context, it seems to be a realistic assumption that the parameters of the assumed
distributions might be subject to changes, i.e., be random variables themselves.

A formal definition of a special mixture model in the spirit of Frey et al. (2005) is as follows.

Definition 3.1 (Bernoulli Mixture Model) Let Y = (Y1,...,Y,), i = 1,...,n, be a random
vector in {0,1}" and V = (Uy,...,V,), p <n, be a factor vector. Then, Y follows a Bernoulli
mixture model with factor vector V if there exist functions p; : RP — [0, 1] such that conditional on
U the elements of Y are independent Bernoulli random variables with P(Y; = 1|V = ) = p;(¢).

It is also possible to define Y as being conditionally Poisson distributed. Then, Y is a count
variable rather than a binary variable, and we obtain a Poisson mixture model. Both models can be
mapped into each other by setting ¥ = 7y, where Y ~ Poi()). The parameters are related via
p; = 1 — e~ a property we will use to simulate from both models in a comparable way.

To keep the setup simple, we examine only exchangeable mixture models, where conditional
probabilities of event occurrence are identical, i.e., p;(¢) = p(¢)). Defining the new random
variable () = p(W), the observed correlation between indicator variables can then be obtained
from

where 7 = E[Q] and 7, = E[Q"].

3.2. Latent-variable models as mixture models

In fact, latent-variable models and Bernoulli mixture models can be viewed as two different repre-
sentations of the same underlying mechanism. The following lemma is based on Frey and McNeil
(2003).

Lemma 3.1 Let (X, D) be a latent-variable model with n-dimensional random vector X. If X
has a p-dimensional conditional independence structure with conditioning variable U, the default
indicators Y; = Tx,<q, follow a Bernoulli mixture model with conditional event probabilities

pi(Y) = P(X; < da |V =)
In case of the latent-variable model (X, D) where X is a normal variance mixture and we assume
a one-factor structure for 7 , we can write

X = p+VvW27,

Zi = Jox U+ \1-pxei,
where px is the latent correlation, ¢; ~ iid N(0,1), and ¥ ~ N(0, 1) is the only factor and
conditioning variable. We thus obtain a conditional independence structure for X, which allows

us to proceed using the equivalent mixture model representation. For multivariate normal latent
variables with ¢ = 0 and W = 1, the observed conditional default probability is
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For a multivariate Student-t distribution the analogous result is

M@sz&gdmwz¢0:¢(U%ﬂW””—¢mw)'

VI=px

We see that we can easily map the latent-variable models of Section 2.3 into the mixture model
setup; at the same time, simulation is much easier, because we do not have to draw from the
multivariate normal or multivariate Student-t probability density function.

3.3. The mixing distribution

Within the mixture model framework, one can easily allow for different distributional assumptions
with respect to latent variables. In our analyses, we consider several examples which are often
suggested in risk-management and actuarial applications. In each case the model was calibrated
to the multivariate normal latent-variable model, to assess to what extent the choice of mixing
distribution affects the number of event occurrences, with the multivariate normal model serving
as benchmark.

3.3.1. BETA MIXING DISTRIBUTION

In case of a Beta mixing distribution we assume a mixing variable Q = p(V) ~ Beta(a,b). As
the moments of a Beta distribution can be directly calculated from the distributional parameters, a
and b, we can easily derive unconditional occurrence probabilities from

k—1

Bla+k,b a+7
SRR, |
B(a,b) j:Oa+b+]
from which we obtain the observed correlation
B 1
Y b1

3.3.2. PROBIT MODEL

We assume a standard normally distributed factor U ~ N(0,1). Conditional event probabilities
have to be determined using the fact that ) = ®(u + o¥). Marginal occurrence probabilities are
not as easily obtained as in the Beta case, since it involves the integration

o0
m=E[Q] = [ (@(u+02) o)z
making simulations of event occurrences rather complicated. Matters become much easier when
recalling that the Probit model is equivalent to a latent-variable model with multivariate normally
distributed latent variables. Hence, this model is already covered by the benchmark model de-
scribed in Section 3.2.
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3.3.3. LATENT VARIABLES WITH CLAYTON COPULA

The Clayton Copula is a subtype of an Archimedean Copula
C(ul, R ,ud) = ¢_1(¢(U1) + - F ¢(ud))

with generator ¢(t) = =% — 1 being the inverse of the Laplace transform of cumulative distribution
function G on R.

Using ¥ ~ Ga(1/6,1), conditional occurrence probabilities can be calculated from Q) = p(V)
with

Q =p() = P(Us < 7|V = ) = exp(—o(r)) ,

where U; ~ Unif(0, 1). The bivariate occurrence probability is

m =0 (p(m) + o(m)) = 2n7 — 1)/

4. EVENT OCCURRENCES IN COMMON POISSON-SHOCK MODELS

4.1. A simple common Poisson-shock model

Adapting the frameworks of Powojowski et al. (2002) and Lindskog and McNeil (2003), one can
assume the presence of both idiosyncratic and common Poisson processes. Altogether we assume
m = n + n. underlying processes. The number of loss events for the observed loss process ¢ can
be written as

Y;226Z]MJ izl,...,n,jzl,...,m,
7=1

where d;; is an indicator variable which is equal to one if underlying process j can lead to loss
events of observed process ¢, and A/; represents the number of occurrences of underlying process
J with intensity A;. Among the m underlying processes there are n. common ones, which affect
more than one observed process and are characterized by equal intensities, A.. The remaining
n underlying processes with intensities A} are idiosyncratic in the sense that they only affect the
observed process ¢.

The correlation between two observed loss event processes, k and [/, can be written as

s — 2 i1 005
\/ D Ok D5 Ot
We use a simplified setup comparable to the exchangeable mixture model where idiosyncratic

intensities A} = \* are identical as well and where all n. common processes cause events in all n
observed loss processes. Equation (2) can then be written as

(2)

nc/\c

Prl = —/\* o .
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For a given A\ = \* + n.\. and observed correlation p;; = p, we can calculate idiosyncratic and
common parts from

o= Ml—p),
Nede = A— A"

S. SIMULATION RESULTS

For each of the models discussed above, we simulated event occurrences and estimated risk capital
for different levels of latent correlation, px. In doing this, we used the multivariate normal latent-
variable model as benchmark model to which we calibrated the other models.

Throughout the simulations, we assumed n = 1000 loss processes, to match with the studies in
Frey et al. (2001) and Frey and McNeil (2001). For the mixture models, we simulated a factor
realization ¢ and calculated conditional occurrence probabilities p(1») which were then used to
conduct n Bernoulli or Poisson trials. After summing up the number of event occurrences, we
repeated 100 000 times and calculated VaR and ES of the resulting empirical distribution. For the
common Poisson-shock model, we assumed n, = 1 and calculated A, A* and )\j from 7 and py.
These quantities were then used to conduct Poisson trials and proceed further as in the mixture
model setup.

For all models and low occurrence probabilities (7 < 0.01), we observe a counterintuitive be-

havior of VaR: it decreases for increasing correlations, this effect being the more pronounced the
lower the confidence level. An illustration of this phenomenon is given in Figure 1, which plots the
logarithm of the 99% VaR depending on the level of latent correlation and occurrence probability
7. While for 7 = 0.01, VaR behaves as intuitively expected, i.e., increasing in px over the entire
range of latent correlations, it clearly declines for lower levels of latent correlation beyond a certain
threshold of px, with lower thresholds for lower values of 7. This effect is more pronounced as
the tails of the distribution of latent variables become fatter, as is shown in Figure 2. For v = 100,
we observe an increase in VaR up to a latent correlation of px ~ 0.5 and a decrease for higher
levels; the lower v, the broader the range of py for which this peculiar behavior occurs. For v = 4,
VaR decreases over the entire range of latent correlations. The results for Poisson mixture models
are qualitatively the same, as was to be expected from the low level of occurrence probabilities
involved. Also, scenarios for the common Poisson-shock model setup can be established which
lead to this counterintuitive behavior.
For ES, using 100 000 replications leads to ambiguous results. For very low occurrence probability
levels (m < 0.00001), decreases in ES can be observed for increasing px. But in contrast to the
risk capital estimates based on VaR, this effect vanishes when the number of replications increases
to up to 10 million. Figure 3 illustrates that ES behaves as intuitively expected, i.e., it rises over
the entire range as py grows. Therefore, the counterintuitive behavior has to be taken into account
when designing the Monte-Carlo simulation. Otherwise, simulated ES figures may seem to de-
crease as px rises — just as is in the VaR case.

The explanation of this effect is illustrated in Figure 4. It shows 10000 draws from a bivariate
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Figure 2: Simulated 99%-VaR (in logs) in the multivariate Student-t LVM, 7 = 0.001, v € [4, 100]

normal distribution for two different correlation assumptions. The solid line represents the thresh-
olds implied by an occurrence probability of 7 = 0.01. In the left plot, where the latent correlation
is px = 0.1, this threshold leads to 4 joint “occurrences” (in the southwestern quadrant) and 9,798
joint “non-occurrences”. In the right plot with a higher correlation of px = 0.9, the concentration
on extremes leads to 94 joint “occurrences” and 9,854 joint “non-occurrences”. As it turns out,
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In(ESy)

Figure 3: Simulated 99%-ES (in logs) in the multivariate normal LVM, 7 € [0.0001, 0.01]

high correlation not only leads to more events, but also to more joint “non-events”. It is this phe-
nomenon which moves Value-at-Risk towards zero as correlation levels rise.

1 2 3 4 -4 -3 =2 -1 0 1 2 3 4
1 x\

(i) px = 0.1 (ii) px = 0.9

Figure 4: Scatterplots for a bivariate normal distribution
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6. CONCLUSION

Introducing less than perfect dependencies should lead to a more realistic description of loss event
occurrences. Our results show that it is very important to assess the impact of correlations within
the chosen modeling framework. Be it mixture models, common Poisson-shock models or a differ-
ent setup, in the case of rare events, simulated values for risk measures, such as Value-at-Risk and
Expected Shortfall, can decrease as the level of correlation increases. The parameter ranges for
which this phenomenon occurs may not be so relevant for credit risk applications, but may arise in
operational risk applications where several business lines at close locations could, for example, be
affected by some catastrophic event.

While this effect can be eliminated in the case of Expected Shortfall by an appropriate design
of the Monte-Carlo setup, this is unfortunately not so for the widely used Value-at-Risk which
systematically declines above certain levels of latent correlations. The extent to which this arises
depends on the observed occurrence probabilities, the confidence level and the fat-tailedness of the
distribution of the latent variables.

If the clustering of realizations at zero (“joint non-occurrences”) that causes this behavior is a mis-
leading feature of the model which contradicts the true risk-generation mechanisms, risk capital
can severely be underestimated, and other dependence concepts should be considered for calculat-
ing risk capital.

A practical implication of our analysis is that the inclusion of non-perfect correlations in mod-
els used for assessing minimum capital requirements for operational risk may, in fact, lead to an
increase of the assessed amount.
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Abstract

The goal of this article is to give an overview of the theory concerning (locally) risk-minimizing
hedging strategies. We also discuss the most important applications and extensions of the lo-
cally risk-minimizing hedging strategy. Finally, we show how the multidimensional locally
risk-minimizing hedging strategy is defined and we explain why it is not straightforward to
find the locally risk-minimizing hedging strategy in case the underlying risky asset follows a
geometric Lévy process.

1. INTRODUCTION

The difference between the two commonly used quadratic hedging methods, namely mean-variance
hedging and locally risk-minimizing hedging, has already been extensively described and inves-
tigated. We call a hedging strategy quadratic if the strategy minimizes the hedging error in mean
square sense. One of the obvious drawbacks of quadratic hedging is that losses and gains are
treated in the same way.

In the mean-variance hedging theory the goal is to minimize the difference between the claim at
time 7" and the portfolio at that time, using a self-financing strategy. In the risk-minimizing hedg-
ing strategy, the goal is to minimize the variance of the cost process at any time ¢ subject to the
condition that the value of the portfolio at time 7" equals H. In the latter case, it is only possible to
find a self-financing portfolio when the claim is attainable.

When reading papers concerning the locally risk-minimizing hedging strategy, we noticed some
confusion about the notion of this strategy, especially in the case of discontinuous price processes
for the risky asset.

Pham (2000) and Schweizer (2001) have already provided a rather theoretical overview of these
two quadratic hedging methods, although without warning for the pitfalls when dealing with dis-
continuous risky assets. In case of discontinuity, orthogonality is not preserved by the change of
measure to the minimal martingale measure, and hence there is no longer equivalence between the
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Galtchouk-Kunita-Watanabe decomposition under the minimal martingale measure and the needed
Follmer-Schweizer decomposition under the original measure.

Section 2 therefore presents the basic results without proof for the hedging in continuous time, on
which the theory concerning locally risk-minimizing hedging strategies is based. We also believe
that it would be better to use the notion “Follmer-Schweizer measure” only for a minimal mar-
tingale measure preserving orthogonality, since mistakes are made by overlooking the continuity
assumption on the underlying risky asset in the setting of Follmer and Schweizer (1991).

In 2000 Pham published an overview of the literature on locally risk-minimizing hedging strate-
gies, but since then many new papers on this topic has appeared. For this reason, section 3 contains
an addition to the overview in Pham (2000).

In section 4, we briefly describe how the theory of locally risk-minimizing hedging strategies
is extended to the multidimensional case. In the end, we show why the equivalence between
the Galtchouk-Kunita-Watanabe decomposition under the minimal martingale measure and the
Follmer-Schweizer decomposition under the original measure does no longer hold if the underly-
ing risky asset follows a geometric Lévy process.

2. (LOCAL) RISK MINIMIZATION

2.1. Setting

We introduce a complete probability space (€2, F,F, P), with the filtration F = (F})o<;<r con-
taining the information from the risky asset available up to time ¢. The one-dimensional stochastic
process X = (X;)o<;<r denotes the evolution of the price process of the discounted risky as-
set. This process is adapted and has cadlag paths. The process of the riskless asset is denoted by
B = (Bt)ogth-

Furthermore, we make the assumption that there exists at least one change of measure to a martin-
gale measure. This is related to some kind of no-arbitrage assumption, for more explanation we
refer to Delbaen and Schachermayer (1994).

2.2. Hedging in complete markets

Harrison and Kreps (1979) described how the hedging strategy for redundant contingent claims
can be found. Redundant means that the claim can be written as a sum of an initial cost, denoted
by Cy, and a stochastic integral of the process of the discounted risky asset. Hence, the risk of
the claim can be reduced to zero. Assume we want to hedge the claim A at time 7. We perform
a change of measure from the original measure P to the unique equivalent martingale measure
P*. Due to the completeness of the market, we know that every claim H can be decomposed as
follows:

T
H = Hy+ / X,
0
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Then, the contingent claim can be reproduced at time 7" with the initial investment , and the
following strategy at time ¢:

(&, Hy+ /0 X, — £ X)),

2.3. Risk minimization

The goal of Follmer and Sondermann (1986) was to extend the hedging theory for redundant
claims to contingent claims which are non-redundant. They searched for admissible strategies
which minimize risk in sequential sense and were able to prove that there exists a unique solution
to this problem. In the theory of risk minimization, Féllmer and Sondermann assumed that the
discounted risky asset is a square-integrable martingale under the original measure P. This means
that F[X}] < oo and E[X7|F] = X;, 0 < ¢ < T. A trading strategy is of the form p = (£, 1),
with £ = (&)o<i<r the amount invested in the risky asset and with 7 = (1:)o<t<r the amount
invested in the riskless asset. The value of the discounted portfolio at time ¢ is then given by
Vi =&Xe + .

Definition 2.1 (Hedging strategy in case X is a local martingale) A couple ¢ = (£,7) is called
a strategy if

e ¢ is a predictable process,

o £ € L*(X), with L?(X) the space of all R-valued predictable processes & such that
T
I€llz = (EL | 21X, XD < oc,
0

e 1 is adapted,

o V = £X + 1 has right continuous paths and E[V?] < oo for every t € [0,T]
(i.e. Vi € L*(P) forevery t € [0,T]).

The cost process is the difference between the value of the portfolio at time ¢ and the gains/losses
made from trading in the financial market up to time ¢:

4
C=V —/ §ud Xy (1
0

This process is called self-financing if it has constant paths and it is called mean-self-financing if
it is a square-integrable martingale.

We want to hedge a contingent claim H € L?*(P) due at time 7. By searching for a hedging
strategy for which the discounted portfolio has terminal value 7/, we will find a /-admissible
strategy. Due to the martingale property of the risky asset process, it is possible to show that the
expected value of the terminal cost does not depend on the choice of the strategy: F[Cr] = E[H].
At any time ¢ we have to minimize the remaining cost Cr — C;. We measure this risk by

RY = E[(Cr — C)?*| A
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A strategy is then called risk-minimizing if 12 < Rf P-almost surely for every admissible contin-
uation ¢ of ¢ at time ¢. An admissible continuation of the strategy ¢ is a strategy which coincides
with ¢ for all times smaller than ¢ and which also has terminal value /.

Furthermore, it can be proved that an admissible risk-minimizing strategy is mean-self-financing.
Follmer and Sondermann showed that the solution can be found using the Galtchouk-Kunita-
Watanabe decomposition of the contingent claim H:

t
E[H|F,] = E[H] +/ £,dX, + N/,
0

with £&* € L*(X), N; a square-integrable martingale, Z[N*| = 0 and orthogonal to the space
{[y6,dX, | 6 € LA(X)}.

The unique admissible strategy which is risk-minimizing is then given by ¢} = (&, E[H|F] —
¢ X;) at time ¢ and the remaining risk equals E[(N; — N})?|F].

We remark that in this case the number of risky assets invested using the mean-variance hedg-
ing strategy coincides with the number invested using the risk-minimizing hedging strategy. The
amount invested in the riskless asset is different.

2.4. Local risk minimization

The foundation for the locally risk-minimizing hedging strategy is described in Schweizer (1990),
where the equivalence between the orthogonality of martingales and the risk-minimality under
small perturbations is proved. In Schweizer (1993a) the concept of locally risk-minimizing hedg-
ing strategies is introduced to be able to hedge claims when the underlying risky asset X is only
a semimartingale under the original measure. The types of semimartingales for which the locally
risk-minimizing hedging strategy is described have to be of the following form:

X=X, + 74 A, )

with Z a square-integrable martingale for which Z; = 0, and with A a predictable process of finite
variation |A| (i.e. sup, ZZN:(IT VA, — A,,_,| < oo for every partition 7 of [0, T)).
One also needs the following assumptions:

(Al) For P-almost all w, the measure on [0, 7] induced by (Z)(w) has the whole interval [0, 7]
as its support. This means (Z) should be P-almost surely strictly increasing on the whole
interval [0, T7.

(A2) Ais continuous.
(A3) Ais absolutely continuous with respect to () with a density « satisfying
Ezl|lallog™ |a]] < .
A sufficient condition is that E[( [ adZ)] < cc.

The definition for the trading strategy has to be adjusted in this case:
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Definition 2.2 (Hedging strategy in case of a semimartingale X) A couple p = (£,n) is called
a strategy if

e {is a predictable process,

o £ € [*(Z) and fOT \€.dA,| € L*(P). This ensures that [, €,dX,, 0 < t < T is a semi-
martingale of class S% meaning that

5| / Ed(Z, Z)u+ / €A < oo,

The space formed by all the processes & satisfying this condition is given by Og.
e 1 is adapted,

o V =X + 1 has right continuous paths and E[V?] < oo for everyt € [0, T]
(ie. Vi(p) € L*(P) for every t € [0,T]).

In order to define the notion of locally risk-minimizing hedging strategies, we first explain what is
meant by a small perturbation:

Definition 2.3 (Small perturbation) A trading strategy A = (9, €) is called a small perturbation
if it satisfies the following conditions:

e 0 is bounded,
° fOT |0, dA,| is bounded,
o 07 =cr = 0.
For any subinterval (s, ] of [0, T], we define the small perturbation
Al = (0154, €L ).

Next we define partitions 7 = (¢;)o<;<n of the interval [0,7]. A partition of [0,7] is a finite

set 7 = {tg,t1,...,1;} of times with 0 = ¢y < #; < ... < ¢; = T and the mesh size of 7 is
7| := , max (tir1—t;). A sequence (7, )nen is called increasing if 7, C 7,41 for all n and it tends
itip1 €T

to the identity if lim |7,| = 0.
n—00

Definition 2.4 (Locally risk-minimizing) For a trading strategy v, a small perturbation A and a
partition T of [0, T, the risk quotient r™ (p, A) is defined as follows:

Rtv(99+A|(t't' ]) — Ry (¢)
T A = 7 iybi41 1 ]1 L )
A= DL S R e

titip1€T

A trading strategy @ is called locally risk-minimizing if liminf r™ (o, A) > 0 Pz-a.e. on Q2 x [0, T]

for every small perturbation A and every increasing sequence (1) of partitions of [0, T] tending
to the identity.



112 N. Vandaele and M. Vanmaele

Lemma 2.1 Assume that the semimartingale X, with the decomposition described in (2), satisfies
(A1). If a trading strategy is locally risk-minimizing, then it is also mean-self-financing.

Proposition 2.2 Assume that the semimartingale X, with the decomposition described in (2),
satisfies all conditions (Al)-(A3). Let the contingent claim H belong to L*(P) and let o be a
H-admissible trading strategy. Then ¢ is a locally risk-minimizing strategy if and only if ¢ is
mean-self-financing and the martingale C{(), (1), is orthogonal to the martingale part Z of the
semimartingale X.

Definition 2.5 (Pseudo locally risk-minimizing hedging strategy) A strategy o is called pseudo
locally risk-minimizing or, equivalently, pseudo optimal risk-minimizing if the associated cost pro-
cess C(p), (1), is a martingale under P and orthogonal to 7 in (2).

C'is a P-martingale Pseudo locally
and — risk-minimizing
C'is P-orthogonal to Z hedging strategy
(A1) — (A3) (A1) — (A3)

Locally risk-minimizing
hedging strategy

Figure 1: Equivalent conditions to determine the locally risk-minimizing hedging strategy under
the original measure P.

Definition 2.6 (Follmer-Schweizer decomposition)
T
o=+ / Hdx, + L P-as. (3)
0

is the Follmer-Schweizer decomposition of the contingent claim H if €% € Og and if LY is a
square-integrable P-martingale orthogonal to 7 (2), with L = 0.

Having the Follmer-Schweizer decomposition, we can directly give the pseudo locally risk-minimizing
hedging strategy ¢:

1
¢t=<§tH,Ho+/ 14X, + LY — €1X,).
0

Using proposition 2.2, we know that this pseudo locally risk-minimizing hedging strategy is the
locally risk-minimizing strategy if the assumptions (A1)-(A3) are satisfied (see also Figure 1).
In some cases, we can easily determine the Follmer-Schweizer decomposition by performing a
change of measure, as we will show here along the lines of Follmer and Schweizer (1991). They
assume that the semimartingale X is continuous and in this case the conditions (A1)-(A3) are
trivially satisfied.
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Definition 2.7 (Minimal martingale measure) A martingale measure P, equivalent with the orig-
inal measure P, will be called minimal if

~

P=P on Fy, 4)

and if any square-integrable P-martingale which is orthogonal to the martingale part Z of the
semimartingale X, as in (2), under P remains a martingale under P.

Given the continuity of X it is easy to prove that the minimal martingale measure preserves orthog-
onality. This means that any square-integrable P-martingale orthogonal to Z is also orthogonal to
X under P.

We emphasize that the preservation of orthogonality is not included in the definition of the minimal
martingale measure, but that it is a consequence in some special cases.

In those cases, we will call the measure the “Follmer-Schweizer” measure.

Definition 2.8 (Follmer-Schweizer measure) The Follmer-Schweizer measure is a minimal mar-
tingale measure for which orthogonality is preserved by a change of measure from the original
measure to the minimal martingale measure.

Combining the previous results, we have the following proposition:

Proposition 2.3 If X is continuous, the locally risk-minimizing strategy is determined by the
Galtchouk-Kunita-Watanabe decomposition under the minimal martingale measure.

Proof. Follmer and Schweizer (1991) proved that the minimal martingale measure preserves or-
thogonality if X is continuous. In this case the Galtchouk-Kunita-Watanabe decomposition under
the minimal martingale measure directly implies the Follmer-Schweizer decomposition under the
original measure. This already gives us the pseudo locally risk-minimizing hedging strategy. Since
by the continuity of X, (A1)-(A3) are satisfied, we know from proposition 2.2 that this strategy is
locally risk-minimizing under the original measure. ]

As a result of proposition 2.3, we can determine the locally risk-minimizing hedging strategy
in case of a continuous risky asset following the scheme in Figure 2.

In case the semimartingale is discontinuous, there is no easy way to find the Follmer-Schweizer
decomposition and hence to determine the locally risk-minimizing hedging strategy. We refer to
section 3 for a possible solution to this problem.

3. APPLICATIONS IN LITERATURE

This section presents the most important applications of the locally risk-minimizing hedging strat-
egy. First of all, it is important to pay attention to the different notions of locally risk-minimizing
hedging strategy in discrete and continuous time. In discrete time, the concept of locally risk-
minimization is often used for the strategy which minimizes the difference between the cost pro-
cess in every subsequent time interval, e.g. Coleman et al. (2006). This definition allows us to
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dQ)
Original measure P dP ' Minimal martglgale
measure
Follmer-Schweizer Galtchouk-Kunita-Watanabe
decomposition () decomposition

Figure 2: Scheme to determine the locally risk-minimizing hedging strategy in the case of a con-
tinuous underlying.

determine the hedging strategy by backward induction. Schil (1994) proved equivalence in dis-
crete time between the local risk-minimization and the risk-minimization used here, under certain
conditions. In continuous time, the former definition is rarely used. The most important applica-
tion of the theory of Follmer and Sondermann (1986) is given in Mgller (1998). He was the first to
apply the risk-minimizing hedging strategy to unit-linked life insurance contracts. He considered
a risky asset that followed a Brownian motion and a single premium contract with only a pure
endowment and with a term insurance for which all the payments were deferred to maturity of
the contract. To be able to hedge intermediate payments, Mgller (2001) extended the theory of
risk-minimizing hedging strategies. He determined the hedging strategy in the concrete case of
a geometric Brownian motion, but the proof is more general in that it holds for every risky asset
which is a local martingale.

In fact in Mgller (1998), the Brownian motion is only a semimartingale under the original mea-
sure, but it suffices to determine the risk-minimizing hedging strategy under the minimal martin-
gale measure when the price process of the risky asset is continuous. Indeed, for the continuous
case the locally risk-minimizing hedging strategy under the original measure is equivalent to the
risk-minimizing hedging strategy under the minimal martingale measure.

Riesner (2006) wanted to extend the theory of Mgller (1998) to the case of a geometric Lévy pro-
cess. Unfortunately, the equivalence does no longer hold because of the discontinuity of the Lévy
process. In Vandaele and Vanmaele (2008a) a correction is given based on Colwell and Elliott
(1993), who were the first to show how one can determine the Follmer-Schweizer decomposition
and the related locally risk-minimizing hedging strategy for a contingent claim when the underly-
ing asset follows a Markov diffusion process with jumps.

Furthermore, the locally risk-minimizing hedging strategy for payment streams is defined in Ries-
ner (2007).

Colwell et al. (2007) applied the locally risk-minimizing hedging strategy for index tracking. In
Di Masi et al. (1994) various applications of locally risk-minimizing hedging strategies are given
for stochastic volatility models. Using the same model for the underlying risky asset, Heath et al.
(2001a and 2001b) compared the mean-variance hedging to the locally risk-minimizing strategy
theoretically and numerically.
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The risk-minimizing hedging strategy under restricted information is investigated by Di Masi et al.
(1995) and Schweizer (1993b). The application to stochastic volatility models is studied by Fisher
et al. (1999). The extention of this application to the case of semimartingales is investigated by
Frey and Runggaldier (1999).

Biagini and Pratelli (1999) proved the invariance under a change of measure of the locally risk-
minimizing hedging strategy. Biagini and Cretarola (2007, 2006a, 2006b) determine the locally
risk-minimizing hedging strategy for defaultable claims when the risky asset follows a Brownian
motion. Becchere and Mulinacci (1999) searched for the locally risk-minimizing hedging strategy
to hedge American options in Merton’s model.

In Mercurio and Vorst (1997) and in Lamberton et al. (1998), the locally risk-minimizing hedging
strategy is defined in discrete time when transaction costs are taken into account.

Finally, we also refer to Mgller (2003) where various methods for the hedging and valuation of
insurance claims with an inherent financial risk are reviewed. In particular, the emphasis lies on
the application to unit-linked life insurance contracts.

4. EXTENSIONS OF THE LOCALLY RISK-MINIMIZING HEDGING STRATEGY

Until now, the locally risk-minimizing hedging strategy has only been defined in the one-dimen-
sional case. If we want to extend it to the multidimensional case, we have to change the definition
of locally risk-minimizing hedging strategy. First of all, we define (M) as the sum of all compo-
nents (M*, M*):

(M)y=>_ (M, M) 5)

and we also look at the product measure Py, = P x (M) on the product space 2 x [0,T. The
extension of the definition of trading strategy and small perturbation to the d-dimensional case is
straightforward.

Definition 4.1 (Locally risk-minimizing hedging strategy) For a trading strategy @, a small per-
turbation A and a partition T of [0, T, the risk-quotient v [, A] is defined as follows

th’((p +A (ti7ti+1)) - Rti(‘fo)
E[(M)ti—}—l - (M)ti |‘E1]

o, Alw, ) = Y

titip1CT

(w)]]'(t'i7ti+1] (t) (6)

The strategy o is then locally risk-minimizing if iminfr™[p, A] > 0 Py-a.e. for every small

perturbation A and every increasing 0-convergent sequence (7,,) of partitions of [0, T).

For the proofs we refer to Vandaele and Vanmaele (2007).

In independent work, Schweizer also extended the one-dimensional case to the multidimensional
one. The basic idea is the same but he weakened the restrictions on the risky asset by a slightly
more general definition for (M) (5), see Schweizer (2008). At the same time, he extended the
strategy for claims to payment streams.

Furthermore, the minimal martingale measure is already defined in the multidimensional case
(e.g. Schweizer (1995) and Jeanblanc et al. (2007)) and is the straightforward extension of the
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measure in the one-dimensional case. This allows us to easily find the Follmer-Schweizer decom-
position for a continuous risky asset. As in the one-dimensional case, we determine the Galtchouk-
Kunita-Watanabe decomposition of the claim under the minimal martingale measure. Since the
martingale property and the orthogonality are preserved by the change of measure to the minimal
martingale measure, the Follmer-Schweizer decomposition can be found from the components of
the Galtchouk-Kunita-Watanabe decomposition.

The equivalence used before in the continuous case, does no longer hold in the discontinuous case.
We show this explicitly in case the underlying risky asset follows a geometric L.évy semimartingale
process under the original measure:

dX; = X,_[oudt + codW, + / owx[N(dt, dz) — v(dz)dt]).
R

The equivalence between the Galtchouk-Kunita-Watanabe decomposition under the minimal mar-
tingale measure and the Follmer-Schweizer decomposition under the original measure holds if
every square-integrable (J-martingale orthogonal to the risky asset under the minimal martingale
measure () is also a martingale under P orthogonal to the martingale part of the discounted risky
asset.

We prove that even the martingale property is not preserved and thus it is impossible to talk about
the orthogonality between martingales.

We denote by D the Girsanov density describing the change of measure from the minimal martin-
gale measure () to the original measure . Assume L is a ()-martingale orthogonal to X under
@, then L is a P-local martingale if and only if L is orthogonal to D under (). In Vandaele and
Vanmaele (2008b) we proved that D is given by

t t X, _psosx
D, =1 D. X. Q D, _STHSTSY N _ @
=1+ /0 o X, coBdWO + /O /R TN (dsyda) — v

with
Qi

- X0+ [y 2%v(dx))

B

If we now use the condition that L should be orthogonal to X under (), then L can only be orthog-
onal to D if L equals the zero process or if we have a trivial change of measure.
We can conclude that the martingale property is not preserved in the case that the underlying
risky asset is discontinuous, but this does not mean that it is impossible to determine the Follmer-
Schweizer decomposition. For the case of a geometric Lévy process, we showed already in Van-
daele and Vanmaele (2008a) how to find the Follmer-Schweizer decomposition.
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