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PREFACE

On February 4 and 5, the contactforum “Actuarial and Financial Mathematics Conference”

(AFMathConf2010) took place in the buildings of the Royal Flemish Academy of Belgium for

Science and Arts in Brussels. The main goal of this conference is to strengthen the ties between

researchers in actuarial and financial mathematics from Belgian universities and from abroad

on the one side, and professionals of the banking and insurance business on the other side. The

conference attracted 124 participants from 12 different countries, illustrating the large interest

from academia as well as from practitioners.

For this 2010 edition, we have organized the first conference day as a thematic day on “Market

Consistent Valuation in Insurance”, which is a hot topic at the moment among academics and

practitioners. During the first day, we welcomed four internationally esteemed invited

speakers : Eckhard Platen (University of Technology – Sydney, Australia), Philippe Artzner

(Université de Strasbourg, France), Ragnar Norberg (London School of Economics, U.K.)

and Antoon Pelsser (Maastricht University, the Netherlands). They all gave first-class lectures

throwing more light on several aspects of Market Consistent Valuation. Together with

Guy Roelandt (CEO Dexia Insurance Services, Belgium), they afterwards participated in an

animated panel discussion, moderated by Steven Vanduffel (Vrije Universiteit Brussel,

Belgium). The second day, the attendants had the opportunity to listen to four more invited

speakers: Hansjoerg Albrecher (Université de Lausanne, Switzerland), Maria de Lourdes

Centeno (Technical University of Lisbon, Portugal), Dilip Madan (University of Maryland,

USA) and Monique Jeanblanc (Université d’Evry Val d’Essonne, France), as well as to seven

interesting contributions from Donatien Hainaut (ESC Rennes, France), Daniel Alai (ETH

Zurich, Switzerland), Katrien Antonio (University of Amsterdam, the Netherlands), Robert

Salzmann (ETH Zurich, Switzerland), Marc Henrard (Dexia Bank, Belgium), Antonis

Papapantoleon (QP Lab and TU Berlin, Germany) and Mateusz Maj (Vrije Universiteit

Brussel, Belgium). In addition, nine researchers presented a poster during an appreciated poster

session. We thank them all for their enthusiasm and their nice presentations which made the

conference a great success. 

The present proceedings give an overview of the activities at the conference. They contain

comments  on one of the invited talks, three papers corresponding to contributed talks, and five

short communications of posters presented during the poster sessions on both conference days.



We are much indebted to the members of the scientific committee, Freddy Delbaen (ETH

Zurich, Switzerland), Rob Kaas (University of Amsterdam, the Netherlands), Ernst Eberlein

(University of Freiburg, Germany), Michel Denuit (Université Catholique de Louvain,

Belgium), Noel Veraverbeke (Universiteit Hasselt, Belgium) and Griselda Deelstra (Université

Libre de Bruxelles & Vrije Universiteit Brussel, Belgium), for the excellent scientific support.

We also thank Wouter Dewolf (Ghent University, Belgium), for the administrative work.

We cannot forget our sponsors, who made it possible to organise this event in a very agreeable

and inspiring environment. We are very grateful to the Royal Flemish Academy of Belgium for

Science and Arts, the Research Foundation – Flanders (FWO), the Scientific Research Network

(WOG) “Fundamental Methods and Techniques in Mathematics”, le Fonds de la Recherche

Scientific (FNRS), the KULeuven Fortis Chair in Financial and Actuarial Risk Management

and the ESF program “Advanced Mathematical Methods in Finance” (AMaMeF).

The success of the meeting encourages us to go on with the organisation of this contactforum.

We are sure that continuing this event will provide more opportunities to facilitate the exchange

of ideas and results in our fascinating research field.

The editors:

Griselda Deelstra

Ann De Schepper

Jan Dhaene

Wim Schoutens

Steven Vanduffel

Michèle Vanmaele

The other members of the organising committee:

Pierre Devolder

Paul Van Goethem

David Vyncke

VIII
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SUPERVISORY ACCOUNTING:

COMPARISON BETWEEN SOLVENCY II AND COHERENT RISK MEASURES

Philippe Artzner1 and Karl-Theodor Eisele

Institut de Recherche Mathématique Avancée, Université de Strasbourg et CNRS, et
Laboratoire de Recherches en Gestion, Strasbourg, France
Email: artzner@math.unistra.fr, eisele@math.u-strasbg.fr

Abstract

We examine the ingredients of Solvency II, namely its free capital, provision and solvency
capital requirement. They are of course linked by the accounting equality but we claim that
they should be more deeply related to each other since solvency naturally should require pos-
itivity of available capital. Taken in general, this condition indeed almost dictates a formula
to derive provision from free capital. The derivation suggests the property of market consis-
tency of provision and the definition of optimal replicating portfolio. This does not show up in
actual building of Solvency II, while we show that coherent risk measures allow an integrated
construction.

1. INTRODUCTION AND NOTATION

1.1. Introductory remarks

The following is essentially a sequence of comments on the actual presentation at the Actuarial and
Financial Mathematics Conference, Brussels, Feb. 4-5, 2010, and it incorporates some feedback
received during the conference. The presentation itself was based on the paper Artzner and Eisele
(2010).
The paper intended to draw connections between academia, in particular the theory of risk mea-
sures, and industry in looking for a definition of “solvency”, further exploring the reason and
method for studying “provision” as well as the deduced requirement on available capital.
The current comments go one step further with respect to Solvency II by reviewing its ingredients
(see Subsection 2.1) and by asking how related they are or should be. A first link is of course the
accounting equality:

1Partial support from AERF/CKER, The Actuarial Foundation is gratefully acknowledged.
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4 Ph. Artzner and K.-Th. Eisele

free capital + provision + capital requirement = initial asset value

where the free capital is chosen by the assessment procedure, like the 0.5% quantile of the net
(cash-flow) position whose positivity is taken as definition of solvency. Solvency is usually re-
phrased as:

available capital (= initial asset value − provision) ≥ capital requirement

which strongly suggests that available capital must be positive when solvency is reached.
This fact in turn puts a condition on the definition of provision via the positivity of free capital
since market possibilities show up in this procedure: roughly speaking definition of the provision
functional (on random obligation cash-flows) is mandated by the free capital functional (see Defi-
nition 2.2). This is a first, very powerful instrument to judge a solvency system.
Unfortunately, the construction of Solvency II by a VaR-operator reveals a number of serious
difficulties, in particular the possibility of supervisory arbitrage. We show these lacks in some
examples.
The much spoken about property of “market consistency” of obligation assessments is defined and
shown to result from the definition of provision out of free capital.
Guided by these observations on Solvency II, we juxtapose the “top-down” approach provided by
the test probabilities at the basis of coherent risk measurement (see Artzner and Eisele (2010)). It
starts from the free capital functional (Section 3.1.1) then obtains the provision (Section 3.2) either
by an infimum of the price of asset portfolios “covering” the company’s obligations and providing
positive free capital (the method of Definition 2.2), or by a characterization of market consis-
tency in terms of the trading-risk neutral test probabilities. Finally it recovers the requirement
on available capital from an asset-liability management approach as well as from the supervisory
accounting equality.

1.2. Notations

1.2.1. PROBABILISTIC FRAMEWORK

We deal with a one-period model with t = 0 and t = 1. Based on a finite probability space
(Ω,F , P), a random variable X is interpreted as a “risky position” in date 1 money. By Z1 ≥ 0
we denote an obligation cash-flow at date 1 and by A1 an asset cash-flow at date 1 in a financial
market, described as follows:

1.2.2. FINANCIAL MARKETS

For i = 0, . . . , d, assets Si are given as random variables: Si
1(ω) is the cash-flow of date 1 money

in state ω. Si
0 is the initial market price of Si. We take S0

1 = r as the “numéraire”, assuming r > 0
and S0

0 = 1. Now, the asset cash flow A1 has the form of a traded portfolio: A1 =
∑d

i=0 αiS
i
1,

αi ∈ R, with initial market value A0 = π(A1) :=
∑d

i=0 αiS
i
0. The pricing functional is denoted as

π.
The set M of “trading-risk neutral” probabilities Q is

M :=
{
Q | EQ

[
Si

1

/
r
]

= Si
0 for all i = 1, . . . , d

}
,
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such that
π(A1) = EQ [A1/r] for all Q ∈ M and all tradeable A1. (1)

The set of zero-cost portfolios is

NM := {D | D is a traded portfolio with π(D) = 0} . (2)

Thus, a self-financed rebalancing of the insurance’s asset choice is possible at date 0 by passing
from A1 to A1 + D with D ∈ NM.

1.2.3. BUSINESS PLAN OF AN INSURANCE COMPANY

A business plan (A1, Z1) of a company consists of an asset cash flow A1 and an obligation cash-
flow Z1. The obligation Z1 is exogenously given by the company’s signed contracts and in general
not tradeable, while the asset cash flow A1 is tradeable and subject to the choice of the company’s
management. So C1 := A1−Z1 is the “net position”. We call D1 := A1−r ·A0 the “trading-risk
exposure”, where A0 = π(A1).

2. SOLVENCY II REVISITED

2.1. Components of Solvency II

2.1.1. FREE CAPITAL

Solvency II is mainly based on a quantile approach since it requires the future net cash-flow
A1 − Z1 to satisfy the following “solvency” condition:

P [A1 − Z1 ≥ 0] ≥ 99.5%. (3)

We define the quantile F̃0(A1, Z1) = q0.5%((A1 − Z1)/r). Relation (3) is a requirement on F̃0,
namely F̃0(A1, Z1) ≥ 0. We read F̃0(A1, Z1) as the company’s “free capital” since the company
satisfies the solvency condition as long as F̃0(A1, Z1) remains positive.
In principle the solvency condition says all about the supervisor’s opinion on the risky position
A1 − Z1. However, one main task of accounting in general and also of supervisory accounting is
to distinguish between commitments with respect to third parties and those with respect to share-
holders.

2.1.2. PROVISION

Provision (also called “liability”) is thought of as an assessment of the obligation Z1 contracted
by the company with respect to the contingent creditor, namely the policyholder. At one point of
the elaboration of Solvency II it was defined as:

L̃0(Z1) is the 75%- quantile of Z1/r : P
[
Z1/r > L̃0(Z1)

]
≤ 25%. (4)
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We remark that L̃0 bears no formal relation to F̃0, and that it is independent of the financial market,
except for r.

2.1.3. SOLVENCY CAPITAL REQUIREMENT

The definitions of the free capital F̃0(A1, Z1) and the provision L̃0(Z1) give an implicit definition
of the “solvency capital requirement” M̃0(A1, Z1) via the (supervisory) accounting equality

π = L̃0 + M̃0 + F̃0. (5)

This is an equality of functionals on the couple (A1, Z1).

Remark 2.1 We denote M̃0(A1, Z1) by the traditional “Solvency capital requirement” (SCR),
though it is only the definition of an amount of capital, rather then a requirement. The requirement
lies in the condition π(A1) ≥ L̃0(Z1) + M̃0(A1, Z1). Personally we would prefer for M̃0(A1, Z1)
the name “required solvency capital”.

Sometimes the solvency capital requirement is also defined using a sort of asset-liability manage-
ment approach, by considering net asset values at date t = 0 and t = 1 and their difference. The
quantile flavour of free capital is reflected in the definition of M̃0 as the (negative) quantile:

P
[
NAV1/r − NAV0 ≥ −M̃0(A1, Z1)

]
≥ 99.5%. (6)

In the one-period model, we have NAV1 = A1 − Z1 and NAV0 = A0 − L̃0(Z1). Using (5) , it is
easily seen that (6) is equivalent to the accounting equality definition of M̃0.
Rewriting (5) as π − L̃0 = F̃0 + M̃0 shows that the required positivity of both the free capital
F̃0(A1, Z1) and M̃0(A1, Z1) implies the positivity of the “available capital” A0 − L̃0(Z1). We
shall see in Example 2.1 below that the converse is not true.

2.2. Positivity of the available capital

We now examine the interdependence between the roles of free capital and of provision. A very
natural requirement on the provision as assessment of obligations is the fact that if solvency is
granted by the supervision, then the market value of assets should be at least equal to the provision
i.e. available capital, assets minus liabilities, should be positive. We show that this is not always
satisfied by a quantile based definition of provision.
In the following we write random variables and probabilities on a finite probability space as row
vectors.

Example 2.1 Let Ω = {ω1, ω2, ω3, ω4} with probability vector P = (0.005, 0.245, 0.25, 0.5) and
S0

1 = r = (1, 1, 1, 1). We assume that P is also a market-risk neutral probability. At date 1, the
company’s obligation will be Z1 = (60, 1000/49, 40, 0) and its asset value A1 = (0, 1000/49, 40, 0).
Obviously the company satisfies the “solvency” condition (3), since its free capital F̃0(A1−Z1) =
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0. By (4), the provision is L̃0(Z1) = 40 while the initial asset value is A0 = 15. Thus, the company
does not satisfy the requirement of the positivity of the available capital: both the available capital
and the solvency capital requirement are equal to −25.
Only for the sake of completeness, we mention that if we replace A1 by A′

1 = (0, 2000/49, 100, 10),
we get A′

0 = 40 such that the available capital A′
0−L̃0(Z1) = 0 is non-negative, while P[A′

1−Z1 =

(−60, 1000/49, 60, 10) ≥ 10] = 99.5% shows that the solvency capital requirement M̃0(A
′
1, Z1) =

−10 is negative.

2.3. Attempting a systematic approach to supervisory provision

In existing solvency regulations and in the insurance industry there exists a great number of def-
initions of provision. In some of them it is sometimes not clear which part covers the firm’s
obligations with respect to the policyholder and which part serves as protection against other un-
certainties, for example shareholders’ risks.

Remark 2.2 In this paper, as in Artzner and Eisele (2010), we study exclusively the notion of
supervisory provision, in the following shortly called provision. But we emphasize the fact that
supervisory provision has to be distinguished from other notions of provision, in particular those
defined by a cost-of-capital method. This is a matter of ongoing research.

We believe that any notion of provision should satisfy the following two conditions:

Conditions 2.1

1. (Independence): Any two companies having the same obligation Z1 with respect to the
policyholders should have the same provision.

2. (Positivity of available capital): If an insurance company is acceptable to the supervisor,
then its initial asset value should be at least as great as the provision.

The quantile approach of Solvency II given in (3) and (4) does not satisfy the positivity of available
capital condition above, as the Example 2.1 has shown.
Based on the requirements above, a general and natural derivation of provision from a solvency
assessment would be as follows:
We suppose that Ψ is a functional, called free capital, on random variables such that a net position
A1 − Z1 satisfies the solvency condition if and only if

Ψ(A1 − Z1) ≥ 0.

Definition 2.2 (Derivation of supervisory provision from the free capital functional Ψ)
The provision LΨ(Z1) of an obligation Z1 deduced from the free capital functional Ψ is the minimal
initial value A0 = π(A1) of a tradeable portfolio A1 such that A1 − Z1 satisfies the solvency
condition:

LΨ(Z1) = inf {π(A1) | A1 tradeable with Ψ(A1 − Z1) ≥ 0} . (7)

As is evident from the formulation, LΨ depends on the whole external market structure (but is
defined without reference to an asset portfolio). We shall even show below that it defines a market
consistent assessment.
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2.4. Market consistent assessment

At the Oberwolfach miniworkshop on the Mathematics of Solvency, Cheridito et al. (2008) pre-
sented a definition of a market consistent functional (see also Malamud et al. (2008)). In fact, it is
a generalization of cash-invariance: Ψ(X + c · r) = Ψ(X) + c.

Definition 2.3 (Market Consistency)
An assessment Ψ is market consistent (MC) if and only if for each X and each traded U :

Ψ(X + U) = Ψ(X) + π(U). (8)

Proposition 2.1 For any functional Ψ defining the solvency condition, the provision LΨ is market
consistent:

LΨ(Z1 + U) = LΨ(Z1) + π(U) (9)

for all obligations Z1 and all traded U .

Proof. If U is a traded position, then

LΨ(Z1 + U) = inf {π(A1) | A1 tradeable with Ψ(A1 − Z1 − U) ≥ 0}
= inf {π(A′

1 + U) | A′
1 tradeable with Ψ(A′

1 − Z1) ≥ 0} = LΨ(Z1) + π(U).

Example 2.2 We resume Example 2.1 with Z1 = (60, 1000/49, 40, 0), S0
1 = r = (1, 1, 1, 1),

S1
1 = (0, 1000/49, 40, 1) and S2

1 = (300, 900/49, 38, 0) such that S1
0 = S2

0 = 15.5. It follows that
D = S1

1 − S2
1 = (−300, 100/49, 2, 1) is a zero-cost portfolio with a short position in S2.

Since Z1 − D1 = (360, 900/49, 38,−1), we find

L̃0(Z1 − D1) = 38 6= L̃0(Z1) = 40.

This shows that L̃0 is not market consistent.

2.5. Supervisory arbitrage

We consider Example 2.1 once more.

Example 2.3 Define Z1 and D1 as before. Now for any asset value A1 = (a1, a2, a3, a4), we get

A1 + λD1 − Z1 = (a1 − 300λ − 60, a2 + 100/49λ − 1000/49, a3 + 2λ − 40, a4 + λ).

Therefore, a company with the arbitrary asset value A1 can satisfy the solvency condition (3) by
putting at zero cost a sufficiently large amount of the contract D into its portfolio:

P [A1 + λD1 − Z1 ≥ 0] ≥ 99.5%

for λ > 0 sufficiently large.
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Remark 2.3 The example shows that the solvency condition (3) allows supervisory arbitrage. This
can be expressed as LF̃0

≡ −∞.
One may argue that such “abstract” examples do not reflect the real situation of an insurance
company. However, recent experiences show that astute people soon may find out these deficiencies
and create special financial products (like D above), allowing companies having difficulties to pass
the solvency condition, no matter how bad their situation is.
We shall find the same problem in the second part of this paper where we discuss supervisory
accounting by a coherent risk-adjusted assessment. However, there the simple assumption 3.1
prevents the existence of supervisory arbitrage, while in the situation of Solvency II it seems very
difficult, if not impossible, to avoid supervisory arbitrage.

3. SUPERVISION BY COHERENT RISK-ADJUSTED ASSESSMENT

The observations on Solvency II comfort us into the “top-down” approach provided by the test
probabilities at the basis of coherent risk measurement. We shall start from the free capital func-
tional, the negative of a coherent risk measure (Section 3.1.1). We then obtain the provision
(Section 3.2) by an infimum of the price of asset portfolios “covering” the company’s obligations
and providing positive free capital (the method of Definition 2.2), and identify it explicitly as a
market consistent functional. Finally we shall recover the requirement on available capital from an
asset-liability management approach as well as from the supervisory accounting equality.

3.1. Coherent risk-adjusted assessment

3.1.1. ACCEPTABILITY AND FREE CAPITAL

For a (closed, convex) set P of “test probabilities” (“scenarios”, “stress tests”), we define the
risk-adjusted assessment2 ΦP,r for each random variable X by

ΦP,r(X) := inf
Q∈P

EQ [X/r] . (10)

Definition 3.1 A risky position X is acceptable w.r.t. (P , r) if and only if

ΦP,r(X) ≥ 0.

According to Section 2.1.1, we get the free capital of a business plan:

Definition 3.2 The free capital of (A1, Z1) is

F0(C1) := ΦP,r(A1 − Z1) = inf
Q∈P

EQ [(A1 − Z1)/r] . (11)

2 −ΦP,r is called risk measure in Artzner et al. (1999).
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3.1.2. NO SUPERVISORY ARBITRAGE

It is intuitive that the set P of test probabilities cannot be chosen completely independent of the
market situation if we want to avoid situations like in Example 2.2 (see also Remark 2.3). For
example assume that there exists a traded D with

π(D) = 0 and ΦP,r(D) = α > 0. (12)

Then, for any X , there exists a λ large enough such that

ΦP,r(X + λ · D) ≥ ΦP,r(X) + λ · α > 0,

i.e. “any X can be made acceptable in a self-financed way”. It has been shown in Artzner et al.
(1999), Section 4.3 and Delbaen (2000), Chapter 7, that (12) is equivalent to P ∩M = ∅. There-
fore, we make the following assumption:

Assumption 3.1 (No Supervisory Arbitrage)

P ∩M 6= ∅. (13)

Though we want (13), it would not be wise to have the other extreme P ⊂ M, since then ΦP,r

would not distinguish government bonds from dot.com shares in equally priced portfolios A1,
A′

1 respectively. A meaningful set of test probabilities P would therefore satisfy both relations
P ∩M 6= ∅ and P \M 6= ∅.

3.2. Two definitions of provision

3.2.1. FIRST DEFINITION OF THE PROVISION OF AN OBLIGATION

Let us apply the Definition 2.2 to the risk-adjusted assessment ΦP,r:

Definition 3.3 (Provision L0)

L0 (Z1) = inf {π(A1) | A1 tradeable with ΦP,r(A1 − Z1) ≥ 0} . (14)

L0(Z1) is market consistent by Proposition 2.1.

3.2.2. SOLVABILITY CONDITION ON (A0, Z1)

Definition 3.4 (Solvability Condition)
(A0, Z1) is solvable if and only if the available capital A0 − L0(Z1) is positive.

We shall see by Equation (17) below that an acceptable business plan (A1, Z1) not only realizes
the solvability condition for (A0, Z1), but even satisfies the stronger condition of the positivity of
the solvency capital requirement.
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3.2.3. SECOND DEFINITION OF PROVISION

We know by Proposition 2.1 that the provision L0 is market consistent. Here we give an explicit
representation of L0 in terms of the trading-risk neutral test probabilities. Indeed, one can show
that a coherent risk-assessment ΦP ′,r is market consistent if and only if P ′ ⊂ M. The last two
phrases give a hint to the fact that L0 should be in relation to ΦP∩M,r. In fact we have the following
equality.

Proposition 3.2
L0(Z1) = −ΦP∩M,r(−Z1) = sup

Q∈P∩M
EQ[Z1/r]. (15)

The proof of (15), given in Artzner and Eisele (2010), is based on the fact that ΦP∩M,r is the
convolution of ΦP,r and ΦM,r.

Remark 3.1 The positivity of the available capital A0 − L0(Z1) can be written as the condition
ΦP∩M,r(A0 · r − Z1) ≥ 0.

3.3. ALM-risk and solvency capital requirement

Solvency II has already shown a duality of approaches to solvency capital requirement: accounting
equality or asset-liability considerations. We have the same opportunity here, with more details
for the ALM approach, which we therefore describe first. Asset-Liability-Management (ALM)
is guided by the adequacy of coverage between the actual A1 and Z1. They are both “centered”
around A0 · r and L0(Z1) · r respectively. Recalling C1 = A1 − Z1, we therefore introduce the
following definition.

Definition 3.5 The ALM-risk is given by

A1 − A0 · r − (Z1 − L0(Z1) · r) = C1 − ΦP∩M,r(C1) · r. (16)

Its risk-adjusted assessment

M0(A1 − Z1) = M0(C1) := −ΦP,r (C1 − ΦP∩M,r(C1) · r)
= ΦP∩M,r(C1) − ΦP,r(C1) ≥ 0 (17)

is the solvency capital requirement (SCR) (see Remark 2.1).

By its very definition, the solvency capital requirement is positive, which implies for an acceptable
business plan (A1, Z1) the positivity of the available capital.

Remark 3.2 Since M0 only deals with “centered” risks, M0(A1−Z1) = M0(A1+a·r−(Z1+b·r))
for a and b constant, that is SCR only deals with “unforeseen losses” (CEIOPS, CP20).
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3.4. Supervisory accounting equality

The market consistent definition of provision L0(Z1) = −ΦP∩M,r(−Z1) and the definition of the
solvency capital requirement M0(C1) = A0 + ΦP∩M,r(−Z1) − ΦP,r(C1) add up to:

Proposition 3.3 The supervisory accounting equality is

A0 = L0(Z1) + M0(C1) + F0(C1). (18)

As a consequence of (18) and (15), we find the following equivalences:

Corollary 3.4 The business plan (A1, Z1) is acceptable if and only if

A0 ≥ L0(Z1) + M0(C1), (19)

or equivalently, if the available capital A0 − L0(Z1) is greater than the solvency capital require-
ment M0(C1).

3.5. Optimal replicating portfolios

Since ΦP∩M,r is the convolution of ΦP,r and ΦM,r, one can show that

ΦP∩M,r(X) = sup
D∈NM

ΦP,r(X + D).

Applying (15) gives
L0(Z1) = inf

D∈NM
− ΦP,r(D − Z1). (20)

In general, even for a finite probability space, the infimum in (20) is not attained. For a condi-
tion which guarantees the existence of an optimal replicating portfolio, we refer to Artzner and
Eisele (2010). Nevertheless, it is important to specify portfolios whose trading-risk exposure D∗

minimizes (20):

Definition 3.6 An asset portfolio A∗
1 = r ·A0 +D∗

1 whose trading-risk exposure D∗
1 = A∗

1 − r ·A0

for −Z1 satisfies
L0(Z1) = −ΦP,r(D

∗ − Z1), (21)

is called an optimal replicating portfolio for the obligation Z1.

We have two characterizations of an optimal replicating portfolio.

Proposition 3.5 A∗
1 is an optimal replicating portfolio for Z1 if and only if one of the following

equivalent conditions is satisfied:

1. the free capital is equal to the available capital:

ΦP,r(A
∗
1 − Z1) = A0 − L0(Z1), (22)

2. the solvency capital requirement is zero:

M0(A
∗
1 − Z1) = 0. (23)

It is remarkable that, in the context of the “cost of capital principle”, the Swiss Solvency Test
(SST) refers to optimal replicating portfolios as portfolios which “immunize the liability cash-
flows against all changes in the underlying market risk factors”.



Supervisory Accounting 13

3.6. Three different regions of solvency

The question whether the initial asset value A0 is sufficient to cover provision and solvency capital
requirement or not determines, for any solvency system, three regions described below in terms
of the available capital. Moreover, the use of coherent risk measures allows to introduce at some
point the risk management choice of “more capital brought by shareholders” or “rebalancing the
asset portfolio”.

1. The region of negative available capital:

A0 − L0(Z1) < 0. (24)

Since the positivity of the available capital is a “conditio sine qua non”, the only possibility
to avoid closure of the company by the supervisor is to gather (from the shareholders) a new
amount of cash of at least c ≥ L0(Z1) − A0 and thus to meet this condition.

2. Region of positive available capital, but not satisfying the solvency condition:

0 ≤ A0 − L0(Z1) < M0(A1 − Z1). (25)

There are now two possible solutions:

(a) Under appropriate assumptions on the set P of test probabilities, the solvency capi-
tal requirement M0(A1 − Z1) can be diminished to zero by rebalancing the assets to
an equally priced optimal replicating portfolio A∗

1. Thus, one satisfies the solvency
condition:

A0 − L0(Z1) ≥ M0(A
∗
1 − Z1)︸ ︷︷ ︸
=0

.

(b) If the company does not want to change its trading-risk exposure D1 = A1 − A0 · r,
it has to get an additional amount of cash c ≥ −ΦP,r(D1 − Z1) − A0 from the capital
market, and to invest c in the numéraire r. The risk exposure D1 is then left unchanged
and

ΦP,r(A1 + c · r − Z1) = A0 + c + ΦP,r(D1 − Z1) ≥ 0.

The company thereby avoids a new assessment of the final future net position and,
possibly, a new requirement!

3. If A0 − L0(Z1) ≥ M0(A1 − Z1), the company meets the solvency condition.

Remark 3.3 Roughly speaking, the three regions above correspond in Solvency II to

1. A0 < technical provision + minimum capital requirement (MCR) ,

2. technical provision + MCR ≤ A0 < technical provision + solvency capital requirement
(SCR),

3. technical provision + SCR ≤ A0.
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4. CONCLUSION

Starting from an analysis of Solvency II, we realized that free capital is the key concept in solvency
considerations. We think that a supervisory assessment of obligation has to be deduced from the
free capital functional, the supervisory assessment of future cash flows. Such a derivation will
immediately provide market consistency of provisions.
Value-at-risk methods present difficulties along these lines, which coherent risk measures do not.
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Abstract

This paper proposes a method to price catastrophe bonds paying multiple coupons, when the
number of claims is under the influence of a stochastic seasonal effect. The claim arrival
process is modeled by a Poisson Process whose intensity is the sum of an Ornstein Uhlenbeck
process and a periodic function. The size of claims is assumed to be a positive random variable,
independent of the intensity process. The expected number of claims is deduced from the
probability generating function, while the calculation of the fair coupon relies on the Fourier
Transform.

1. INTRODUCTION

During the last two decades, we have attended to the emergence of a new category of assets, pri-
marily developed to hedge the costs of insuring natural catastrophes. In this context, catastrophe
insurance derivatives have been introduced at the Chicago Board of Trade in the early nineties. The
value of those securities is directly related to indexes that account for the total insurance losses due
to natural catastrophes in US, by regions. Reinsurers have also started to propose a wide range of
insurance bonds, based upon the mechanism of securitization. Those products offer two advan-
tages. Firstly, they transfer a part of insurance risks from the reinsurers to other potential investors,
allowing to increase the reinsurers’ volume of transactions. Secondly, insurance derivatives are ef-
ficient diversification tools for institutional investors, which are in their core business not exposed
to catastrophe risks. Indeed, contrary to credit derivatives, the securities linked to insurance events
are not at all correlated with financial markets.

However, the valuation of catastrophe derivatives is obviously more complex compared to
the pricing of purely financial securities. The first problematic element is the incompleteness
of the insurance linked securities. It does not make sense to appraise those contracts based on
non arbitrage arguments, given that the underlying risks are not tradeable, by nature. This point
has been underlined by many authors, see e.g. Murmann (2001) and Charpentier (2008). To
summarize, the incompleteness entails that there exist more than one risk neutral measure, and

17



18 D. Hainaut

that the price is not unique. A second issue related to pricing is the complexity of the aggregate
losses process, that could hardly be modeled by standard financial tools. The first attempts of
pricing were done by Cummins and Geman (1994) and Geman and Yor (1997). They model
the underlying catastrophe indexes by a geometric Brownian motion with jumps. Aase (1999,
2001) and Christensen and Schmidli (2000) have proposed to model the aggregated losses as a
compound Poisson process with stochastic size of claims. In a recent work, Biagini et al. (2008)
have studied the valuation of catastrophe derivatives on a loss index but with a reestimation of
the total aggregated claims. In those papers, the intensity of the Poisson process determining the
number of claims, is either constant or a deterministic function of time. Jang (2000) and Dassios
and Jang (2003) have improved the modeling of the aggregated losses by assuming that the claims
arrival process is driven by a Poisson process whose intensity is a stochastic shot noise process.
The pricing of the insurance derivatives is done under the Esscher measure.

The contribution of this paper is to propose a method to price an insurance bond which pays
multiple coupons and whose nominal depends upon claims under the influence of a stochastic
seasonal effect. The interest for modeling the seasonality is particularly obvious for claims such as
hurricanes, storms, flooding or even car accidents, which are more frequent during certain periods
of the year. For long term insurance securities, it is then crucial to integrate this trend in the pricing.
To achieve this goal, the claims arrival process is modeled by a doubly stochastic process, whose
intensity is the sum of one deterministic seasonal function and of one mean reverting stochastic
process. This mean reversibility can also be useful to model the influence of long term climate
changes on claims frequency.

In the following section, we present details on the claims arrival process and we provide a
recursion to compute the expected number of claims. In section 3, the aggregated claims process
and the insurance bond are defined, and the general formula to value the coupon rate of such bonds
is presented. In section 4, we explain how the Fast Fourier Transform can help us to price bonds.
Finally, this paper includes a numerical application that underlines the feasibility of our approach.

2. THE CLAIMS ARRIVAL PROCESS

In this paper it is assumed that the number of claims observed till time t is a Poisson process,
denoted by Nt, with stochastic intensity. This class of processes is called doubly stochastic. It has
already been widely used to model the process of credit events, and it seems well adapted to model
the arrivals of claims. The process Nt is defined on a filtration Ft, in a probability space Ω coupled
to a probability measure, denoted by Q. This measure is assumed to be the risk neutral measure,
used for pricing purposes (the relation between the modeling under P , the real measure, and Q is
developed in Appendix B). The intensity of Nt is a non observable stochastic process, denoted by
λt. It is defined on a filtration Ht such that, conditionally to Ht ∨ F0, the process Nt is a Poisson
process for which the probability of observing k jumps is given by the formula:

P (Nt = k |Ht ∨ F0) =

(∫ t

0
λudu

)k

k!
e−

∫ t

0
λudu. (1)



Pricing of Catastrophic bonds 19

For more details on doubly stochastic processes, the interested reader is referred to Bremaud
(1981) and Bielecki and Rutkowski (2004), chapter 6. The frequency of many claims exhibits
both stochasticity and seasonality. This is obviously the case for claims related to natural calami-
ties such as storms or floodings, but it is also the case for car accidents for which the frequency
climbs during the winter period. In order to capture this double characteristic, stochasticity and
seasonality, in the pricing of insurance bonds, the intensity of our Poisson Process is modeled as
the sum of a cyclical deterministic function λ(t) and a stochastic process λOU

t :

λt = λ(t) + λOU
t . (2)

The deterministic cyclical function is defined by three real constant parameters δ, β, γ ∈ R :

λ(t) = δ + β cos ((t + γ)2π) , (3)

while the stochastic component of the intensity, λOU
t , is an Ornstein Uhlenbeck process, whose

speed, level of mean reversion and volatility are real constants, respectively denoted as a, b, σ ∈ R.
The dynamics of λOU

t is ruled by the following stochastic differential equation:

dλOU
t = a(b − λOU

t )dt + σdWt, (4)

where Wt is a Brownian motion defined on the filtration Ht. Figure 1 presents an example of a
trajectory followed by the intensity process. The dotted line is the function λ(t). The continuous
line is a sample path of the intensity λt. Note that by choosing a low speed of mean revertion, a,
the mean reverting feature of λt may be used to model the influence on long term climate changes
on the frequency of claims. The distribution of λt is detailed in the next proposition.

Figure 1: Example of a path for λt.

Proposition 2.1 In our model, the process λt as defined in equation (2) is a Gaussian random
variable conditionally on Hs, s ≤ t, whose average µλ(s, t) and variance

(
σλ(s, t)

)2
are given by

the following expressions:

µλ(s, t) = λ(t) + e−a(t−s)λOU
s + b(1 − e−a(t−s)) (5)

(
σλ(s, t)

)2
=

σ2

2a

(
1 − e−2a(t−s)

)
. (6)
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Proof. We just sketch the proof because this result is rather standard and we refer the reader to
Musiela and Rutkowski (1997), chapter 12 - p.289, for details. The first step consists of differenti-
ating the process Zt = eat(b − λOU

t ) to show that

Zt = Zs −

∫ t

s

eauσdWu; (7)

as λOU
t = b − e−atZt, one infers from equation (7), that

λOU
t = e−a(t−s)λOU

s + b(1 − e−a(t−s)) +

∫ t

s

e−a(t−u)σdWu. (8)

The results of the proposition directly follow from this last relation.

The intensity process λt defined in equations (2) and (4), is a Gaussian random variable, and
the probability of observing a negative value for this process differs from zero. However, if the
annual average level δ of λ(t) and level of mean reversion b are sufficiently high compared to the
volatility σ, this probability should be nearly zero, and λt may be used as intensity for Nt. We now
present two propositions that will allow us to determine the probability generating function of Nt.

Proposition 2.2 The integral of λu from t1 to t2, is a Gaussian random variable conditionally on
Hs, s ≤ t1 ≤ t2, whose average µ

∫
λdu(s, t1, t2) and variance

(
σ

∫
λdu(s, t1, t2)

)2
are given by the

following expressions:

µ
∫

λdu(s, t1, t2) = δ(t2 − t1) +
1

2π
β sin (2π(t2 + γ)) −

1

2π
β sin (2π(t1 + γ))

+λOU
s e−a(t1−s)B(t1, t2) + b

(
(t2 − t1) − e−a(t1−s)B(t1, t2)

)
(9)

(

σ
∫

λdu(s, t1, t2)
)2

=
σ2

2a
B(t1, t2)

2
(
1 − e−2a(t1−s)

)

+
σ2

a2

(

(t2 − t1) − B(t1, t2) −
1

2
a B(t1, t2)

2

)

, (10)

where the function B(t1, t2) is defined as follows:

B(t1, t2) =
1

a

(
1 − e−a(t2−t1)

)
.

Proof. The integral of λu is the sum of the integrals of λ(u) and of λOU
u . The integral of λ(u) from

t1 to t2 is worth:
∫ t2

t1

λ(u)du = δ(t2 − t1) +
1

2π
β sin (2π(t2 + γ)) −

1

2π
β sin (2π(t1 + γ)) , (11)

whereas the integral of the process λOU
u is obtained by integrating equation (8) from t1 to t2:

∫ t2

t1

λOU
u du = λOU

s e−a(t1−s)B(t1, t2) + b
(
(t2 − t1) − e−a(t1−s)B(t1, t2)

)

+

∫ t1

s

σ

a

(
e−at1 − e−at2

)
eaudWu +

∫ t2

t1

σB(u, t2)dWu. (12)
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The results of the proposition directly follow from this last relation.

According to equation (1), the process Nt2 − Nt1 is a Poisson process conditionally on Ht2 ∨
Ft1 ⊃ Fs. This property allows us to deduce that the probability of observing k jumps in a certain
interval of time is equal to the following expectation, where I is an indicator variable:

P (Nt2 − Nt1 = k | Fs) = E
[
INt2

−Nt1
=k| Fs

]

= E

[

E
[
INt2

−Nt1
=k|Ht2 ∨ Ft1

]
∣
∣
∣Fs

]

= E

[

P (Nt2 − Nt1 = k |Ht2 ∨ Ft1)
∣
∣
∣Fs

]

= E






(∫ t2

t1
λudu

)k

k!
e−

∫ t2
t1

λudu

∣
∣
∣
∣
∣
Fs




 . (13)

Except for k = 0, no analytical expression exists for this last expectation. However, it will be
shown in the remainder of this section that the probabilities of observing k > 0 jumps, can be
computed by means of an iterative procedure based upon the probability generating function (pgf)
of Nt as defined in the next proposition.

Proposition 2.3 The pgf of Nt defined by

pgf(x, s, t1, t2) = E

[

xNt2
−Nt1

∣
∣
∣Fs

]

(14)

with s ≤ t1 ≤ t2 is given by

pgf(x, s, t1, t2) = E

[

e
∫ t2

t1
λudu (x−1)

∣
∣
∣Fs

]

= exp

(

(x − 1)µ
∫

λdu(s, t1, t2) +
1

2
(x − 1)2

(

σ
∫

λdu(s, t1, t2)
)2

)

. (15)

Proof. Given that Ht2 ∨ Ft1 ⊃ Fs, one can rewrite the probability generating function as follows:

pgf(x, s, t1, t2) = E
[
xNt2

−Nt1 |Fs

]
= E

[

E
[
xNt2

−Nt1 |Ht2 ∨ Ft1

]

∣
∣
∣
∣
∣
Fs

]

.

Conditionally on Ht2 ∨ Ft1 , the jump process is Poisson with known pgf, resulting in

pgf(x, s, t1, t2) = E

[

E
[
xNt2

−Nt1 |Ht2 ∨ Ft1

]
∣
∣
∣Fs

]

= E

[

e
∫ t2

t1
λudu (x−1)

∣
∣
∣Fs

]

. (16)

The integral of the intensity is Gaussian according to proposition 2.2, and therefore the expectation
in equation (16) is the expectation of a lognormal variable, as given in equation (15).

The pgf is a powerful tool that gives us the possibility to infer by a recursive method the
probabilities of jumps of Nt2 − Nt1 , conditionally on the filtration Fs at time s ≤ t1 ≤ t2.
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Proposition 2.4 The probability not to observe any jumps in the interval of time [t1, t2], condition-
ally on Fs, s ≤ t1 ≤ t2, is equal to

P (Nt2 − Nt1 = 0 | Fs) = pgf(x, s, t1, t2)

∣
∣
∣
∣
∣
{x=0}

= exp

(

−µ
∫

λdu(s, t1, t2) +
1

2

(

σ
∫

λdu(s, t1, t2)
)2

)

. (17)

The probability that the process Nt exhibits exactly one jump in the interval of time [t1, t2] is equal
to:

P (Nt2 − Nt1 = 1 | Fs) =
∂

∂x
pgf(x, s, t1, t2)

∣
∣
∣
∣
{x=0}

= P (Nt2 − Nt1 = 0 | Fs)

(

µ
∫

λdu(s, t1, t2) −
(

σ
∫

λdu(s, t1, t2)
)2

)

. (18)

The probability of observing more than one jump can be computed iteratively as follows:

P (Nt2 − Nt1 = k | Fs) =
1

k!

∂k

∂xk
pgf(x, s, t1, t2)

∣
∣
∣
∣
{x=0}

, (19)

where

∂k

∂xk
pgf(x, s, t1, t2)

∣
∣
∣
∣
{x=0}

=

(

µ
∫

λdu(s, t1, t2) −
(

σ
∫

λdu(s, t1, t2)
)2

)
∂k−1

∂xk−1
pgf(x, s, t1, t2)

∣
∣
∣
∣
{x=0}

+(k − 1)
(

σ
∫

λdu(s, t1, t2)
)2 ∂k−2

∂xk−2
pgf(x, s, t1, t2)

∣
∣
∣
∣
{x=0}

. (20)

Proof. The proof of this proposition directly results from the exponential form of the probability
generating function.

Proposition 2.4 provides us with an important tool in order to calibrate our model parameters
(δ, β, γ, a, b, σ) to real data. The calibration can be done by maximizing the likelihood of observed
numbers of claims observed during several seasons.

3. THE SIZE OF CLAIMS AND THE PRICING OF BONDS

The risk faced by an insurance bondholder is inherent to his exposure to accumulated insured
property losses. This process of accumulated losses, which is denoted by Xt in the sequel of this
work, depends both on the frequency of the claims Nt and on the magnitude of the claims. The size
of the jth claim, occurring at time tj , is modeled by a positive random variable, Yj , defined on the
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filtration Ftj , but assumed to be independent from previous claims and from the frequency. There
are no other constraints on the choice of Yj . As for the claims arrival process Nt, we directly work
with the distribution of Yt under the risk neutral measure Q (again we refer the interested reader
to appendix B for details about the relation between the modeling under P , the real measure, and
Q). The process of aggregated losses, is defined by the following expression:

Xt =
∑

tj<t

Yj =
Nt∑

i=1

Yj.

We now describe the characteristics of an insurance bond and introduce the method to price such
kind of assets. The insurance bond periodically pays a coupon equal to a constant percentage of
the nominal, reduced by the amount of aggregated losses, exceeding a certain trigger level. At
maturity, what is left of the nominal value is repaid. In order to compensate for this eventual loss
of the nominal value, the coupon rate always exceeds the risk free rate. In case a few claims occur,
the bondholder is then rewarded at a higher rate than the one obtained by investing in risk free
assets with the same maturities. On the contrary, in case of catastrophic losses, the nominal of the
bond can fall to zero and the payment of coupons can be interrupted. In order to understand how
the spread of this bond is priced, we need to introduce some additional mathematical notations.

Let us use the notation BN for the initial nominal value of the bond. The level above which
the excess of aggregated losses is deduced from the nominal, is denoted by K1. If the total insured
losses reach the amount of K2 = K1 +BN before maturity, the bond stops to deliver coupons and
the nominal is depleted. The bond, issued at time t0, pays n coupons, at regular intervals of time,
∆t, ranging from t1 to tn. The coupon rate is the sum of the constant risk free rate with maturity tn,
and of a spread: they are respectively denoted as r and sp. The coupons paid at times ti, i = 1...n,
are denoted as cp(ti) and defined as follows:

cp(ti) = (r + sp) ∆t

[

(K2 − K1) IXti
∈[0,K1] + (K2 − Xti) IXti

∈(K1,K2]

]

︸ ︷︷ ︸

BNti

. (21)

The term between brackets is the (stochastic) nominal of the bond at time ti and is written as BNti

in the sequel of our developments. Note that BNt0 is equal to BN . Based upon the principle
of absence of arbitrage, the spread of the insurance bond is chosen such that the expectations of
future discounted spreads and of future discounted cutbacks of nominal are equal under the risk
neutral pricing Q. The expectations of future discounted spreads and reductions of nominal are
respectively called the “spreads leg” and the “claims leg” (this terminology is in fact inspired from
the one for credit derivatives). These legs are defined by the following expressions:

SpreadLeg(t0) = sp ∆t

tn∑

ti=t1

e−r (ti−t0)
E [BNti | Ft0 ] , (22)

ClaimsLeg(t0) =
tn∑

ti=t1

e−r (ti−t0)
E

[
BNti−1

− BNti | Ft0

]
. (23)
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By equating equation (22) with equation (23), we infer the following fair spread rate that should
be added to the risk free rate, at the issuance of the insurance bond:

sp =

∑tn
ti=t1

e−r (ti−t0)
E

[
BNti−1

− BNti | Ft0

]

∆t
∑tn

ti=t1
e−r (ti−t0)E [BNti | Ft0 ]

. (24)

Despite the apparent simplicity of this last expression, the expected future nominals are not calcu-
lable by means of a closed form expression, and we have to rely on numerical methods to appraise
them. Among the numerical tools available, we have chosen to use the Fourier transform.

4. PRICING BY FOURIER TRANSFORM

As explained in the previous paragraph, the pricing of an insurance bond requires the valuation of
the expected future value of nominal. According to equation (21), this expectation may be split
into two components,

E [BNti | Ft0 ] = E
[
BN IXti

∈[0,K1] | Ft0

]
+ E

[
(K2 − Xti) IXti

∈(K1,K2] | Ft0

]
. (25)

As done by Carr and Madan (1999), each component can be reformulated in terms of their Fourier
transforms. The two next propositions deal with this point.

Proposition 4.1 If α1 is a strictly positive real constant, chosen to ensure the stability of subse-
quent numerical computations, the following holds:

E
[
BN IXti

∈[0,K1] | Ft0

]

=
BN

π

∫ +∞

0

ϕ1(u)e−(α1+iu)Xt0

+∞∑

k=0

P (Nti − Nt0 = k)
(

E
[
e−(α1+iu)Y

])k

du, (26)

where ϕ1(u) is the Fourier transform of the function eα1xIx∈[0,K1] , x ∈ R
+,

ϕ1(u) =
1

α1 + iu

(
e(α1+iu)K1 − 1

)
. (27)

The probabilities P (Nti −Nt0 = k) can be retrieved from proposition 2.4 whereas the expectation
E

[
e−(α1+iu)Y

]
is the Laplace transform of the claim size Y , evaluated at α1 + iu.

Proof. Let us denote by qXti
|Ft0

(x) the density of the aggregated losses process Xti , conditionally
on the filtration Ft0 . If we choose a positive constant α1, the expectation in equation (34) can be
written as follows:

E
[
IXti

∈[0,K1] | Ft0

]
= E

[
e−α1Xti eα1Xti IXti

∈[0,K1] | Ft0

]
.

=

∫ +∞

0

e−α1x eα1x Ix∈[0,K1] qXti
|Ft0

(x) dx. (28)
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Now, define ϕ1(u) as the Fourier transform of the function eα1xIx∈[0,K1] , x ∈ R
+:

ϕ1(u) =

∫ +∞

−∞

eα1xIx∈[0,K1]e
iuxdx;

it can be easily checked that this last integral is equal to the expression in equation (27). If α1 is
strictly positive, the function ϕ1(u) is well defined for u = 0. The function eα1xIx∈[0,K1] can be
retrieved by inverting the Fourier transform ϕ1(u):

eα1xIx∈[0,K1] =
1

2π

∫ +∞

−∞

ϕ1(u)e−iuxdu

=
1

π

∫ +∞

0

ϕ1(u)e−iuxdu, (29)

where the second equality results from the symmetry of the integrand, which is itself due to the
fact that the function eα1xIx∈[0,K1] is real (no imaginary component). The combination of equation
(28) and equation (29) allows us to infer that:

E
[
IXti

∈[0,K1] | Ft0

]
=

1

π

∫ +∞

0

∫ +∞

0

ϕ1(u)e−(α1+iu)x qXti
|Ft0

(x) dx du

=
1

π

∫ +∞

0

ϕ1(u) E
[
e−(α1+iu)Xti | Ft0

]
du. (30)

The integrand of this last equation contains the Laplace transform of the aggregated losses process,
evaluated at α1 + iu. This can be worked out as follows:

E
[
e−(α1+iu)Xti | Ft0

]
= e−(α1+iu)Xt0E

[

e
−(α1+iu)

∑Nti
i=Nt0

Yi

∣
∣
∣Ft0

]

= e−(α1+iu)Xt0

+∞∑

k=0

P (Nti − Nt0 = k)
(

E
[
e−(α1+iu)Y

])k

. (31)

Proposition 4.2 If α2 is a strictly positive real constant, chosen to ensure the stability of subse-
quent numerical computations, the following holds:

E
[
(K2 − Xti) IXti

∈(K1,K2] | Ft0

]

=
1

π

∫ +∞

0

ϕ2(u)e−(α2+iu)Xt0

+∞∑

k=0

P (Nti − Nt0 = k)
(

E
[
e−(α2+iu)Y

])k

du, (32)

where ϕ2(u) is the Fourier transform of the function eα2x (K2 − x) Ix∈[K1,K2] , x ∈ R
+,

ϕ2(u) =
K1

α2 + iu
e(α2+iu)K1 −

K2

α2 + iu
e(α2+iu)K1

+
1

(α2 + iu)2

(
e(α2+iu)K2 − e(α2+iu)K1

)
. (33)

The probabilities P (Nti −Nt0 = k) can be retrieved from proposition 2.4 whereas the expectation
E

[
e−(α1+iu)Y

]
is the Laplace transform of the claim size Y , valued at α1 + iu.
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Proof. The proof is analogous to the proof of proposition 4.1. It may be checked quickly that
ϕ2(u), the Fourier transform of the function eα2x (K2 − x) Ix∈[K1,K2], x ∈ R

+, or

ϕ2(u) =

∫ +∞

−∞

eα2x (K2 − x) Ix∈[K1,K2]e
iuxdx,

is equal to the expression of equation (33). Moreover it is true that for α2 strictly positive, the
function ϕ2(u) is well defined for u = 0.

The calculation of the integrals (26) and (32) can be done numerically by the Fast Fourier
Transform algorithm. The FFT algorithm computes in only O(n log n) operations, for any input
array {IN(j) : j = 0, . . . , NS − 1}, the following output array:

OUT(m) =

NS−1∑

j=0

e
− 2πi

NS
mj

· IN(j), m = 0, . . . , NS − 1.

The first step to use this numerical method, consists in discretizing the integrals (26) and (32). We
use the notation ∆u for the step of discretization and NS for the number of steps. The mesh of
discretization is defined as follows:

{uj} = {j ∆u ∈ R
+ | 0 ≤ j ≤ NS − 1} .

Next, we define a discretization mesh for the values of Xt0 , spaced by ∆x, and counting the same
number NS of elements as {uj} (this is a necessary condition in order to use the FFT algorithm):

{xm} = {m ∆x ∈ R
+ | 0 ≤ m ≤ NS − 1} .

On the condition that steps of discretization ∆u and ∆x satisfy the equality ∆u∆x = 2π
NS

, the
discrete versions of equalities (26) and (32), for all xm, with m = 0...NS − 1, can be reformulated
into suitable forms for the FFT algorithm as follows:

π

BN
eα1m∆x

E
[
IXti

∈[0,K1] | Ft0 , Xt0 = m∆x
]

︸ ︷︷ ︸

OUT1(m)

≈

NS−1∑

j=0

e
−i 2π

NS
j m

ϕ1(uj)

NJ∑

k=0

P (Nti − Nt0 = k)
(

E
[
e−(α1+iuj)Y

])k

∆u

︸ ︷︷ ︸

IN1(j)

(34)

πeα2m∆x
E

[
(K2 − Xti) IXti

∈(K1,K2] | Ft0 , Xt0 = m∆x
]

︸ ︷︷ ︸

OUT2(m)

≈

NS−1∑

j=0

e
−i 2π

NS
j m

ϕ2(uj)

NJ∑

k=0

P (Nti − Nt0 = k)
(

E
[
e−(α2+iuj)Y

])k

∆u

︸ ︷︷ ︸

IN2(j)

, (35)

where NJ is an upper bound chosen such that the probability of observing NJ claims in the interval
of time [t0, ti] is negligible. The left hand terms of equations (34) and (35) are the output vectors
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computed by a standard FFT algorithm. By combining them, one can calculate the expected values
of future nominal, for a wide range of initial values for Xt0 (see equation (25)):

E [BNti | Ft0 , Xt0 = m∆x] =
BN

π
e−α1m∆x OUT1(m) +

1

π
e−α1m∆x OUT2(m), (36)

∀m = 1, ..., NS − 1. Note that the calculation of the spread by equation (24) at the issuance of
the bond, only requires to determine the expected future nominal when Xt0 = 0. However, the
knowledge of expected future nominal when Xt0 > 0, may be useful to reappraise an insurance
bond, issued before t0, and also when some claims already occurred.

5. NUMERICAL APPLICATIONS

This section illustrates by means of a numerical example the feasibility of the pricing method
developed in the first part of this paper. In particular, we compute the fair spreads that insurance
bonds of maturities ranging from 1 to 3 years should pay above the risk free rate, here set at 3%.
The nominal, NB, is of 70 million. This nominal is decreased if the aggregated losses rise above
10 million. The coupons are paid annually. Other bonds characteristics are summarized in table 1.

r 3% tn 1,2,3
K1 10 t1 1
K2 80 ∆t 1

Table 1: Parameters of bonds.

Table 2 presents the parameters chosen for the claims arrival process. From Proposition 2.4,
we can deduce the probability density function of Nt after 1, 2 and 3 years. The densities are
plotted in figure 2. From these densities, we can calculate the averages and standard deviations of
the number of claims, after 1, 2 and 3 years; these presented in Table 3. Per year, one foresees on
average 11 claims, and the one-year volatility is situated around 3 claims.

α 0.4 δ 10
b 0.1 β 0.01
σ 0.01 γ 0.5

Table 2: Parameters of the claims arrival process.

t = 1 t = 2 t = 3
E(Nt) 11.02 21.06 31.13
σ(Nt) 3.17 4.48 5.49

Table 3: Means and deviations of Nt.

We have chosen to model the size of claims by a Gamma random variable whose parameters
are θ = 2 and k = 0.5. The average size of claims is of 1.0 million and the standard deviation
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is of 2.0 million. The Gamma distribution is the most common distribution to model claims (see
appendix A for details), but nothing prevents us to work with another distribution, on the condition
that its Laplace transform has a closed form expression. The parameters used in the FFT algorithm
are provided in Table 4. Note that the definitions of α1 and α2 have been chosen empirically on
the basis of several tests. It seems that this choice leads to a good precision of calculations.

NS 214 dx 0.5
α1

1
K1

α2
1

K2−K1

du 2π
N dx

Table 4: FFT parameters.

Figure 2: Distribution of claims by maturity.

Figure 3 presents the spreads of bonds by maturities (1, 2 or 3 years), for a set of initial values
of aggregated losses, Xt=0. As expected, the higher the initial value of the total claims, the higher
is the spread. This is a direct consequence of the fact that the aggregated losses at time t = 0
directly reduce the nominal. The spread is positively correlated with the maturity of the bond: the
spreads of 1, 2 and 3 years bonds respectively quote 2,46%, 7,56% and 10,90%, when X0 = 0.
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Figure 3: Spreads by maturities and by Xt0 .

Figure 4 presents the expected remaining nominal after 1, 2 and 3 years. This expected nominal
decreases with time, given that the expected number of occurred claims rises with the time horizon.
The expected nominal is also inversely proportional to the total initial amount of claims X0. When
X0 tends to 70, the nominal falls to zero (and the spread tends to infinity). Note that the expected
nominal after one year is slightly higher than zero for values of X0 around 70, while it should
be equal to zero. This can be explained by the imprecision introduced by the discretization of
integrals (26) and (32).

Figure 4: Expected remaining nominal by maturities and by Xt0 .

6. CONCLUSIONS

This paper proposes a method to price catastrophe bonds paying multiple coupons, when the num-
ber of claims is under the influence of a stochastic seasonal effect. Modeling the seasonality is
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particularly important for insurance securities, whose valuation is related to claims with an in-
tensity which is rising during certain periods of the year, such as storms or hurricanes. Another
important feature of this work is the presence of a mean reverting process, embedded in the in-
tensity of the claims arrival process. This stochastic process may be calibrated so as to reflect the
influence of long term climate changes on the frequency of claims. Despite the apparent complex-
ity of the claims arrival process, we have established a simple recursion for the computation of the
probability distribution of the number of claims.

The insurance bond periodically pays a coupon equal to a constant percentage of the nominal,
reduced by the amount of aggregated losses, exceeding a certain trigger level. At maturity, what
is left of the nominal is repaid. In order to compensate for this eventual loss of nominal, the
coupon rate always exceeds the risk free rate. The calculation of the spread above the risk free rate
requires the appraisal of future expected remaining nominals. As no closed form expression exists
for the expected future nominals, we showed how to compute them by the Fast Fourier Transform
Algorithm. This approach is also shown to be an efficient method for the reappraisal of insurance
bonds when some claims have occurred.

Catastrophe bonds offer an interesting alternative for investors who wish to diversify their ex-
posure to risks, and this paper provides an efficient computational method to price those assets.
Yet, many issues and uncertainties about the underlying assumptions remain unsolved. In par-
ticular, the shortcoming that consists to assume the independence between frequency and size of
claims probably should be dropped. This point should be investigated in future research.

APPENDIX A

A common distribution used to model the size of claims Y , is the Gamma distribution. The den-
sity of a Gamma random variable is determined by two real positive parameters k and θ. The
probability density function is given by the next expression:

f(y) = yk−1 e−
y

θ

Γ(k) θk
Iy≥0.

The mean and variance are respectively equal to kθ and kθ2. The Laplace transform of a Gamma
distributed random variable is given by:

E
[
e−uY

]
=

1

(1 + θu)k
.

APPENDIX B

This appendix describes the dynamics of the model presented in this paper under the real measure,
and the links between parameters defining the aggregated losses process under real and risk neutral
measures. Let us use the notation P for the physical measure. Under P , the intensity of the claims
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arrival process is given by :
λP

t = λP (t) + λ
OU,P
t ,

where λP (t) is defined by three real constant parameters δP , βP , γP ∈ R :

λ(t) = δP + βP cos
(
(t + γP )2π

)
,

and where λ
OU,P
t is an Ornstein Uhlenbeck process, whose speed, level of mean reversion and

volatility are real constants, respectively denoted by aP , bP , σP ∈ R. The dynamics of λ
OU,P
t is

ruled by the following stochastic differential equation:

dλOU
t = aP (bP − λOU

t )dt + σP dW P
t . (37)

Under P , the size of claims are positive random variables with density fP
Y (y). The changes of

measure from P to a risk neutral measure Q leading to the model developed in section 2 and 3, are
defined by the following Radon-Nikodym derivative (for details see e.g. Shreve (2004), chapter
11):

dQ

dP
= exp

(
Nt∑

k=1

ln(κg(Yk)) +

∫ t

0

λu(1 − κ)du

)

· exp

(

−
1

2

∫ t

0

ξ2du −

∫ t

0

ξdW P
u

)

,

where κ is a nonnegative constant and ξ is here a real constant. The function g(.) is measurable
g : R

+ → R and satisfies the relation
∫ +∞

0

g(y)fP (y)dy = 1.

Under Q, dWu = dW P
u + ξdu is a Brownian motion, the intensity of the claims arrival process is

multiplied by κ and the probability density function of claims is multiplied by g(y). The following
relations between twe parameters of our model under Q and P then hold:

δ = κδP a = aP

β = κβP b = κ
(

bP − σP ξ

aP

)

γ = γP σ = κσP .

The probability density function of Yt under Q is equal to:

f(y) = g(y)fP (y).
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Abstract

Constant maturity swaps (CMS) and CMS spread options are analyzed in the multi-factor
Heath-Jarrow-Morton (HJM) framework. For Gaussian models, which include some Libor
Market Models (LMM) and the G2++ model, explicit approximated pricing formulae are pro-
vided. Two approximating approaches are proposed: an exact solution to an approximated
equation and an approximated solution to the exact equation. The first approach borrows from
previous literature on other models; the second is new. The price approximation errors are
smaller than in the previous literature and negligible in practice. The approach is being used
here to price standard CMS and CMS spreads and can be used for some European exotic
products.

1. INTRODUCTION

Constant Maturity Swap (CMS) spread options are relatively popular. Their pay-off depends on
the difference between two swap rates. Models where only the global level of the curve is modeled
would not do a good job in pricing those instruments. Quite naturally one uses two-factor (or more
generally multi-factor) models to price those instruments.

The pricing of rate spread instruments in the HJM framework was considered in Fu (1996)
and Miyazaki and Yoshida (1998). The former considers the spread between zero-coupon rates
with annual compounding, payment on exercise date and strike 0. The options are analyzed in a
Gaussian two-factor HJM model. The latter considers a very specific Gaussian two-factor HJM
model and spread between continuously compounded zero coupon rates. Due to convention and
payment dates, those results can not be used to price actual CMS spread options.

More recently Wu and Chen (2009) analyzed the spread options in the log-normal LMM. The
options they consider have strike 0 and payment on exercise date. In practice the payment takes
place at the end of an accrual period and not on the fixing date. Their results would need to be
adapted to be used in practice. Moreover the majority of spread options are dealt at non-zero
strikes. In Antonov and Arneguy (2009), CMS products are analyzed in a LMM with stochastic

33
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volatility. The instruments analyzed have non-zero strike and a payment lag. Due to the model
complexity their results are not fully explicit and require a characteristic function and one or two-
dimensional Laplace transforms.

The CMS spread instruments depend, as their name indicates, on swap rates. One approach is
to obtain approximated dynamics for the swap rates in the model. If the approximated dynamics are
simple enough, the spread options can be valued as an exchange option. This is the technique used
in Wu and Chen (2009) in the log-normal LMM model where the swap rates are approximately
log-normal. In Antonov and Arneguy (2009), the swap dynamics are obtained through a technique
called Markov projection.

A standard approach to price CMS options is to use replication arguments. In that case the price
is based on the prices of vanilla cash-settled swaptions (see for example Hagan (2003) or Mercurio
and Pallavicini (2005)). Based on the CMS prices and the implied CMS rate, one often prices the
CMS spreads as the spread on two log-normal assets with correlation (see for example Berrahoui
(2004)). Our proposal could replace this approach. A two-factor model could be calibrated to
CMS and CMS spread prices and could be used to price more exotic products. Our approach gives
more freedom on the pay-off description than the standard bi-log-normal approach.

Here we first develop results in the G2++ model using the approximated rate dynamics ap-
proach. The swap rate dynamics are approximately normal. The exact option price in the approxi-
mated dynamics is the first price approximation proposed. The price formula is explicit and similar
to the Bachelier formula. The options we consider have a free strike, use the market convention
and have a free payment date. The first result is interesting in itself. In particular the smile of the
G2++ model is closer to the market smile than a flat log-normal LMM (absence of) smile.

Then we move one step further. We would like to obtain similar results in a general Gaussian
separable multi-factor HJM framework. This framework contains in particular the LMM version
called Bond Market Model and the G2++ model. In that model very efficiently approximated Euro-
pean swaption prices are available, as described in Henrard (2008b). One could extend the approxi-
mated swap dynamics methodology; the drawback is that one can only price instruments dependent
on (one or two) swap rates; the pay-offs are limited to pay-offs of the form f(S1, S2)1(g(S1,S2)>0).
We work in a term-structure model, modeling the full yield curve but our approach would restrict
us to use only two of those rates. This, for example, excludes a swaption with CMS spread trigger,
i.e with pay-off

∑
ciP (θ, ti)1(S1−S2>0), or similar products.

For that reason we propose a second approach where we use an approximated solution to the
exact equation. The exact solution of the discount bond in the HJM framework is computed.
With those exact solutions, the pay-offs are too complex to lead to explicit solutions. We use
pay-off approximations (to the first and second order) to obtain explicit prices. The price formula
contains terms similar to the Bachelier formula for the first order and some additional terms for the
second order. The approximating explicit solution to exotic options contrasts with the Monte-Carlo
techniques often used in that context.



CMS spreads in the multi-factor HJM framework 35

2. MODELS

In general, a term structure model describes the behavior of P (t, u), the price in t of the zero-
coupon bond paying 1 in u (0 ≤ t ≤ u ≤ T ). When the discount curve P (t, .) is differentiable (in
a weak sense), there exists f(t, u) such that

P (t, u) = exp

(
−

∫ u

t

f(t, s)ds

)
. (1)

Let Nt = exp(
∫ t

0
rsds) be the cash-account numeraire with (rs)0≤s≤T the short rate rt = f(t, t).

Except if otherwise stated, the model equations are in the numeraire measure associated to Nt.

2.1. G2++

The G2++ model is a two-factor interest rate model which can be viewed as a two-factor extended
Vasicek model. The model is usually introduced as a short rate model with

rt = x1
t + x2

t + φ(t)

where the stochastic processes are given by

dxi
t = −aix

i
tdt + ηi(t)dW i

t .

The Brownian processes W 1
t and W 2

t are correlated with correlation ρ. The initial values of the
processes are xi

0 = 0. The ai are two positive constants and the functions ηi are deterministic. The
deterministic function φ(t) is given by the initial interest rate curve. The description of the model
and its analytical formulae can be found in Brigo and Mercurio (2006).

2.2. Gaussian HJM (multi-factor)

The idea of Heath et al. (1992) was to model f with a stochastic differential equation

df(t, u) = σ(t, u) · (ρν(t, u)) dt + σ(t, u) · dWt

where
ν(t, u) =

∫ u

t

σ(t, s)ds

for some suitable σ. The random processes Wt = (W 1
t , . . . ,W n

t ) are Brownian motions with
correlation matrix ρ. The special form of the drift is required to ensure the arbitrage-free property.
Note that with respect to standard writing we use a correlated Brownian motion to simplify the
writing in the developments. This is the origin of the correlation matrix appearing in the drift term.
The volatility and the Brownian motion are n-dimensional while the rates are 1-dimensional. The
model technical details can be found, among other places, in the original paper or in the chapter
Dynamical term structure model of Hunt and Kennedy (2004).
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We study this model under the separability hypothesis, see e.g. Henrard (2008a)

σi(s, u) = gi(s)hi(u).

Separability conditions have been widely used in interest rate modeling. The results cover the
Markov processes in Carverhill (1994), explicit swaption formulas in Gaussian HJM models in
Henrard (2003) and efficient approximations for LMM in Pelsser et al. (2004) and Bennett and
Kennedy (2005).

In line with the separability hypothesis, we denote

γi,j =

∫ θ

0

gi(s)gj(s)ds and Hi(t) =

∫ t

0

hi(s)ds.

So we obtain that the price of a zero-coupon bond can be written (Henrard 2007, Lemma A.1),
after a change of numeraire to P (., θ) as

P (θ, u)=
P (0, u)

P (0, θ)
exp

(
−

n∑

j=1

αj(u)Xj −
1

2
τ 2(u)

)
(2)

with

α2
j (u) =

∫ θ

0

(νj(s, u) − νj(s, θ))
2ds = (Hj(u) − Hj(θ))

2γj,j

and
∫ θ

0

(ν(s, u) − ν(s, θ)) · dW θ
s =

n∑

j=1

(Hj(u) − Hj(θ))

∫ θ

0

gj(s)dW θ,j
s =

n∑

j=1

αj(u)Xj,

with Brownian motion W θ
s , and where τ 2(u) = αT (u)ρ̄α(u) is the total variance with the correla-

tion ρ̄ is given by
ρ̄j,k = ρj,k

γj,k√
γj,j

√
γk,k

,

and the random variable X = (X1, . . . , Xn) ∼ N (0, ρ̄). Notice that X is the same for all payment
dates u.

The G2++ model is a special case of the HJM framework with

σi(s, u) = ηi(s) exp(−ai(u − s)).

Those functions satisfy the separability condition σi(s, u) = gi(s)hi(u) with gi(s) = ηi(s) exp(ais)
and hi(u) = exp(−aiu). In the numerical tests, a piecewise constant G2++ is considered. The
equivalence of G2++ to the special HJM case described above is analyzed in (Brigo and Mercurio
2006, Section 5.2).

3. CMS PRODUCTS DESCRIPTION

The CMS underlying is a swap with a given tenor and the market conventions. For a tenor k, the
payment dates are denoted tk,i (1 ≤ i ≤ nk) with nk the number of payments. The settlement date,
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used for the first floating period, is denoted t0. For a fixing date, the settlement date is the same
for all swaps and there is no need to index the settlement date by the tenor. The associated accrual
fractions (i.e. the coverage of the interval [tk,i−1, tk,i]) is denoted δk,i. We will denote the swap
(forward) rate for tenor k at the date θ by Sk,θ. The swap rate is given by

Sk,θ =
P (θ, t0) − P (θ, tk,nk

)∑nk

i=1 δk,iP (θ, tk,i)
.

3.1. CMS options

A CMS option is characterized by an expiry or fixing date θ, a CMS underlying, a strike K and
a payment date tp ≥ θ. The pay-off is (Sk,θ − K)+ paid in tp. The generic value in the P (., θ)
numeraire is

P (0, θ) Eθ
[
P (θ, tp)(Sk,θ − K)+

]
.

3.2. CMS spread options

A CMS spread option is characterized by an expiry date θ, two CMS underlyings with weights
(β1, β2), a strike K and a payment date tp ≥ θ. The CMS underlyings are swaps with given tenors
and the market convention. The tenors are denoted by k1 and k2. The pay-off is (β1Sk1,θ−β2Sk2,θ−
K)+ paid in tp.

4. APPROXIMATED EQUATION

4.1. CMS options

In the numeraire P (., tp), the option on a CMS fixed at time θ is

P (0, tp) Etp
[
(Sk,θ − K)+

]
.

Defining the Libor forward rate Lk,i
s between tk,i and tk,i+1, observed at time s, the swap rate is

Sk,θ =

nk∑

i=1

wk,i
θ Lk,i−1

θ with wk,i
θ =

δk,iP (θ, tk,i)∑nk

j=1 δk,jP (θ, tk,j)
.

As the coefficients wk,i
θ have small variabilities compared to Lk,i

θ ’s variabilities (see Lognormal
Swap Rate model in Brigo and Mercurio (2006)), the swap rate can be approximated by

Sk,θ '
nk∑

i=1

wk,i
0 Lk,i−1

θ (3)

where the wk,i
0 are computed with the initial zero coupon curve.
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To compute the distribution of Sk,θ, we compute the discrete forward rate process in a G2++
model. The link between the discrete forward rate Lk,i−1

s and the instantaneous forward rate f(t, u)
is

Lk,i−1
s =

1

δk,i

[
e

∫ tk,i
tk,i−1

f(s,u)du − 1

]
.

From the analytical zero-coupon bond price in the G2++ model, see e.g. Brigo and Mercurio
(2006), the process of Lk,i−1

s can be deduced.
Omitting the variables (t, T ) and introducing deterministic functions Pi, Qi1, Qi2, with ρ the

correlation between the two Brownian motions W
tp,1
t , W

tp,2
t which are Brownian motions defined

in Section 2.1, under the tp-measure

dLk,i−1
t =

(
1 + δk,iL

k,i−1
t

δk,i

)

×
[(

Pk,i +
1

2
Q2

k,i1 +
1

2
Q2

k,i2 + ρQk,i1Qk,i2

)
dt + Qk,i1dW

tp,1
t + Qk,i2dW

tp,2
t

]
.

The equation evolution can be approximated by freezing the first term to some acceptable value.
As the moments of the distribution will be computed under the numeraire P (., tp), the idea is
to replace the stochastic variable Lk,i−1

t in the first term by its expectation under the numeraire
P (., tp). On a first order approximation, the drift is neglected

Etp
[
Lk,i−1

t

]
' Lk,i−1

0 .

Equation (3) leads then to a Gaussian Swap Rate process

dSk,θ '
nk∑

i=1

(
1 + δk,iL

k,i−1
0

δk,i

)
wk,i

0

[(
Pk,i +

1

2
Q2

k,i1 +
1

2
Q2

k,i2 + ρQk,i1Qk,i2

)
dt

+Qk,i1dW
tp,1
t + Qk,i2dW

tp,2
t

]

' µk,θ(t)dt + σk,θ
1 (t)dW

tp,1
t + σk,θ

2 (t)dW
tp,2
t ,

where the functions µk,θ(t) and σk,θ
j (t) are properly defined. In order to obtain a Black normal for-

mula, we need the first two moments of the Sk,θ distribution, which can be computed analytically,
namely

M = Etp [Sk,θ] = Sk,0 +

∫ θ

0

µk,θ(u)du,

V 2 = Vartp [Sk,θ] =

∫ θ

0

(
σk,θ

1 (u)
)2

du +

∫ θ

0

(
σk,θ

2 (u)
)2

du + 2ρ

∫ θ

0

σk,θ
1 (u)σk,θ

2 (u)du.

Knowing the mean and standard deviation of the Gaussian distribution leads to simple analytical
prices for CMS options and CMS spread options.
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Theorem 4.1 The price of the CMS option with an approximated Gaussian swap rate is given by

P (0, tp)

[
(M − K)Φ

(
M − K

V

)
+

V√
2π

e−
1
2(

M−K
V )

2
]

(4)

with K the option strike, M the mean and V 2 the variance of the swap rate. Φ(·) denotes as
usually the cumulative density function of the standard normal law.

4.2. CMS spread options

The same technique can be used to compute the distribution of a spread of CMS rates. With
the same approximation, the spread Sθ = Sk1,θ − Sk2,θ is also a Gaussian process which can be
computed analytically.

Theorem 4.2 The price of the CMS spread option with an approximated Gaussian swap rate is
given by

P (0, tp)

[
(M − K)Φ

(
M − K

V

)
+

V√
2π

e−
1
2(

M−K
V )

2
]

(5)

with K the option strike, M = Etp [Sk1,θ]−Etp [Sk2,θ] the mean and V 2 the variance of the spread
given by

V 2 = Vartp [Sθ] =

∫ θ

0

(
σk1,θ

1 (u) − σk2,θ
1 (u)

)2

du +

∫ θ

0

(
σk1,θ

2 (u) − σk2,θ
2 (u)

)2

du

+ 2ρ

∫ θ

0

(
σk1,θ

1 (u) − σk2,θ
1 (u)

) (
σk1,θ

2 (u) − σk2,θ
2 (u)

)
du.

5. APPROXIMATED SOLUTION

5.1. CMS options

In the multifactor HJM model, the CMS rate in θ is, from Equation (2),

Sk,θ(X)

=
P (0, t0) exp(−

∑
αj(t0)Xj − τ 2(t0)/2) − P (0, tk,nk

) exp(−
∑

αj(tk,nk
)Xj − τ 2(tk,nk

)/2)∑nk

i=1 P (0, tk,i) exp(−
∑

αj(tk,i)Xj − τ 2(tk,i)/2)
.

The CMS rate will be approximated by a first or second order Taylor approximation:

Sk,θ(X) − K ' A + BX +
1

2
XT CX.

To clarify some computations, we make a change of variable. Let Y = (Y1, . . . , Yn) be dis-
tributed as a standard normal with b1Y1 = BX (i.e. b1 = BT ρ̄B). The change of variable is
denoted by Y = DX . After the change of variables, one has

Sk,θ(X) − K ' A + bY +
1

2
Y T cY
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with b = (b1, 0, . . . , 0) and c = (D−1)T CD−1. The CMS option condition is Sk,θ(X) − K > 0
which is approximated to the first order by Y1 > − A

b1
= κ. Let −α(tp)D

−1 = e. Using the first
order approximation for the exercise condition and the second order approximation for the pay-off,
the price of the CMS option is given by

P (0, tp) Eθ

[(
A + b1Y1 +

1

2
Y T cY

)
1{Y1>κ} exp

(
eY − 1

2
τ 2
p

)]
,

where τp denotes in the following τ(tp).
The value of the expected value is written in the form of a technical lemma.

Lemma 5.1 If Y is a standard (multivariate) normal distribution,

E

[
(A + b1Y1 +

1

2
Y T cY )1{Y1>κ} exp

(
eY − 1

2
τ 2
p

)]

= exp

(
−1

2
τ 2
p +

1

2
e2

)[(
b1 + c1,.e +

1

2
c1,1(κ − e1)

)
1√
2π

exp

(
−1

2
(κ − e1)

2

)

+

(
A + b1e1 −

1

2
eT ce +

1

2

n∑

j=1

cj,j

)
Φ(e1 − κ)

]
.

Proof. The expected value is expressed by using two nested integrals

1

(2π)n/2

∫

y1≥κ

∫

Rn−1

(
A + b1y1 +

1

2
yT cy

)
exp

(
ey − 1

2
τ 2
p

)
exp

(
−1

2
|y|2
)

dy2dy1.

The first step is to compute the inner integral over Rn−1 taking advantage of the symmetries. We
first write all the integrands in terms of y − e:
(

A + b1y1 +
1

2
(y − e)T c(y − e) + (y − e)T ce − 1

2
eT ce

)
exp

(
−1

2
(y − e)2

)
exp

(
1

2
e2 − 1

2
τ 2
p

)
.

Using the integrals over the n − 1 dimensional space, the remaining integrand is
((

A + b1e1 −
1

2
eT ce +

1

2

n∑

j=2

cj,j

)
+ (b1 + c1,.e)(y1−e1) +

1

2
c1,1(y1−e1)

2

)
exp

(
−1

2
(y1−e1)

2

)
.

The result is obtained by decomposing the above integral on y1 ≥ κ in three parts according
to the approximation order. The definition of cumulative normal distribution is used together with
the integral of the normal density against order one and two exponent. In particular for order two
we use 1√

2π

∫∞
κ

x2 exp
(
−1

2
x2
)
dx = 1√

2π
κ exp(−κ2/2) + N(−κ).

Theorem 5.2 The price of the CMS option is approximated to the second order by

P (0, tp) exp

(
−1

2
τ 2
p +

1

2
e2

)[(
b1 + c1,.e +

1

2
c1,1κ̃

)
1√
2π

exp

(
−1

2
κ̃2

)

+

(
A + e1b1 −

1

2
eT ce +

1

2

n∑

j=1

cj,j

)
Φ(−κ̃))

]

where κ̃ = κ − e1, A, b, c and e are described above.
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Note that if the first order approximation is used (C = 0) the price formula structure is very
similar to the one in Baviera (2006) and the one presented in the previous section. The (small)
multiplicative adjustment is different and the coefficients are slightly different depending on the
freeze technique used in the approach.

5.2. CMS spread options

In the previous section a second order approximation is used for the CMS rate. As the second order
approximation of a difference is the difference of the approximations, the same technique can be
used for CMS spreads:

β1Sk1,θ(X) − β2Sk2,θ(X) − K ' A + BX +
1

2
XT CX.

Theorem 5.3 The price of the CMS spread option is approximated to the second order by

P (0, tp) exp

(
−1

2
τ 2
p +

1

2
e2

)[(
b1 + c1,.e +

1

2
c1,1κ̃

)
1√
2π

exp

(
−1

2
κ̃2

)

+

(
A + e1b1 −

1

2
eT ce +

1

2

n∑

j=1

cj,j

)
Φ(−κ̃))

]

where κ̃ = κ − e1, A, b, c and e are computed as in the CMS option case.

6. NUMERICAL RESULTS ANALYSIS

The quality of the different approximations is analyzed. The analysis is done for the G2++ model.
In Figure 1(a) the level curves for Sk,θ(X) − A are displayed for a four standard deviation square.
The level curves are similar to lines and the first order approximation for them may be justified.
In the second graph the level curves of Sk,θ(X) − (A + BX) are represented. The first order
boundary is represented in white. Second order and higher terms have little impact around the
exercise boundary, justifying the use of the first order boundary. In the perpendicular direction, the
higher order terms have a non negligible effect, justifying the second order approximation usage.

The first option analyzed is a cap fixing in five years on a ten years CMS with payment one
year after fixing. The market data are as of 31 July 2009. The model is calibrated to the at-the-
money 5Yx10Y volatility. The parameters are a1 = 0.10, a2 = 0.01, η1 = 0.27%, η2 = 0.81% and
ρ = −0.30. For the graphs, the strike is one percent below the money. Table 1 proposes the prices
for strikes in a four percent range.

The error with the approximated equation is below 0.50 basis point in price which corresponds
roughly to 0.1 ATM Black vega. The first order approximation with the second method has a
slightly larger error, which corresponds to 0.2 vega. The error with the second order approximation
is below 0.01 basis point and almost invisible; it is certainly more than good enough for any
practical purpose.
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Figure 1: Level curves for the swap rate residual after different order approximations.

Approx. Equation Approx. Solution
Strike NI price Price Diff. Order 1 Diff. 1 Order 2 Diff. 2

One CMS option
2.69 183.43 183.89 0.47 182.57 -0.85 183.42 -0.008
3.69 114.26 114.87 0.62 113.58 -0.67 114.25 -0.003
4.69 60.97 61.45 0.48 60.34 -0.63 60.97 -0.006
5.69 26.93 27.09 0.16 26.32 -0.61 26.92 -0.005
6.69 9.57 9.51 -0.06 9.11 -0.47 9.57 -0.008

Five Year CMS option
2.50 781.96 783.02 1.06 779.87 -2.10 781.96 -0.015
3.50 364.93 367.26 2.33 363.43 -1.51 364.93 -0.013
4.50 144.88 146.71 1.83 143.52 -1.37 144.88 -0.011
5.50 45.28 45.76 0.48 44.16 -1.12 45.27 -0.012
6.50 11.21 11.14 -0.08 10.58 -0.64 11.20 -0.012

Strikes in percent. Prices in basis points.

Table 1: Options on 10Y CMS. Price using full numerical integration, approximated equation
method and approximated solution to order 1 and 2. Market data as of 31 July 2009.

The table contains also the figures for a five year swap with annual payments. The same model
parameters are used. The error is up to 2.5 basis points for the first approach and first order
approximation and at most 0.02 basis points for the second order approximation. Tests have been
done with other market data and piecewise constant volatilities and leaded to similar error levels.

The second test run concerns CMS spread options. The CMS used are 10 years and 2 years; the
weights are one for each rate. The results are provided in Table 2 for a one period CMS spread and
a five year transaction. For the first approach and order one approximation, the error is below 0.10
basis point. Note a compensation between the errors on different payments leading to a smaller
total error. Those errors are acceptable. The errors are below the ones presented in Wu and Chen
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(2009) where the error is up to 0.40 basis points on a five year option with strike 0 (their approach
does not allow other strikes). In Lutz and Kiesel (2008) the error is up to 0.70 basis point on a
five years option and 1.00 basis point for ten years. For the second order approximation, we were
forced to add an extra decimal to avoid having only zeros; the error is below 0.001 basis point.

Approx. Equation Approx. Solution
One CMS Spread option

Strike NI Approx. Diff. Order 1 Diff. Order 2 Diff.
-1.00 128.87 128.83 -0.04 128.81 -0.06 128.87 0.0002
-0.50 87.06 87.03 -0.03 87.01 -0.06 87.06 0.0002
0.00 45.26 45.22 -0.04 45.20 -0.06 45.26 0.0002
0.50 6.18 6.01 -0.17 6.15 -0.03 6.18 0.0019

Five Year CMS Spread option
-1.00 960.285 960.283 -0.002 960.177 -0.107 960.285 0.0003
-0.50 726.838 726.836 -0.002 726.731 -0.108 726.839 0.0003
0.00 493.392 493.390 -0.002 493.285 -0.107 493.392 0.0003
0.50 260.637 260.580 -0.057 260.552 -0.085 260.638 0.0009
1.00 93.820 93.740 -0.081 93.804 -0.016 93.821 0.0009
1.50 29.912 29.913 0.000 29.912 -0.000 29.912 0.0000

Strikes in percent. Prices in basis points

Table 2: Options on CMS Spread (10Y - 2Y). Price using full numerical integration, approximation
equation methodology and approximation solution to order 1 and 2. Market data as of 31 July 2009.

In Figure 2, the approximation error multiplied by the density is provided for CMS spreads
to the first and second order. For the second order approximation, note the relatively high error
around the exercise boundary. On a very thin band the exercise strategy is not the same between
the exact function and the first order approximation. The probability is very small (10−4% in the
example). On that small set the error is of the order of magnitude of the value of the first order
error. That small set is visible in Figure 2(b) as the thin dark double ellipse on the right.

7. CONCLUSION

We propose two different approaches to CMS pricing in HJM Gaussian models. The first one is
based on the exact solution of an approximated equation. The approximation is obtained by an
initial freeze of some low variance quantities. A similar approach for other models can be found
in the literature. The second approach is based on a solution approximation for the exact equation.
The second approach allows higher order approximations.

We showed that our different approximations lead to small approximation errors. The first
order approximation errors are of the order of magnitude of 0.1 vega and as precise as the best
input data. The second order approximation is one or two order of magnitude more precise and
can be as small as 0.001 vega.

Moreover our second approach allows to price very generic European pay-off based instru-
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Figure 2: Approximation error multiplied by the density. CMS spread 10Y-2Y for a 5Y maturity.
Strike ATM-10 bps.

ments of CMS-like rates. Exotic options can be priced in a multi-factor HJM with explicit formu-
lae. The formulae for CMS and CMS spreads are also explicit and allow efficient model calibration
to those products if necessary. The traditional pricing of CMS spreads using two log-normal assets
can be replaced by the pricing in a full term structure model.
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Abstract

In this article we develop a method for the strong approximation of stochastic differential equa-
tions (SDEs) driven by Lévy processes or general semimartingales. The main ingredients of
our method is the perturbation of the SDE and the Taylor expansion of the resulting parameter-
ized curve. We apply this method to develop strong approximation schemes for LIBOR market
models. In particular, we derive fast and precise algorithms for the valuation of derivatives in
LIBOR models which are more tractable than the simulation of the full SDE. A numerical
example for the Lévy LIBOR model illustrates our method.

1. INTRODUCTION

The main aim of this paper is to develop a general method for the strong approximation of stochas-
tic differential equations (SDEs) and to apply it to the valuation of options in LIBOR models. The
method is based on the perturbation of the initial SDE by a real parameter, and then on the Taylor
expansion of the resulting parameterized curve around zero. Thus, we follow the line of thought of
Siopacha and Teichmann (2010) and extend their results from continuous to general semimartin-
gales. The motivation for this work comes from LIBOR market models; in particular, we consider
the Lévy LIBOR model as the basic paradigm for the development of this method.

The LIBOR market model has become a standard model for the pricing of interest rate deriva-
tives in recent years. The main advantage of the LIBOR model in comparison to other approaches
is that the evolution of discretely compounded, market-observable forward rates is modeled di-
rectly and not deduced from the evolution of unobservable factors. Moreover, the log-normal
LIBOR model is consistent with the market practice of pricing caps according to Black’s formula
(cf. Black (1976)). However, despite its apparent popularity, the LIBOR market model has certain
well-known pitfalls.

47
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On the one hand, the log-normal LIBOR model is driven by a Brownian motion, hence it
cannot be calibrated adequately to the observed market data. An interest rate model is typically
calibrated to the implied volatility surface from the cap market and the correlation structure of at-
the-money swaptions. Several extensions of the LIBOR model have been proposed in the literature
using jump-diffusions, Lévy processes or general semimartingales as the driving motion (cf. e.g.
Glasserman and Kou (2003), Eberlein and Özkan (2005), Jamshidian (1999)), or incorporating
stochastic volatility effects (cf. e.g. Andersen and Brotherton-Ratcliffe (2005)).

On the other hand, the dynamics of LIBOR rates are not tractable under every forward measure
due to the random terms that enter the dynamics of LIBOR rates during the construction of the
model. In particular, when the driving process has continuous paths the dynamics of LIBOR rates
are tractable under their corresponding forward measure, but they are not tractable under any other
forward measure. When the driving process is a general semimartingale, then the dynamics of
LIBOR rates are not even tractable under their very own forward measure. Consequently:

1. if the driving process is a continuous semimartingale caplets can be priced in closed form,
but not swaptions or other multi-LIBOR derivatives;

2. if the driving process is a general semimartingale, then even caplets cannot be priced in
closed form.

The standard remedy to this problem is the so-called “frozen drift” approximation, where one
replaces the random terms in the dynamics of LIBOR rates by their deterministic initial values; it
was first proposed by Brace et al. (1997) for the pricing of swaptions and has been used by several
authors ever since. Brace et al. (2001), Dun et al. (2001) and Schlögl (2002) argue that freezing
the drift is justified, since the deviation from the original equation is small in several measures.

Although the frozen drift approximation is the simplest and most popular solution, it is well-
known that it does not yield acceptable results, especially for exotic derivatives and longer hori-
zons. Therefore, several other approximations have been developed in the literature; in one line
of research Daniluk and Ga̧tarek (2005) and Kurbanmuradov et al. (2002) are looking for the best
lognormal approximation of the forward LIBOR dynamics; cf. also Schoenmakers (2005). Other
authors have been using linear interpolations and predictor-corrector Monte Carlo methods to get
a more accurate approximation of the drift term (cf. e.g. Pelsser et al. (2005), Hunter et al. (2001)
and Glasserman and Zhao (2000)). We refer the reader to Joshi and Stacey (2008) for a detailed
overview of that literature, and for some new approximation schemes and numerical experiments.

Although most of this literature focuses on the lognormal LIBOR market model, Glasserman
and Merener (2003a,b) have developed approximation schemes for the pricing of caps and swap-
tions in jump-diffusion LIBOR market models.

In this article we develop a general method for the approximation of the random terms that
enter into the drift of LIBOR models. In particular, by perturbing the SDE for the LIBOR rates
and applying Taylor’s theorem we develop a generic approximation scheme; we concentrate here
on the first order Taylor expansion, although higher order expansions can be considered in the same
framework. At the same time, the frozen drift approximation can be embedded in this method as the
zero-order Taylor expansion, thus offering a theoretical justification for this approximation. The
method we develop yields more accurate results than the frozen drift approximation, while being
computationally simpler than the simulation of the full SDE for the LIBOR rates. Moreover, our
method is universal and can be applied to any LIBOR model driven by a general semimartingale.
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However, we focus on the Lévy LIBOR model as a characteristic example of a LIBOR model
driven by a general semimartingale.

The article is structured as follows: in section 2 we review time-inhomogeneous Lévy process,
and in section 3 we revisit the Lévy LIBOR model. In section 4 we describe the dynamics of
log-LIBOR rates under the terminal martingale measure and express them as a Lévy-driven SDE.
In section 5 we develop the strong Taylor approximation method and apply it to the Lévy LIBOR
model. Finally, section 6 contains a numerical illustration.

2. LÉVY PROCESSES

Let (Ω,F ,F, IP) be a complete stochastic basis, where F = FT∗ and the filtration F = (Ft)t∈[0,T∗]

satisfies the usual conditions; we assume that T∗ ∈ R>0 is a finite time horizon. The driving
process H = (Ht)0≤t≤T∗ is a process with independent increments and absolutely continuous
characteristics; this is also called a time-inhomogeneous Lévy process. That is, H is an adapted,
càdlàg, real-valued stochastic process with independent increments, starting from zero, where the
law of Ht, t ∈ [0, T∗], is described by the characteristic function

IE
[
eiuHt

]
= exp

(∫ t

0

[
ibsu − cs

2
u2 +

∫

R
(eiux − 1 − iux)Fs(dx)

]
ds

)
; (1)

here bt ∈ R, ct ∈ R>0 and Ft is a Lévy measure, i.e. satisfies Ft({0}) = 0 and
∫

R(1∧|x|2)Ft(dx) <
∞, for all t ∈ [0, T∗]. In addition, the process H satisfies Assumptions (AC) and (EM) given
below.

Assumption (AC). The triplets (bt, ct, Ft) satisfy

∫ T∗

0

(
|bt| + ct +

∫

R
(1 ∧ |x|2)Ft(dx)

)
dt < ∞.

Assumption (EM). There exist constants M, ε > 0 such that for every u ∈ [−(1 + ε)M, (1 +
ε)M ] =: M ∫ T∗

0

∫

{|x|>1}
euxFt(dx)dt < ∞.

Moreover, without loss of generality, we assume that
∫
{|x|>1} euxFt(dx) < ∞ for all t ∈ [0, T∗]

and u ∈ M.

These assumptions render the process H = (Ht)0≤t≤T∗ a special semimartingale, therefore
it has the canonical decomposition (cf. Jacod and Shiryaev (2003, II.2.38), and Eberlein et al.
(2005))

H =

∫ ·

0

bsds +

∫ ·

0

√
csdWs +

∫ ·

0

∫

R
x(µH − ν)(ds, dx), (2)
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where µH is the random measure of jumps of the process H , ν is the IP-compensator of µH , and
W = (Wt)0≤t≤T∗ is a IP-standard Brownian motion. The triplet of predictable characteristics of
H with respect to the measure IP, T(H|IP) = (B, C, ν), is

B =

∫ ·

0

bsds, C =

∫ ·

0

csds, ν([0, ·] × A) =

∫ ·

0

∫

A

Fs(dx)ds,

where A ∈ B(R); the triplet (b, c, F ) represents the local characteristics of H . In addition,
the triplet of predictable characteristics (B, C, ν) determines the distribution of H , as the Lévy–
Khintchine formula (1) obviously dictates.

We denote by κs the cumulant generating function associated to the infinitely divisible distri-
bution with Lévy triplet (bs, cs, Fs), i.e. for z ∈ M and s ∈ [0, T∗]

κs(z) := bsz +
cs

2
z2 +

∫

R
(ezx − 1 − zx)Fs(dx). (3)

Using Assumption (EM) we can extend κs to the complex domain C, for z ∈ C with <z ∈ M,
and the characteristic function of Ht can be written as

IE
[
eiuHt

]
= exp

( ∫ t

0

κs(iu)ds

)
. (4)

If H is a Lévy process, i.e. time-homogeneous, then (bs, cs, Fs) – and thus also κs – do not depend
on s. In that case, κ equals the cumulant (log-moment) generating function of H1.

3. THE LÉVY LIBOR MODEL

The Lévy LIBOR model was developed by Eberlein and Özkan (2005), following the seminal
articles of Sandmann et al. (1995), Miltersen et al. (1997) and Brace et al. (1997) on LIBOR
market models driven by Brownian motion; see also Glasserman and Kou (2003) and Jamshidian
(1999) for LIBOR models driven by jump processes and general semimartingales respectively. The
Lévy LIBOR model is a market model where the forward LIBOR rate is modeled directly, and is
driven by a time-inhomogeneous Lévy process.

Let 0 = T0 < T1 < · · · < TN < TN+1 = T∗ denote a discrete tenor structure where δi =
Ti+1 − Ti, i ∈ {0, 1, . . . , N}. Consider a complete stochastic basis (Ω,F ,F, IPT∗) and a time-
inhomogeneous Lévy process H = (Ht)0≤t≤T∗ satisfying Assumptions (AC) and (EM). The
process H has predictable characteristics (0, C, νT∗) or local characteristics (0, c, F T∗), and its
canonical decomposition is

H =

∫ ·

0

√
csdW T∗

s +

∫ ·

0

∫

R
x(µH − νT∗)(ds, dx), (5)

where W T∗ is a IPT∗-standard Brownian motion, µH is the random measure associated with the
jumps of H and νT∗ is the IPT∗-compensator of µH . We further assume that the following condi-
tions are in force.
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(LR1) For any maturity Ti there exists a bounded, continuous, deterministic function λ(·, Ti) :
[0, Ti] → R, which represents the volatility of the forward LIBOR rate process L(·, Ti).
Moreover,

N∑

i=1

∣∣λ(s, Ti)
∣∣ ≤ M,

for all s ∈ [0, T∗], where M is the constant from Assumption (EM), and λ(s, Ti) = 0 for all
s > Ti.

(LR2) The initial term structure B(0, Ti), 1 ≤ i ≤ N + 1, is strictly positive and strictly decreas-
ing. Consequently, the initial term structure of forward LIBOR rates is given, for 1 ≤ i ≤ N ,
by

L(0, Ti) =
1

δi

(
B(0, Ti)

B(0, Ti + δi)
− 1

)
> 0.

The construction starts by postulating that the dynamics of the forward LIBOR rate with the
longest maturity L(·, TN) is driven by the time-inhomogeneous Lévy process H and evolve as
a martingale under the terminal forward measure IPT∗ . Then, the dynamics of the LIBOR rates
for the preceding maturities are constructed by backward induction; they are driven by the same
process H and evolve as martingales under their associated forward measures.

Let us denote by IPTi+1
the forward measure associated to the settlement date Ti+1, 0 ≤ i ≤ N .

The dynamics of the forward LIBOR rate L(·, Ti), for an arbitrary Ti, is given by

L(t, Ti) = L(0, Ti) exp

(∫ t

0

bL(s, Ti)ds +

∫ t

0

λ(s, Ti)dHTi+1
s

)
, (6)

where HTi+1 is a special semimartingale with canonical decomposition

H
Ti+1

t =

∫ t

0

√
csdW Ti+1

s +

∫ t

0

∫

R
x(µH − νTi+1)(ds, dx). (7)

Here W Ti+1 is a IPTi+1
-standard Brownian motion and νTi+1 is the IPTi+1

-compensator of µH . The
dynamics of an arbitrary LIBOR rate again evolves as a martingale under its corresponding forward
measure; therefore, we specify the drift term of the forward LIBOR process L(·, Ti) as

bL(s, Ti) = −1

2
λ2(s, Ti)cs −

∫

R

(
eλ(s,Ti)x − 1 − λ(s, Ti)x

)
F Ti+1

s (dx). (8)

The forward measure IPTi+1
, which is defined on (Ω,F , (Ft)0≤t≤Ti+1

), is related to the terminal
forward measure IPT∗ via

dIPTi+1

dIPT∗

=
N∏

l=i+1

1 + δlL(Ti+1, Tl)

1 + δlL(0, Tl)
=

B(0, T∗)

B(0, Ti+1)

N∏

l=i+1

(1 + δlL(Ti+1, Tl)) . (9)
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The IPTi+1
-Brownian motion W Ti+1 is related to the IPT∗-Brownian motion via

W
Ti+1

t = W
Ti+2

t −
∫ t

0

α(s, Ti+1)
√

csds = . . .

= W T∗
t −

∫ t

0

(
N∑

l=i+1

α(s, Tl)

)
√

csds, (10)

where

α(t, Tl) =
δlL(t−, Tl)

1 + δlL(t−, Tl)
λ(t, Tl). (11)

The IPTi+1
-compensator of µH , νTi+1 , is related to the IPT∗-compensator of µH via

νTi+1(ds, dx) = β(s, x, Ti+1)ν
Ti+2(ds, dx) = . . .

=

(
N∏

l=i+1

β(s, x, Tl)

)
νT∗(ds, dx), (12)

where

β(t, x, Tl, ) =
δlL(t−, Tl)

1 + δlL(t−, Tl)

(
eλ(t,Tl)x − 1

)
+ 1. (13)

Remark 3.1 Notice that the process HTi+1 , driving the forward LIBOR rate L(·, Ti), and H =
HT∗ have the same martingale part and differ only in the finite variation part (drift). An application
of Girsanov’s theorem for semimartingales yields that the IPTi+1

-finite variation part of H is

∫ ·

0

cs

N∑

l=i+1

α(s, Tl)ds +

∫ ·

0

∫

R
x

(
N∏

l=i+1

β(s, x, Tl) − 1

)
νT∗(ds, dx).

Remark 3.2 The process H = HT∗ driving the most distant LIBOR rate L(·, TN) is – by assump-
tion – a time-inhomogeneous Lévy process. However, this is not the case for any of the processes
HTi+1 driving the remaining LIBOR rates, because the random terms δlL(t−,Tl)

1+δlL(t−,Tl)
enter into the

compensators νTi+1 during the construction; see equations (12) and (13).

4. TERMINAL MEASURE DYNAMICS AND LOG-LIBOR RATES

In this section we derive the stochastic differential equation that the dynamics of log-LIBOR rates
satisfy under the terminal measure IPT∗ . This will be the starting point for the approximation
method that will be developed in the next section. Of course, we could consider the SDE as the
defining point for the model, as is often the case in stochastic volatility LIBOR models, cf. e.g.
Andersen and Brotherton-Ratcliffe (2005).
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Starting with the dynamics of the LIBOR rate L(·, Ti) under the forward martingale measure
IPTi+1

, and using the connection between the forward and terminal martingale measures (cf. eqs.
(10)–(13) and Remark 3.1), we have that the dynamics of the LIBOR rate L(·, Ti) under the termi-
nal measure are given by

L(t, Ti) = L(0, Ti) exp

(∫ t

0

b(s, Ti)ds +

∫ t

0

λ(s, Ti)dHs

)
, (14)

where H = (Ht)0≤t≤T∗ is the IPT∗-time-inhomogeneous Lévy process driving the LIBOR rates, cf.
(5). The drift term b(·, Ti) has the form

b(s, Ti) = −1

2
λ2(s, Ti)cs − csλ(s, Ti)

N∑

l=i+1

δlL(s−, Tl)

1 + δlL(s−, Tl)
λ(s, Tl)

−
∫

R

((
eλ(s,Ti)x − 1

) N∏

l=i+1

β(s, x, Tl) − λ(s, Ti)x

)
F T∗

s (dx), (15)

where β(s, x, Tl) is given by (13). Note that the drift term of (14) is random, therefore we are
dealing with a general semimartingale, and not with a Lévy process. Of course, L(·, Ti) is not a
IPT∗-martingale, unless i = N (where we use the conventions

∑0
l=1 = 0 and

∏0
l=1 = 1).

Let us denote by Z the log-LIBOR rates, that is

Z(t, Ti) := log L(t, Ti)

= Z(0, Ti) +

∫ t

0

b(s, Ti)ds +

∫ t

0

λ(s, Ti)dHs, (16)

where Z(0, Ti) = log L(0, Ti) for all i ∈ {1, . . . , N}. We can immediately deduce that Z(·, Ti)
is a semimartingale and its triplet of predictable characteristics under IPT∗ , T(Z(·, Ti)|IPT∗) =
(Bi, Ci, νi), is described by

Bi =

∫ ·

0

b(s, Ti)ds

Ci =

∫ ·

0

λ2(s, Ti)csds (17)

1A(x) ∗ νi = 1A

(
λ(s, Ti)x

)
∗ νT∗ , A ∈ B(R\{0}).

The assertion follows from the canonical decomposition of a semimartingale and the triplet of
characteristics of the stochastic integral process; see, for example, Proposition 1.3 in Papapan-
toleon (2007).

Hence, the log-LIBOR rates satisfy the following linear SDE

dZ(t, Ti) = b(t, Ti)dt + λ(t, Ti)dHt, (18)

with initial condition Z(0, Ti) = log L(0, Ti).

Remark 4.1 Note that the martingale part of Z(·, Ti), i.e. the stochastic integral
∫ ·

0
λ(s, Ti)dHs,

is a time-inhomogeneous Lévy process. However, the random drift term destroys the Lévy property
of Z(·, Ti), as the increments are no longer independent.
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5. STRONG TAYLOR APPROXIMATION AND APPLICATIONS

The aim of this section is to strongly approximate the stochastic differential equations for the
dynamics of LIBOR rates under the terminal measure. This pathwise approximation is based on
the strong Taylor approximation of the random processes L(·, Tl), i + 1 ≤ l ≤ N in the drift
b(·, Ti) of the semimartingale driving the LIBOR rates L(·, Ti); cf. equations (14)–(16). The idea
behind the strong Taylor approximation is the perturbation of the initial SDE by a real parameter
and a classical Taylor expansion around this parameter, with usual conditions for convergence (cf.
Definition 5.1).

5.1. Definition

We introduce a parameter ε ∈ R and will approximate the terms

L(t−, Tl)

which cause the drift term to be random, by their first-order strong Taylor approximation; cf.
Lemma 5.1. Note that the map x 7→ δlx

1+δlx
, appearing in the drift, is globally Lipschitz with

Lipschitz constant δ∗ = maxl δl.
The following definition of the strong Taylor approximation is taken by Siopacha (2006); see

also Siopacha and Teichmann (2010). Consider a smooth curve ε 7→ Wε, where ε ∈ R and
Wε ∈ L2(Ω; R).

Definition 5.1 A strong Taylor approximation of order n ≥ 0 is a (truncated) power series

Tn(Wε) :=
n∑

k=0

εk

k!

∂k

∂εk

∣∣∣
ε=0

Wε

such that

IE [|Wε − Tn(Wε)|] = o(εn),

holds true as ε → 0.

Then, for Lipschitz functions f : R → R>0 with Lipschitz constant k we get the following
error estimate:

IE[|f(Wε) − f(Tn(Wε))|] ≤ kIE[|Wε − Tn(Wε)|] = ko(εn). (19)

Remark 5.1 It is important to point out that motivated by the idea of the Taylor series we perform
an expansion around ε = 0 and the estimate (19) is valid. However, for the pathwise approximation
of LIBOR rates we are interested in the region ε ≈ 1, and hope that the expansion yields adequate
results; for ε = 0 we would simply recover the “frozen drift” approximation. Numerical experi-
ments show that this approach indeed yields better results than the “frozen drift” approximation;
cf. section 6.
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5.2. Strong Taylor approximation

In this section we develop a strong Taylor approximation scheme for the dynamics of log-LIBOR
rates. Let us introduce the auxiliary process Xε(·, Ti) = (Xε(t, Ti))0≤t≤Ti

with initial values
Xε(0, Ti) = L(0, Ti) for all i ∈ {0, . . . , N} and all ε ∈ R. The dynamics of Xε(·, Ti) is described
by perturbing the SDE of the log-LIBOR rates by the perturbation parameter ε ∈ R:

dXε(t, Ti) = ε
(
b(t, Ti; X

ε(t))dt + λ(t, Ti)dHt

)
, (20)

where the drift term b(·, Ti; X
ε(·)) is given by (15). The term Xε(·) in b(·, Ti; X

ε(·)) emphasizes
that the drift term depends on all subsequent processes Xε(·, Ti+1), . . . , X

ε(·, TN), which are also
perturbed by ε. Note that for ε = 1 the processes X1(·, Ti) and Z(·, Ti) are indistinguishable.

Remark 5.2 In the sequel we will use the notation T as shorthand for T1.

Lemma 5.1 The first-order strong Taylor approximation of the random variable Xε(t, Ti) is given
by:

T
(
Xε(t, Ti)

)
= log L(0, Ti) + ε

∂

∂ε

∣∣
ε=0

Xε(t, Ti), (21)

where the first variation process ∂
∂ε
|ε=0X

ε(·, Ti) =: Y (·, Ti) of Xε(·, Ti) is a time-inhomogeneous
Lévy process with local characteristics

bYi
s = b(s, Ti; X(0))

cYi
s = λ2(s, Ti)cs (22)∫

1A(x)F Yi
s (dx) =

∫
1A

(
λ(s, Ti)x

)
F T∗

s (dx), A ∈ B(R).

Proof. By definition, the first-order strong Taylor approximation is given by the truncated power
series

T
(
Xε(t, Ti)

)
= X0(t, Ti) + ε

∂

∂ε

∣∣
ε=0

Xε(t, Ti). (23)

Since the curves ε 7→ Xε(t, Ti) are smooth, and Xε(t, Ti) ∈ L2(Ω) by Assumption (EM), we get
that strong Taylor approximations of arbitrary order can always be obtained, cf. Kriegl and Michor
(1997, Chapter 1). In particular, for the first-order expansion we have that

IE
[
|Xε(t, Ti) − T

(
Xε(t, Ti)

)
|
]

= o(ε).

The zero-order term of the Taylor expansion trivially satisfies

X0(t, Ti) = X0(0, Ti) for all t, since dX0(t, Ti) = 0.

Of course, the initial values of the perturbed SDE coincide with the initial values of the un-
perturbed SDE, hence X0(0, Ti) = L(0, Ti) =: X(0, Ti).

The first variation process of Xε(·, Ti) with respect to ε is derived by differentiating (20); hence,
the dynamics is

d
( ∂

∂ε

∣∣∣
ε=0

Xε(t, Ti)
)

= b(t, Ti; X
ε(t))|ε=0dt + λ(t, Ti)dHt

= b(t, Ti; X(0))dt + λ(t, Ti)dHt. (24)
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We can immediately notice that in the drift term b(·, Ti; X(0)) of the first variation process, the
random terms Xε(t, Ti) are replaced by their deterministic initial values X(0, Ti) = Z(0, Ti).

Let us denote by Y (·, Ti) the first variation process of Xε(·, Ti). The solution of the linear SDE
(24) describing the dynamics of the first variation process yields

Y (t, Ti) =

∫ t

0

b(s, Ti; X(0))ds +

∫ t

0

λ(s, Ti)dHs. (25)

Since the drift term is deterministic and H is a time-inhomogeneous Lévy process we can conclude
that Y (·, Ti) is itself a time-inhomogeneous Lévy process. The local characteristics of Y (·, Ti) are
described by (22).

To summarize, by setting ε = 1 in Lemma 5.1, we have developed the following approximation
scheme for the logarithm of the random terms X1(·, Ti) = Z(·, Ti) entering the drift:

TX(t, Ti) = log L(0, Ti) +

∫ t

0

b(s, Ti; X(0))ds +

∫ t

0

λ(s, Ti)dHs. (26)

Comparing (26) with (16) it becomes evident that we are approximating the semimartingale Z(·, Ti)
with the time-inhomogeneous Lévy process TX(·, Ti).

Remark 5.3 A consequence of this approximation scheme is that we can embed the “frozen drift”
approximation into our method. Indeed, the “frozen drift” approximation is the zero-order Taylor
approximation, i.e. X1(t, Ti) ≈ log L(0, Ti). The dynamics of LIBOR rates using this approxima-
tion will be denoted by L̂0(·, Ti).

5.3. Application to LIBOR models

In this section, we will apply the strong Taylor approximation of the log-LIBOR rates Z(·, Ti) by
TX(·, Ti) in order to derive a strong, i.e. pathwise, approximation for the dynamics of log-LIBOR
rates. That is, we replace the random terms in the drift b(·, Ti; Z(·)) by the Lévy process TX(·, Ti)
instead of the semimartingale Z(·, Ti). Therefore, the dynamics of the approximate log-LIBOR
rates Ẑ(·, Ti) are given by

Ẑ(t, Ti) = Z(0, Ti) +

∫ t

0

b(s, Ti;TX(s))ds +

∫ t

0

λ(s, Ti)dHs, (27)

where the drift term is provided by

b(s, Ti;TX(s)) = −1

2
λ2(s, Ti)cs − csλ(s, Ti)

N∑

l=i+1

δle
TX(s−,Tl)

1 + δleTX(s−,Tl)
λ(s, Tl)

−
∫

R

((
eλ(s,Ti)x − 1

) N∏

l=i+1

β̂(s, x, Tl) − λ(s, Ti)x

)
F T∗

s (dx), (28)

with

β̂(t, x, Tl, ) =
δl exp

(
TX(t−, Tl)

)

1 + δl exp
(
TX(t−, Tl)

)
(
eλ(t,Tl)x − 1

)
+ 1. (29)
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T 0.5 Y 1 Y 1.5 Y 2 Y 2.5 Y
B(0, T ) 0.9833630 0.9647388 0.9435826 0.9228903 0.9006922

T 3 Y 3.5 Y 4 Y 4.5 Y 5 Y
B(0, T ) 0.8790279 0.8568412 0.8352144 0.8133497 0.7920573

Table 1: Euro zero coupon bond prices on February 19, 2002.

The main advantage of the strong Taylor approximation is that the resulting SDE for Ẑ(·, Ti)
can be simulated more easily than the equation for Z(·, Ti). Indeed, looking at (18) and (15)
again, we can observe that each LIBOR rate L(·, Ti) depends on all subsequent rates L(·, Tl),
i + 1 ≤ l ≤ N . Hence, in order to simulate L(·, Ti), we should start by simulating the furthest
rate in the tenor and proceed iteratively from the end. On the contrary, the dynamics of Ẑ(·, Ti)
depend only on the Lévy processes TX(·, Tl), i+1 ≤ l ≤ N , which are independent of each other.
Hence, we can use parallel computing to simulate all approximate LIBOR rates simultaneously.
This significantly increases the speed of the Monte Carlo simulations while, as the numerical
example reveals, the empirical performance is very satisfactory.

Remark 5.4 Let us point out that this method can be applied to any LIBOR model driven by a
general semimartingale. Indeed, the properties of Lévy processes are not essential in the proof of
Lemma 5.1 or in the construction of the LIBOR model. If we start with a LIBOR model driven by a
general semimartingale, then the structure of this semimartingale will be “transferred” to the first
variation process, and hence also to the dynamics of the strong Taylor approximation.

6. NUMERICAL ILLUSTRATION

The aim of this section is to demonstrate the accuracy and efficiency of the Taylor approximation
scheme for the valuation of options in the Lévy LIBOR model compared to the “frozen drift”
approximation. We will consider the pricing of caps and swaptions, although many other interest
rate derivatives can be considered in this framework.

We revisit the numerical example in Kluge (2005, pp. 76-83). That is, we consider a tenor
structure T0 = 0, T1 = 1

2
, T2 = 1 . . . , T10 = 5 = T∗, constant volatilities

λ(·, T1) = 0.20 λ(·, T2) = 0.19 λ(·, T3) = 0.18

λ(·, T4) = 0.17 λ(·, T5) = 0.16 λ(·, T6) = 0.15

λ(·, T7) = 0.14 λ(·, T8) = 0.13 λ(·, T9) = 0.12

and the discount factors (zero coupon bond prices) as quoted on February 19, 2002; cf. Table 1.
The tenor length is constant and denoted by δ = 1

2
.

The driving Lévy process H is a normal inverse Gaussian (NIG) process with parameters
α = δ̄ = 1.5 and µ = β = 0. We denote by µH the random measure of jumps of H and by
ν(dt, dx) = F (dx)dt the IPT∗-compensator of µH , where F is the Lévy measure of the NIG pro-
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cess. The necessary conditions are satisfied because M = α, hence
∑9

i=1 |λ(·, Ti)| = 1.44 < α
and λ(·, Ti) < α

2
, for all i ∈ {1, . . . , 9}.

The NIG Lévy process is a pure-jump Lévy process and, for µ = 0, has the canonical decom-
position

H =

∫ ·

0

∫

R
x(µH − ν)(ds, dx).

The cumulant generating function of the NIG distribution is

κ(u) = δ̄α − δ̄
√

α2 − u2,

for all u ∈ C with |<u| ≤ α.

6.1. Caplets

The price of a caplet with strike K maturing at time Ti, using the relationship between the terminal
and the forward measures cf. (9), can be expressed as

C0(K, Ti) = δB(0, Ti+1) IEIPTi+1
[(L(Ti, Ti) − K)+]

= δB(0, Ti+1) IEIPT∗

[dIPTi+1

dIPT∗

∣∣
FTi

(L(Ti, Ti) − K)+
]

= δB(0, T∗) IEIPT∗

[ N∏

l=i+1

(
1 + δL(Ti, Tl)

)
(L(Ti, Ti) − K)+

]
. (30)

This equation will provide the actual prices of caplets corresponding to simulating the full SDE for
the LIBOR rates. In order to calculate the first-order Taylor approximation prices for a caplet we
have to replace L(·, T·) in (30) with L̂(·, T·). Similarly, for the frozen drift approximation prices
we must use L̂0(·, T·) instead of L(·, T·).

We will compare the performance of the strong Taylor approximation relative to the frozen
drift approximation in terms of their implied volatilities. In Figure 1 we present the difference
in implied volatility between the full SDE prices and the frozen drift prices, and between the full
SDE prices and the strong Taylor prices. One can immediately observe that the strong Taylor
approximation method performs much better than the frozen drift approximation; the difference in
implied volatilities is very low across all strikes and maturities. Indeed, the difference in implied
volatility between the full SDE and the strong Taylor prices lies always below the 1% threshold,
which deems this approximation accurate enough for practical implementations. On the contrary,
the difference in implied volatilities for the frozen drift approximation exceeds the 1% level for
in-the-money options.

6.2. Swaptions

Next, we will consider the pricing of swaptions. Recall that a payer (resp. receiver) swaption can
be viewed as a put (resp. call) option on a coupon bond with exercise price 1; cf. section 16.2.3
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Figure 1: Difference in implied volatility between the full SDE and the frozen drift prices (left),
and the full SDE and the strong Taylor prices (right).

and 16.3.2 in Musiela and Rutkowski (1997). Consider a payer swaption with strike rate K, where
the underlying swap starts at time Ti and matures at Tm (i < m ≤ N ). The time-Ti value is

STi
(K, Ti, Tm) =

(
1 −

m∑

k=i+1

ckB(Ti, Tk)

)+

=

(
1 −

m∑

k=i+1

(
ck

k−1∏

l=i

1

1 + δL(Ti, Tl)

))+

, (31)

where

ck =

{
K, i + 1 ≤ k ≤ m − 1,
1 + K, k = m.

Then, the time-0 value of the swaption is obtained by taking the IPTi
-expectation of its time-Ti

value, that is

S0 = S0(K, Ti, Tm)

= B(0, Ti) IEIPTi



(

1 −
m∑

k=i+1

(
ck

k−1∏

l=i

1

1 + δL(Ti, Tl)

))+



= B(0, T∗) IEIPT∗




N∏

l=i

(
1 + δL(Ti, Tl)

)
(

1 −
m∑

k=i+1

(
ck

k−1∏

l=i

1

1 + δL(Ti, Tl)

))+

 ,

hence

S0 = B(0, T∗) IEIPT∗



(
−

m∑

k=i

(
ck

N∏

l=k

(1 + δL(Ti, Tl))

))+

 , (32)

where ci := −1. Once again, this equation will provide the actual prices of swaptions correspond-
ing to simulating the full SDE for the LIBOR rates. In order to calculate the first-order Taylor
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Figure 2: Difference in swaption prices between the full SDE and the frozen drift method (left),
and the full SDE and the strong Taylor method (right).

approximation prices we have to replace L(·, T·) with L̂(·, T·), and for the frozen drift approxima-
tion prices we must use L̂0(·, T·) instead of L(·, T·).

We will price eight swaptions in our tenor structure; we consider 1 year and 2 years as option
maturities, and then use 12, 18, 24 and 30 months as swap maturities for each option. Similarly to
the simulations we performed for caplets, we will simulate the prices of swaptions using all three
methods and compare their differences; these can be seen in Figure 2. Once again we observe that
the strong Taylor method is performing very well across all strikes, option maturities and swap
maturities, while the performance of the frozen drift method is poor for in-the-money swaptions
and seems to be deteriorating for longer swap maturities. This observation is in accordance with
the common knowledge that the frozen drift approximation is performing worse and worse for
longer maturities.
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We introduce a dynamic proportional reinsurance strategy in a non-life portfolio in which the
retention level k, instead of being constant, depends on the level of the surplus. With this strategy
the insurer can reduce the probability of ruin for some predetermined level of initial capital relative
to the option of not reinsuring and the option of applying a proportional reinsurance. Therefore,
if the manager of the portfolio chooses this dynamic reinsurance strategy, a reduction in the initial
capital investment can be achieved while maintaining the solvency level.

1. INTRODUCTION

In a non-life insurance portfolio, the manager must make decisions that ensure the business’s
technical solvency, i.e., that ensure a sufficient level of technical reserves to cover the payment
of claims. Ruin theory models allow taking the long-term view in analyzing a portfolio’s current
solvency and making the necessary decisions. In this sense, these models are in many aspects
superior to models that focus on the short term. In particular, classical ruin theory represents the
level of reserves R(t) at any given time t as

R(t) = u + ct − S(t)

where u is the initial level of reserves, i.e., the initial capital which allows the portfolio to operate,
c is the cash inflow rate from premiums on the portfolio at each instant, and S(t) is the sum of the
claims that have occurred up to time t. The aggregate sum of the claims up to time t is estimated

as S(t) =
N(t)∑

i=1

Xi, where N(t) is the stochastic process of the number of claims up to time t, and

Xi the amount of the ith claim. The classical hypotheses are that the amounts of the individual
claims are identical and independently distributed, and that they are independent of the number of
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claims, so that S(t) is a compound process. If it also assumed, as is usual, that N(t) is a Poisson
process of rate λ, then S(t) is a compound Poisson process.

The premium is calculated as the expected loss rate increased by a “loading” coefficient, ρ > 0
to satisfy the “net profit” condition, and is given by

c = λE[X](1 + ρ).

One of the measures used to assess the solvency of the portfolio is the probability of ruin ψ(u),
i.e., the probability that the reserves are negative,

ψ(u) = P [R(t) < 0|R(0) = u].

With a reinsurance treaty (or contract), the insurer cedes a part of the premiums to the reinsur-
ers, and accordingly also a part of the losses. In a proportional treaty, the insurer keeps a certain
fraction of all claims k ∈ (0, 1], the retention ratio, and the reinsurers takes the remaining (1 − k).

In their treaty with the insurer, the reinsurers also apply a loading coefficient ρR > 0, so that
the net reinsurance premium for the insurer is

c′ = c− (1 − k)(1 + ρR)λE[X].

It is normally assumed that ρR > ρ > 0, because if ρR ≤ ρ, the insurer would simply cede his
entire portfolio to the reinsurers, a situation which would be senseless. This net premium thus
defines a new real loading coefficient for the insurer,

ρN =
c′

kλE[X]
− 1 = ρR −

ρR − ρ

k
.

The “net profit” condition for the loading coefficient (ρN > 0) imposes a natural limit on the
proportion retained by the insurer, so that

ρR − ρ

ρR

< k ≤ 1, ρR > ρ > 0.

Studies of the effect of reinsurance strategy on solvency measures have concentrated their
attention on the ultimate ruin probability. Several of them analyze the effect of reinsurance on
the adjustment coefficient or Lundberg exponent, see Waters (1979), Centeno (2002), Hesselager
(1990).

Many authors have considered the problem of determining the optimal level and/or type of
reinsurance, where optimal is defined in terms of some stability criterion, mainly the probability
of ruin, see e.g. Waters (1983), Goovaerts et al. (1989), Verlaak and Beirlant (2003), Schmidli
(2002), Hipp and Vogt (2003), Taksar and Markussen (2003).

The reinsurance strategy considered may be static or dynamic. In the first case, it is assumed
that the level and type of reinsurance remain constant throughout the period considered, where this
period in many cases is infinite, see Centeno (2005), Dickson and Waters (1996). In the dynamic
case, we can find papers assuming that for a fixed type of reinsurance the level of reinsurance can
change continuously, see Hojgaard and Taksar (1998), Schmidli (2002), Hipp and Vogt (2003). In
these papers, optimal stochastic control tools in continuous time are used. Dickson and Waters
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(2006) assume that the insurer can change the type and/or level of reinsurance at the start of each
year, so they studied a discrete time stochastic control problem.

In this paper we introduce a dynamic reinsurance strategy and we obtain the ruin probability
when the individual claim amount is distributed exponentially. Before that, we remind the ex-
pression of ruin probability when the individual claim amount follows a unit-mean exponential
distribution,

ψ(u) =
1

1 + ρ
e
− ρ

1+ρ
u
, ∀u ≥ 0. (1)

If we include a proportional reinsurance, the ruin probability can be obtained directly from (1),

ψR(u, k) =
1

1 + ρN

e
−

ρN
k(1+ρN )

u
, ∀u ≥ 0.

If the manager’s objective is to optimize the portfolio’s solvency by minimizing the probability of
ruin, the control variable related to reinsurance is the retention ratio.

2. THRESHOLD PROPORTIONAL REINSURANCE

In this paper we introduce a dynamic proportional reinsurance strategy in which the retention ratio,
k, instead of being constant, depends on the level of the surplus. Then the threshold proportional
strategy we define is as follows: the retention ratio applied is k1 whenever the reserves are less
than a determined threshold b, and k2 otherwise.

Since, for the insurer, reinsurance is a tool for controlling the solvency of the portfolio, it seems
natural that the retention ratio should depend on the current level of surplus. The threshold pro-
portional reinsurance strategy that we propose is a straightforward and transparent way to include
this dependence. The fractions k1 and k2 define two new net premium loading coefficients for the
insurer, ρ1 and ρ2. For a graphical illustration, see Figure 1.
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Figure 1: Threshold Proportional Reinsurance
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With this new reinsurance strategy, the probability of ruin behaves differently, depending on
whether its initial surplus u is below or above the level b,

ψ(u) =

{
ψ1(u) 0 ≤ u < b

ψ2(u) u ≥ b .

The explicit expression of the ruin probability can be found in Mármol et al. (2009) when the
individual claim amount is distributed as an exponential with unitary mean.

Threshold proportional reinsurance includes standard proportional reinsurance (k1 = k2 = k)
as a particular case, and therefore also the option of not reinsuring (k1 = k2 = k = 1).

For fixed values of the parameters (λ, ρ and ρR), we can find the optimal threshold proportional
reinsurance that minimize the probability of ruin in a numerical way. In the optimal solution, k1

is different from k2, so with this new threshold reinsurance strategy the insurer can reduce his
probability of ruin for some predetermined level of initial capital relative to the other options:
no reinsurance or applying proportional reinsurance. This optimality of threshold proportional
reinsurance also implies that, if the manager wants to obtain this minimal probability of ruin but
with proportional reinsurance or no reinsurance, he will need more initial capital. The relative
increase in the initial reserves to achieve this optimal probability of ruin can be considered as the
cost of the options of proportional reinsurance and no reinsurance as against threshold proportional
reinsurance. For example, when λ = 1, ρ = 0.15 and ρR = 0.25, for u = 4, if the manager
chooses the optimal threshold proportional reinsurance he achieves a probability of ruin of 49.8%.
If he chooses proportional reinsurance with the optimal fixed retention percentage, to achieve this
probability of ruin he will need a 4.075% more initial capital, and if he chooses not to reinsure, his
financial requirement to initiate the business would be increased by 6.8%.

3. CONCLUSION

The threshold proportional reinsurance strategy consists of applying a retention ratio that depends
on the level of reserves. It allows a better management of the initial capital compared with the
options of proportional reinsurance and no reinsurance. With this new strategy, one achieves either
a higher level of solvency while maintaining the same initial capital invested in the portfolio, or a
reduction in the initial capital investment while maintaining the same level of solvency.
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In recent years the market in long-dated FX options has grown considerably. Currently the
most traded and liquid long-dated FX Hybrid products are so-called Power-Reverse Dual-Currency
swaps (PRDC) (see for example Piterbarg (2006)) as well as vanilla or exotic long-dated products
such as barrier options. While for short-dated options (less than 1 year), assuming constant inter-
est rates does not lead to significant mispricing, for long-dated options the effect of interest rate
volatility becomes increasingly pronounced with increasing maturity and can become as important
as FX spot volatility. Most dealers are using a three-factor pricing model for long-dated FX prod-
ucts where the FX spot is locally governed by a geometric Brownian motion, and where each of
the domestic and foreign interest rates follows a Hull-White one factor Gaussian model (Hull and
White (1993)). However using such a model does not allow the volatility smile and skew effect
encountered in the FX market to be taken into account, and is therefore not appropriate to price
and hedge long-dated FX products.

Different methods exist to incorporate smile and skew effects in the three-factor pricing model.
In the literature, one can find different approaches which consist of either using a stochastic volatil-
ity for the FX spot or a local volatility. There are many processes that can be used for the stochastic
volatility and their choices will generally depend on their tractability. Before being used for pric-
ing all these models should be calibrated over the market. In general the calibration is based on
calculating prices of liquid products for different strikes and maturity and the parameters of the
model are adjusted until these prices match sufficiently with the market. However, in most cases it
is difficult to derive analytical formulae, and consequently the calibration procedure often remains
approximative or computationally demanding.

Local volatility models were introduced in 1994 by Dupire (Dupire (1994)) and Derman and
Kani (Derman and Kani (1994)) for equity based products. As compared to stochastic volatil-
ity models they have the advantage that they are Markovian in only one factor (because the local
volatility is a deterministic function of both the FX spot and time) implying that they are more
appropriate for hedging strategies. Local volatility models also have the advantage that they are
calibrated on the complete implied volatility surface, and hence they usually capture more pre-
cisely the surface of the implied volatilities than stochastic volatility models. However, a local
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volatility model has the drawback that it predicts unrealistic dynamics for the stock volatility since
the volatilities observed in the market are really stochastic, capable of rising without a movement
in spot FX prices. In Bossens et al. (2006), the authors compare short-dated barrier option mar-
ket prices with the corresponding prices derived from either a Dupire local volatility or a Heston
stochastic volatility model both calibrated on the vanilla smile and skew. It appears from their study
that in a simplified world, where exotic option prices are derived either from Dupire local volatil-
ity or from a Heston stochastic volatility dynamics, an FX market characterised by a mild skew
(USDCHF) exhibits mainly a stochastic volatility behavior, and that FX markets characterised by
a dominantly skewed implied volatility (USDJPY) exhibit a stronger local volatility component.
This observation also underlines that calibrating a stochastic model to the vanilla market is by no
means a guarantee that exotic options will be priced correctly (Schoutens et al. (2004)). This is
because the vanilla market carries no information about the smile dynamics. The market dynamics
could be better approximated by a hybrid volatility model that contains both stochastic volatility
dynamics and local volatility ones. To the best of our knowledge this approach has never been
studied in a stochastic interest rates framework, but it is also known that it provides positive results
for short dated options when interest rates are assumed to be constant (see for example Lipton
(2002), Lipton and McGhee (2002), Madan et al. (2007), Tavella et al. (2006)). Once the local
volatility surface is available, the new mixed volatility can be computed by multiplying this local
volatility with a ratio of integrals that depend on the joint density of the FX spot and the stochastic
volatility. This density can be determined by numerically solving the associated Kolmogorov for-
ward PDE.

The study of the local volatility and its calibration to a three-factor model can then be moti-
vated by hedging arguments but is also considerably useful for the calibration of hybrid volatility
models. In Deelstra and Rayee (2010), we derive the Dupire’s like formula in a three-factor model
where we have three sources of randomness: the FX spot with a local volatility and the domestic
as well as the foreign interest rates. We present two ways to derive the expression of the local
volatility. The first one is based on the method used by Dupire in a simple one factor Gaussian
model (Dupire (1994)) and consists of deriving the call prices with respect to the strike and the
maturity. In the second approach we use the results of Atlan (Atlan (2006)) as well as Tanaka’s
formula, to show that we can also obtain the Dupire’s like formula for the three-factor model with
local volatility.

In a one-factor Gaussian model, the local volatility surface is generally built by using the
Dupire’s formula where partial derivatives of call options with respect to strikes and maturities are
calculated by finite differences and where the real implied volatility surface is an interpolation of
a finite set of market call prices. In a three-factor framework with local volatility, the Dupire’s
like formula becomes more complicated. This is because it also depends on a particularly com-
plicated expectation for which no closed form expression exists and which is not directly related
to European call prices or other liquid products. Of course such expectation can be evaluated us-
ing numerical integration methods. Then, to enable realisations of the numerical integrations one
needs the forward probability distribution of the spot FX rate and the domestic and foreign interest
rates up to maturity. In Deelstra and Rayee (2010), we have derived the forward PDE associated
to this forward probability density function. However, in a three factor framework, numerical inte-
gration methods and PDE solvers are computationally demanding: numerical resolutions of high
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dimensional PDEs are sometimes unstable.

An alternative approach is to calibrate the local volatility from stochastic volatility models by
establishing links between local and stochastic volatility. Extracting the local volatility surface
from a stochastic volatility model rather than using the market implied volatility surface seems
to be a preferred approach. Indeed, let us first observe that the market implied volatility surface
can in practice only be an interpolation of a finite set of available market data. Consequently a
local volatility surface built from an approximative implied volatility surface is often unstable. In
contrast stochastic volatility models can be calibrated by using fast algorithms like Fast Fourier
Transforms (FFT) (see for example van Haastrecht et al. (2008)) and the local volatility surface
extracted from the calibrated stochastic volatility model will be really smooth. In Deelstra and
Rayee (2010), we present some mimicking properties that links the three-factor model with a local
volatility to the same model with a stochastic volatility rather than a local volatility. These proper-
ties will allow us to obtain explicit expressions to construct the local volatility surface.

Finally, we study two different extensions of the local volatility model with stochastic interest
rates. First, following the ideas developed by Derman and Kani (1998) and by Dupire (2004), we
assume that the dynamic behavior of the local volatility obeys a stochastic process driven by some
additional Brownian motion. Second, using Gyöngy’s result (Gyöngy (1986)), we derive some
links between the three-factor model with local volatility and a hybrid volatility model where the
volatility of the spot FX rate mixes a stochastic volatility with a local volatility. Knowing the local
volatility function associated to the three-factor model with local volatility, we propose a calibra-
tion method for the local volatility in the four-factor hybrid volatility model.

The paper Deelstra and Rayee (2010) is organised as follows. We begin by defining the three-
factor model with local volatility. Then, we derive the local volatility expression for this model
by using two different techniques. First, we derive the Fokker-Plank equation for the forward
probability density function of the FX spot and the domestic and foreign interest rates at maturity.
This PDE is used in the derivation of the local volatility function by differentiating European call
price expressions with respect to the strike and the maturity. The second approach is based on
Tanaka’s formula.

Afterwards, we focus on the calibration of this local volatility function. We obtain a link
between the local volatility function derived in a three-factor framework and the one that stems
from the simple one-factor Gaussian model.

Next, we derive a link between the three factor model with a stochastic volatility for the spot
FX rate and the one where the spot FX rate volatility is a local volatility. This link provides a
relationship between our local volatility function and future instantaneous spot FX rate volatilities.
We also propose two extensions of the three-factor model with local volatility. The first extension
is obtained by introducing a stochastic structure on the local volatility surface. We show that in
that case local volatilities are risk-adjusted expectations of future instantaneous volatilities with
respect to the K-strike and T -maturity forward risk-adjusted measure.

Finally, we consider a hybrid volatility model, where the volatility of the spot FX rate is the
product of a local volatility and a stochastic volatility. Thanks to Gyöngy’s result we obtain equa-
tions that link the local volatility function associated to the three-factor model with the local volatil-
ity function of the four-factor hybrid volatility model and propose a calibration procedure for the



74 G. Deelstra and G. Rayée

local volatility function associated to this four-factor hybrid volatility model.

References

M. Atlan. Localizing volatilities. Working paper, Université Pierre et Marie Curie, 2006.
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We study the pricing of forward payer swaptions and derive hedging strategies for these on the basis
of investments in zero-coupon bonds. As framework we consider the Lévy driven Heath-Jarrow-
Morton model for the term structure and we determine the delta-hedge and the mean-variance
hedge which is a quadratic hedge. The pricing formula and the hedging strategies are derived as
closed-form expressions in terms of Fourier transforms.

1. INTRODUCTION

Nowadays models for the term structure of interest rates that are driven by the Brownian motion are
widely used in practice. However serious shortcomings of those models, in particular concerning
the smile effect, are well known. Therefore Eberlein and Kluge (2006) extended the Heath-Jarrow-
Morton model of Heath et al. (1992), to a model in which the forward rate is driven by a time-
inhomogeneous Lévy process. Kluge (2005) showed that such a model allows to reproduce the
so-called smile surface.
In this article we will investigate pricing and hedging of swaptions, which are options on swaps.
Our contribution to the pricing of these products, see e.g. Eberlein and Kluge (2006), consists
in a compact representation of the price by using the Jamshidian decomposition, introduced in
Jamshidian (1989) for a Vasiček model.
Further, we will focus on hedging strategies with investments in zero-coupon bonds. In particular
we will examine delta-hedges, which are mainly used in practice and which make the portfolio
risk-neutral for changes in the underlying of the claim.
In literature many other hedging approaches are discussed, such as utility minimization and quadra-
tic strategies. These methods are based on quantifying the risk and minimizing it over a certain
set of strategies. We will study the quadratic strategies that minimize the square of the difference
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between the claim at maturity and the portfolio. This so-called mean-variance hedging strategy
has the appealing advantage of being self-financing.
We will state here the main results. For the proofs we refer to Glau et al. (2010) and Vandaele
(2010).

2. LEVY DRIVEN HEATH–JARROW–MORTON MODEL

We assume that the stochastic basis (Ω,F , F, P) is given. We give a short introduction of the model
under consideration. Denote by T ∗ > 0 the fixed horizon date, this means that trading will only
happen during the interval [0, T ∗]. The value at time t of a zero-coupon bond paying 1 unit at
maturity T is given by B(t, T ) and, of course, B(T, T ) equals 1. The forward interest rate at date
t ≤ T , f(t, T ), is the instantaneous risk-free interest rate for borrowing or lending at time T seen
from time t. When we have a family of forward interest rates f(t, T ), we can easily derive the

prices of the zero-coupon bonds: B(t, T ) = exp

(
−

∫ T

t

f(t, u)du

)
. The short-term interest rate

rt is described by f(t, t) and Bt = exp(
∫ t

0
rudu) represents the savings account.

Denote by F the natural filtration generated by the one-dimensional time-(in)homogeneous Lévy
process L with Lévy-Khintchine triplet (bs, cs, Fs) and associated cumulant θs such that

∫ T ∗

0

(
|bs| + |cs| +

∫

R
(x2 ∧ 1)Fs(dx)

)
ds < ∞.

Then, the dynamics of the forward interest rates and the zero-coupon bonds under the measure P
are given by

df(t, T ) =α(t, T )dt − σ(t, T )dLt

B(t, T ) =B(0, T ) exp(

∫ t

0

(rs − A(s, T ))ds +

∫ t

0

Σ(s, T )dLs), (1)

with α, σ R-valued adapted stochastic processes and, for s belonging to [0, T ∗],

A(s, T ) =

∫ T

s∧T

α(s, u)du and Σ(s, T ) =

∫ T

s∧T

σ(s, u)du. (2)

The dynamics of the zero-coupon bonds can be rewritten as:

B(t, T ) =
B(0, T )

B(0, t)
exp

(
−

∫ t

0

(A(s, T ) − A(s, t))ds +

∫ t

0

(Σ(s, T ) − Σ(s, t))dLs

)
. (3)

We assume the following integrability condition on the measures Fs to ensure in particular that L
is an exponential special semimartingale:

Axiom 1 (EM) There are constants M, ε > 0 such that for every u ∈ [−(1 + ε)M, (1 + ε)M ]:
∫ T ∗

0

∫

{|x|>1}
exp(ux)Fs(dx)ds < ∞.
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The discounted bond prices are martingales and, hence, the model is described under the unique
martingale measure P∗, also called the spot martingale measure, see Eberlein et al. (2005), if

A(s, T ) = θs(Σ(s, T )) ∀T ∈ [0, T ∗]. (4)

Concerning the volatility structure we impose the following additional axioms.

Axiom 2 (DET) The volatility structure σ is bounded and deterministic. Furthermore we assume

0 ≤ Σ(s, T ) ≤ M ′ < M for all 0 ≤ s, T ≤ T ∗

with M the constant defined in Axiom 1 and Σ given in (2).

Axiom 3 (VOL) For all T ∈ [0, T ∗] we assume that σ(· , T ) 6≡ 0 and

σ(s, T ) = σ1(s)σ2(T ) 0 ≤ s ≤ T,

where σ1 : [0, T ∗] → R+ and σ2 : [0, T ∗] → R+ are continuously differentiable. Furthermore we
assume that infs∈[0,T ∗] σ1(s) ≥ σ1 > 0.

Important for pricing and hedging interest rate derivative products is the forward measure.

Definition 2.1 The forward measure is linked with a settlement date T , such that the forward price
of any financial asset (in our case any zero-coupon bond) is a (local) martingale. The forward price
at time t of an asset S is given by St/B(t, T ).

The change of measure from the spot martingale measure P∗, which equals P in our setting, to the
forward martingale measure linked with the settlement date T is according to (1)

dPT

dP

∣∣∣∣
Ft

=
B(t, T )

BtB(0, T )
= exp

(
−

∫ t

0

A(s, T )ds +

∫ t

0

Σ(s, T )dLs

)
. (5)

From Proposition 10 and Lemma 11 of Eberlein and Kluge (2006) we conclude that L is also a
time-inhomogeneous Lévy process under the forward measure PT , that L is again special under
this measure and its characteristics (bPT

s , cPT
s , F PT

s ) under PT can be expressed in terms of those
under P.

3. PAYER SWAPTION

A (plain vanilla) interest rate swap is a contract to exchange a fixed interest rate against a floating
reference rate, like the Libor. Both rates are based on the same notional amount and for the same
period of time. In the case of a payer swap the investor pays the fixed rate and receives the floating
rate, where the fixed rate is chosen such that the contract is worth zero at the initial date.
A forward swap is an agreement to enter into a swap at a future date T0 with a pre-specified fixed
rate κ, while a payer swaption gives the owner the right to enter the forward payer swap at T0.
Musiela and Rutkowski (2004) showed that the payer swaption can be seen as a put option with
strike price 1 on a coupon-bearing bond. Therefore we can write the payer swaption’s payoff as
(1 −

∑n
j=1 cjB(T0, Tj))

+, where T1 < T2 < . . . < Tn are the payment dates of the swap with
T1 > T0. We denote the length of the accrual periods [Tj−1, Tj], j = 1, . . . , n by δj := Tj − Tj−1.
The coupons ci equal ci = κδi for i = 1, . . . , n − 1 and cn = 1 + κδn where κ is the fixed interest
rate of the swap.
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4. PRICING OF THE PAYER SWAPTION

We present the derivation for the payer swaption in a slightly different way than in Eberlein and
Kluge (2006) to make the application of the so called Jamshidian trick more visible. This allows to
interpret the payer swaption as a weighted sum of put options with different strikes on bonds with
different maturities. This was already noticed by Annaert et al. (2007) in a continuous setting for
a general interest rate model where the zero-coupon bond prices are comonotonic.
The fair price of the payer swaption is given by PSt = BtE[ 1

BT0
(1 −

∑n
j=1 cjB(T0, Tj))

+|Ft],
where the expectation is taken under the risk-neutral measure P. We change to the forward measure
PT0 eliminating the instantaneous interest rate BT0 under the expectation in this way:

PSt =B(t, T0)E
PT0

[
(1 −

n∑

j=1

cjB(T0, Tj))
+
∣∣∣Ft

]
= B(t, T0)E

PT0

[
(1 −

n∑

j=1

cjD̃
Tj

T0
eΣ̃

Tj
T0

XT0 )+
∣∣∣Ft

]

with according to (2), (3), (4) and Axiom 3

D̃
Tj

T0
=

B(0, Tj)

B(0, T0)
exp

(∫ T0

0

[θs(Σ(s, T0)) − θs(Σ(s, Tj))] ds

)

Σ̃
Tj

T0
=

∫ Tj

T0

σ2(u)du and XT0 =

∫ T0

0

σ1(s)dLs.

Theorem 4.1 Under the Axioms 1, 2, 3 and if |σ1| < σ1 for a certain σ1 ∈ R, the price at time t
of a forward payer swaption is given by a weighted sum of put options on bonds

PSt =B(t, T0)
n∑

j=1

cjE
PT0

[
(bj − B(T0, Tj))

+
∣∣Ft

]

=B(t, T0)
n∑

j=1

cj
e−RXt

2π

∫

R
eiuXtϕ

PT0
XT0

−Xt
(u + iR)v̂j(−u − iR)du, (6)

where ϕ
PT0
XT0

−Xt
is the characteristic function of XT0 − Xt under the measure PT0 and where

v̂j(−u − iR) =
bje

(−iu+R)z∗Σ̃
Tj

T0

(−iu + R)(−iu + Σ̃
Tj

T0
+ R)

for R in ]0, M
σ1

] and bj such that g(T0, Tj, z
∗) = bj , where z∗ is the solution to the equation

∑n
j=1 cjg(T0, Tj, z

∗) = 1 with g the non-decreasing function defined as g(s, t, x) = D̃t
se

Σ̃t
sx.

5. DELTA-HEDGING OF THE PAYER SWAPTION

We determine the delta-hedge for a short position in the payer swaption when one zero-coupon
bond is used for hedging.
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Theorem 5.1 Under the axioms of Theorem 4.1 and if |u|·|ϕPT0
XT0

−Xt
(u+iR)| is integrable then the

optimal amount, denoted by ∆j
t , to invest in the zero-coupon bond with maturity Tj to delta-hedge

a short position in the forward payer swaption is given by:

∆j
t = − B(t, T0)

B(t, Tj)Σ̃
Tj

t

n∑

k=1

ck

(
Σ̃T0

t Hk(t, Xt) +
∂

∂Xt

Hk(t, Xt)
)
,

with

Hk(t, Xt) =
e−RXt

2π

∫

R
eiuXtϕ

PT0
XT0

−Xt
(u + iR)v̂k(−u − iR)du.

∂Hk(t, Xt)

∂Xt

=
1

2π

∫

R
e(−R+iu)Xtϕ

PT0
XT0

−Xt
(u + iR)v̂k(−u − iR)(−R + iu)du.

The integrability condition of Theorem 5.1 is satisfied for a wide range of processes, see Glau et al.
(2010).

6. MEAN-VARIANCE HEDGING STRATEGY FOR THE PAYER SWAPTION

In the interest rate derivatives market it is unrealistic to hedge with the risk-free interest rate product
in contrast to the stock market. Therefore we choose the bond B(·, T0) as numéraire to develop a
hedging strategy for the payer swaption.
For the explicit determination of the strategy in terms of the cumulant process we use ideas of
Hubalek et al. (2006) adapted to our setting. They determine the variance-optimal hedging strategy
for an exponential Lévy process, which is not necessarily a martingale. We work under the forward
measure PT0 which ensures that the discounted asset B(·, Tj)/B(·, T0) is a martingale. Hence
determining the strategy reduces to finding the Galtchouk-Kunita-Watanabe decomposition of the
claim H .
On the other hand Hubalek et al. use time-homogeneous processes, while the driving process in
our setting is a time-inhomogeneous Lévy process. Instead of generalizing the argumentation
given in Hubalek et al. (2006), we give a new proof in Glau et al. (2010) based on properties of
the cumulant process of time-inhomogeneous Lévy processes and the Galtchouk-Kunita-Watanabe
decomposition.
Following a mean-variance hedging strategy we determine the optimal number we have to invest
in the zero-coupon bond with maturity Tj to hedge the forward swaption:

Theorem 6.1 Under the assumptions of Theorem 4.1 and if 3M ′ ≤ M and if R is chosen in the
interval ]0, M

2σ1
] then the Galtchouk-Kunita-Watanabe decomposition of the forward payer swap-

tion (6) exists. The optimal number to invest in the zero-coupon bond with maturity Tj is according
to the mean-variance hedging strategy given by

ξj
t =

∫

R
exp

(∫ T0

t

κX̃j

s

( iu − R

Σ̃
Tj

T0

)
ds

)
B̃(t−, Tj)

iu−R

Σ̃
Tj
T0

−1κX̃j

t

(
iu−R

Σ̃
Tj
T0

+ 1
)
− κX̃j

t

(
iu−R

Σ̃
Tj
T0

)

κX̃j

t (2)
Π(du),



80 K. Glau et al.

with

κX̃j

s (w) = θs(wΣ(s, Tj) + (1 − w)Σ(s, T0)) − wθs(Σ(s, Tj)) − (1 − w)θs(Σ(s, T0)),

Π(du) =
n∑

k=1

ck

2π
(f j

T0
)

iu−R

Σ̃
Tj
T0 v̂k(−u − iR)du,

f j
T0

=
B(0, T0)

B(0, Tj)
exp

(∫ T0

0

[θs(Σ(s, Tj)) − θs(Σ(s, T0))]ds

)
.
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OPTIMAL TRADING STRATEGIES AND THE BESSEL PROCESS

Johannes Ruf1
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USA
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It is shown that delta hedging provides the optimal trading strategy in terms of minimal required
initial capital to replicate a given terminal payoff in a continuous-time Markovian context. This
holds true in market models where no equivalent local martingale measure exists but only a square-
integrable market price of risk. A new probability measure is constructed, which takes the place
of an equivalent local martingale measure. In order to ensure the existence of the delta hedge,
sufficient conditions are derived for the necessary differentiability of expectations indexed over the
initial market configuration. For a precise statement of the assumptions, proofs of the statements,
further references and results we refer to Ruf (2010).

1. STOCK PRICE MODEL AND WEALTH PROCESSES

We use the notation Rn
+ := {s =

(
s1 · · · sn

)T ∈ Rn, si > 0, for all i = 1, . . . , n}, fix a time
horizon T and assume a market where the stock price processes are modelled as positive continuous
Markovian semimartingales. That is, we consider a financial market S(·) =

(
S1(·) · · · Sn(·)

)T
of the form

dSi(t) =Si(t)

(
µi(t, S(t))dt +

n∑

k=1

σi,k(t, S(t))dWk(t)

)
(1)

for all i = 1, . . . , n and t ∈ [0, T ] starting at S(0) ∈ Rn
+ and a money market B(·). Here µ :

[0, T ]×Rn
+ → Rn denotes the mean rate of return and σ : [0, T ]×Rn

+ → Rn×n the volatility. Both
functions are assumed to be measurable. For the sake of convenience we only look at discounted
(forward) prices and set the interest rates constant to zero, that is, B(·) ≡ 1. The flow of informa-
tion is modelled by a right-continuous filtration F(·) such that W (·) =

(
W1(·) · · · Wn(·)

)T is
an n-dimensional Brownian motion with independent components. We only consider mean rates
of return µ and volatilities σ which imply that the stock prices S1(·), . . . , Sn(·) exist and are unique

1I am grateful to Ioannis Karatzas and Ekaterina Vinkovskaya for their support of this project.
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and strictly positive. We denote by a(·, ·) = σ(·, ·)σT(·, ·) the covariance process of the stocks in
the market.

Furthermore, we assume here that σ(t, S(t)) is invertible for all t ∈ [0, T ] and that the market
price of risk

θ(t, S(t)) := σ−1(t, S(t))µ(t, S(t))

satisfies the integrability condition
∫ T

0
‖θ(t, S(t))‖2dt < ∞ almost surely.

Based upon the market price of risk, we are now ready to define the stochastic discount factor
as

Zθ(t) := exp

(
−

∫ t

0

θT(u, S(u))dW (u) − 1

2

∫ t

0

‖θ(u, S(u))‖2du

)

for all t ∈ [0, T ]. In classical no-arbitrage theory, Zθ(·) represents the Radon-Nikodym derivative
which translates the “real-world” measure into the generic “risk-neutral” measure with the money
market as the underlying. Since in this work we explicitly want to allow a “Free Lunch with
Vanishing Risk”, we shall not assume that the stochastic discount factor Zθ(·) is a true martingale.
Thus, we can only rely on a local martingale property of Zθ(·).

We denote the number of shares held by an investor with initial capital v > 0 at time t by
η(t) =

(
η1(t) · · · ηn(t)

)T and the associated wealth process by V v,η(·). To wit,

dV v,η(t) =
n∑

i=1

ηi(t)dSi(t)

for all t ∈ [0, T ]. We call η a trading strategy or in short, a strategy. To ensure that V v,η(·) is
well-defined and to exclude doubling strategies we restrict ourselves to progressively measurable
trading strategies which satisfy V 1,η(t) ≥ 0 for all t ∈ [0, T ].

If Y is a nonnegative F(T )-measurable random variable such that E[Y |F(t)] is a function of
S(t) for all t ∈ [0, T ], we use the Markovian structure of S(·) to denote conditioning on the event
{S(t) = s} by Et,s[Y ].

2. HEDGING

In the following, we shall call (t, s) ∈ [0, T ] × Rn
+ a point of support for S(·) if there exists some

ω ∈ Ω such that S(t, ω) = s. We define for any measurable function p : Rn
+ → [0,∞) a candidate

hp : [0, T ] × Rn
+ → [0,∞) for the hedging price of the corresponding European option:

hp(t, s) := Et,s

[
Zθ(T )

Zθ(t)
p(S(T ))

]
. (2)

Equation (2) has appeared as the “real-world pricing formula” in the Benchmark approach, com-
pare Platen and Heath (2006), Equation (9.1.30). Applying Itô’s rule to Equation (2) yields the
following result. Here we write Di and D2

i,j for the partial derivatives with respect to the vari-
able s.
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Theorem 2.1 (Markovian representation for non path-dependent European claims) Assume
that we have a contingent claim of the form p(S(T )) ≥ 0 and that the function hp of Equa-
tion (2) is sufficiently differentiable, or more precisely, for all points of support (t, s) for S(·) we
have hp ∈ C1,2(Ut,s) for some neighborhood Ut,s of (t, s). Then, with ηp

i (t, s) := Dih
p(t, s), for

all i = 1, . . . , n and (t, s) ∈ [0, T ] × Rn
+, and with vp := hp(0, S(0)), we get

V vp,ηp

(t) = hp(t, S(t))

for all t ∈ [0, T ]. The strategy ηp is optimal in the sense that for any ṽ > 0 and for any strategy η̃
whose associated wealth process is nonnegative and satisfies V ṽ,η̃(T ) ≥ p(S(T )), we have ṽ ≥ vp.
Furthermore, hp satisfies the PDE

∂

∂t
hp(t, s) +

1

2

n∑

i=1

n∑

j=1

sisjai,j(t, s)D
2
i,jh

p(t, s) = 0 (3)

at all points of support (t, s) for S(·).

Next, we will provide sufficient conditions under which the function hp is sufficiently smooth. For
that we need the following definition.

Definition 2.1 (Locally Lipschitz and bounded) We call a function f : [0, T ] × Rn
+ → R locally

Lipschitz and bounded on Rn
+ if for all s ∈ Rn

+ the function t → f(t, s) is right-continuous with
left limits and for all M > 0 there exists some C(M) < ∞ such that

sup
1
M

≤‖y‖,‖z‖≤M
y 6=z

|f(t, y) − f(t, z)|
‖y − z‖

+ sup
1
M

≤‖y‖≤M

|f(t, y)| ≤ C(M),

for all t ∈ [0, T ].

Using the theory of stochastic flows and Schauder estimates, we obtain the necessary differentia-
bility of hp.

Theorem 2.2 We assume that the functions θk and σi,k are for all i, k = 1, . . . , n locally Lipschitz
and bounded. We furthermore assume that for all points of support (t, s) for S(·) there exist
C1, C2 > 0 and some neighborhood U of (t, s) such that

∑n
i,j=1 ai,j(u, y)ξiξj > C1‖ξ‖2 for all

ξ ∈ Rn and hp(u, y) ≤ C2 for all (u, y) ∈ U . Then, there exists for all points of support (t, s) for
S(·) some neighborhood Ũ of (t, s) such that the function hp defined in Equation (2) is in C1,2(Ũ).

3. CHANGE OF MEASURE

To simplify the computation of hp, one can perform a change of measure after making some tech-
nical assumptions. For that, we rely on the techniques developed by Föllmer (1972), Meyer (1972),
and Delbaen and Schachermayer (1995), Section 2.
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Theorem 3.1 (Generalized change of measure) There exists a measure Q such that for all F(T )-
measurable random variables Y ≥ 0 we have

EP [
Zθ(T )Y

]
= EQ

[
Y 1{1/Zθ(T )>0}

]

where EQ denotes the expectation with respect to the new measure Q. That is, P is absolutely

continuous with respect to Q. Under this measure Q, the process W̃ (·) =
(
W̃1(·) · · · W̃n(·)

)T

with

W̃k(t ∧ τ θ) := Wk(t ∧ τ θ) +

∫ t∧τθ

0

θk(u, S(u))du

for all k = 1, . . . , n and t ∈ [0, T ] is an n-dimensional Brownian motion stopped at time τ θ :=
limi→∞ inf{t ∈ [0, T ] : Zθ(t) ≥ i}.

Furthermore, it is now easy to show that we have, up to the stopping time τ θ, the following dy-
namics for S(·) and 1/Zθ(·) under Q:

dSi(t) = Si(t)
n∑

k=1

σi,k(t, S(t))dW̃k(t),

d

(
1

Zθ(t)

)
=

1

Zθ(t)

n∑

k=1

θk(t, S(t))dW̃k(t),

for all i = 1, . . . , n and t ∈ [0, T ]. One can also prove a generalization of Bayes’ rule for Girsanov-
type measure changes to the measure change suggested by Theorem 3.1.

4. THREE-DIMENSIONAL BESSEL PROCESS

We illustrate the techniques presented here with a toy model. Let n = 1 and S(·) be a three-
dimensional Bessel process. To wit,

dS(t) =
1

S(t)
dt + dW (t)

for all t ∈ [0, T ]. For any payoff function p(·) ≥ 0 we obtain from Theorem 3.1 that hp(t, s) :=
EQ,t,s[p(S(T ))1{S(T )>0}], where S(·) is now a Q-Brownian motion stopped at zero. For example,
if p(s) ≡ s, that is, the stock itself, then hp(t, s) = EQ,t,s[S(T )] = s. To wit, the hedging price of
the stock is exactly its price and the optimal strategy is to hold the stock. However, if p(s) ≡ 1,
then we compute

hp(t, s) = Qt,s(S(T ) > 0) = 2Φ

(
s√

T − t

)
− 1 < 1.

There is a trading strategy ηp, which yields exactly one monetary unit at time T and costs hp(0, s)
at time 0 if the stock price equals s. By Theorem 2.1, there is no other strategy which needs less
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initial capital and leads to a nonnegative wealth process. Furthermore, we have the representation

ηp(t, s) =
2√

T − t
φ

(
s√

T − t

)
,

where φ denotes the standard normal density function.

5. FURTHER RESULTS AND A VERY INCOMPLETE LIST OF REFERENCES

The hedging results of Theorem 2.1 also hold when the number of Brownian motions is larger
than the number of stocks. However, in this case one has to pay attention to the choice of the
market price of risk, which is no longer unique. The PDE (3) usually allows for several solutions
satisfying the same boundary conditions and being of polynomial growth. The function hp can be
characterized as the minimal nonnegative solution of that PDE.

This work is motivated by the desire to better understand the question of hedging in stochastic
portfolio theory and in the Benchmark process. For an overview of the former, we recommend
the survey paper by Fernholz and Karatzas (2009). Furthermore, in Fernholz and Karatzas (2010)
optimal trading strategies to hold the market portfolio at time horizon T are discussed. For an in-
troduction to the Benchmark process, developed by Eckhard Platen and co-authors, we refer to the
monograph by Platen and Heath (2006). In particular, Theorem 2.1 generalizes Platen and Hulley
(2008), Proposition 3, where the same statement is shown for a one-dimensional market with a
time-transformed squared Bessel process of dimension four modelling the stock price process.

The results presented here also yield optimal trading strategies for models where the stock price
has a bubble. A stock is said to have a bubble if its price does not equal its “intrinsic value”. We
refer to Jarrow et al. (2007) for a precise definition and further references.

Theorem 2.2 generalizes recent Feynman-Kac type theorems by Heath and Schweizer (2000),
Janson and Tysk (2006), and Ekström and Tysk (2009) for the stock price models presented here.
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The yield-curve models developed by macroeconomists and financial economists are very different
in form and fit due to particular demands and different motives. While macroeconomists focus on
the role of expectations of inflation and future real economic activity in the determination of yields,
financial economists avoid any explicit role for such determinants. These different attitudes cause
a gap between the yield curve models developed. A joint macro-finance modelling strategy would
provide the most comprehensive understanding of the term structure of interest rates (Diebold et al.
2005). There are various recent papers which aim to bridge this gap by formulating and estimating
a yield curve model that integrates macroeconomic and financial factors (Dewachter and Lyrio
(2006), Diebold et al. (2006), Diebold and Li (2006), Diebold et al. (2007), Lildholdt et al. (2007),
Ang et al. (2008)).

The starting point of most of the macro-finance models is the short-term interest rates. Short-
term interest rates have different meanings from a macroeconomic perspective and a finance per-
spective. From a macroeconomic perspective, the short-term interest rate is a policy instrument
directly controlled by the central bank to achieve its economic stabilization goals. From a finance
perspective, the short rate is a fundamental building block for yields of other maturities, which are
just risk-adjusted averages of expected future short rates. Focusing on short-term interest rates to
construct a yield-macro model is consistent with the Taylor (1993) policy rules. The Taylor rule
is a monetary-policy rule that stipulates how much the central bank should change the nominal in-
terest rate in response to divergences of actual gross domestic product (GDP) from potential GDP
and of actual inflation rates from target inflation rates.

This study aims to model the UK term structures of interest rates and the term structure of
implied inflation simultaneously using the additional macroeconomic variables in a way that is
consistent with macroeconomic theory. To construct such a model which we will call ‘yield-macro’
model, we use nominal government spot rates extracted from the conventional gilt market and real
and implied inflation spot rates extracted from the index-linked gilt market by the Bank of England.
We use all available maturities i.e. 50 different maturities for nominal rates (starting from 6 month
and ending with 25 years) and 46 maturities for real rates and implied inflation (starting from
2.5 years and ending with 25 years). As for the macroeconomic variables we use annual realized
inflation obtained from the UK Retail Price Index and the output gap (= actual GDP−potential GDP

potential GDP
)

provided by the OECD Economic Outlook publications.
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1. FITTING THE CAIRNS MODEL ON YIELD CURVES

In order to fill in the gaps in the data we fit the Cairns (1997) model described in Equation (1)
below before applying any analysis to the term structures. The curve is a flexible model with four
exponential terms and nine parameters in total. However, four of these parameters (the exponential
rates) are fixed which reduces the risk of multiple solutions. If the value of ci where i = 1, 2, 3, 4 is
small then the relevant value of bi affects all durations whereas if ci is large then the relevant value
of bi only affects the shortest durations.

R(t, t + s) = b0(t) + b1(t)
1 − e−c1s

c1s
+ b2(t)

1 − e−c2s

c2s
+ b3(t)

1 − e−c3s

c3s
+ b4(t)

1 − e−c4s

c4s
(1)

where R(t, t+s) is the spot rate at time t whose maturity is t+s. We fit the Cairns model on to the
daily nominal spot rates to decide the best set of exponential parameters (C = (0.1, 0.2, 0.4, 0.8))
for the nominal yield curve and use this set of parameters for the other yield curves (implied
inflation and real spot rates) as well. We use fitted curves to construct the yield-macro model.

2. PRINCIPAL COMPONENT ANALYSIS ON YIELD CURVES

Principal component analysis (PCA) attempts to describe the behaviour of a range of correlated
random variables (in this case, the various spot yields for different times to maturity) in terms of a
small number of uncorrelated principal components. This approach was first applied to bond yields
by Litterman and Scheinkman (1991), who found three common factors called ‘level’, ‘slope’ and
‘curvature’ which influenced the returns on all treasury bonds.

To construct a yield-macro model, we decreased the dimension of the yield curves by applying
PCA on quarterly values of nominal, real and implied inflation spot rates for the period 1995 and
2007. Therefore, we extract the three most important components of these yield curves. Figure 1
shows the loadings of these principal components. According to the PCA, the first three factors
explain more than 99.9% of the variability for each yield curve.
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Figure 1: Loadings of the PCs
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3. YIELD-MACRO MODEL

Once we obtained the principal components (PCs) of the three yield curves, we examined the cor-
relations between these components and the macroeconomic variables. We have found significant
auto- and cross-correlations between the variables.

All variables have exponentially decreasing auto-correlation functions which indicate AR pro-
cesses. There are high simultaneous and lagged correlations between the levels, slopes and cur-
vatures factors. The level factors of the yield curves are negatively correlated with the output gap
which is consistent with the macroeconomic theory that explains the link between the goods mar-
ket and financial markets. Accordingly, an increase in interest rates lowers the investment and thus
reduces the output. On the other hand, the only yield curve factor which has significant correlation
with the realized inflation is the nominal curvature factor.

After examining the correlations between the variables we fitted a vector autoregressive model
(VAR). We aimed for parsimony through a systematic analysis of a wide range of models and used
only the first two lags of the variables to fit the VAR model.

To construct the ‘yield-macro’ model, we used quarterly nominal spot rates, implied inflation
spot rates, real spot rates, annual realized inflation and output gap data over the period 1995 to
2007 1.

Let Y (52 × 11) be the matrix of the PCs of the yield curves and the macroeconomic variables
where N , I , R, RI and OG are abbreviations for nominal spot rates, implied inflation spot rates,
real spot rates, realized inflation rates and output gap, and L, S and C are abbreviations for level,
slope and curvature respectively.

The VAR structure of the ‘yield-macro’ model is as below:

Y [t] − µY = A1 (Y [t − 1] − µY ) + A2 (Y [t − 2] − µY ) + ε [t]

where:
µY is the matrix of long run means of the variables, A1 and A2 are the coefficient matrices for the
first and second lags of the explanatory variables respectively and ε [t] ∼ N (0, Σ), i.e. normally
distributed residuals with zero mean and Σ variance-covariance matrix.

Y t =
[

YNL
YNS

YNC
YIL

YIS
YIC

YRL
YRS

YRC
YRI YOG

]

µt
Y =

[
−6.76 0 0 −1.47 0 0 −6.99 0 0 2.88 0

]

1Since the output gap data are subject to continuous revision which may take three years to get the latest estimate,
the data period in this modelling work is restricted by 2007.
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A1 =





















0.92 0 0 0 0 0 0 0 0 0 0
0 0.78 0 0 0 0 0 0 0 0 0
0 0 0.96 0 0 0 0 0 0 −0.15 0
0 0 0 0.89 0 0 0 0 0 0 0
0 0 0 0 0.56 0 0 0 0 0 0
0 0 0 0 0 0.62 0 0 0 0 0
0 0 0 0 0 0 0.95 0 0 0 0
0 0.27 0 0 0 0 0 0.49 0 0 0
0 0 0 0 0 0 0 0 0.86 0 0
0 0 0 0 0 0 0 0 0 0.92 0
0 −0.04 0 0 0 0 0 0 0 0 0.89


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












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

A2 =





















0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1.21 0 −0.41
0 0 −0.34 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −0.32 0 0 0 1.38 0 0
0 0 0 0 0 0 0 −0.09 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0.34 0 0 0 0 0 0 0 −0.20
0 0 0 0 0 0 0 0 0 0 0





















Σ =





















4.54
−0.62 0.76
−0.50 0.07 0.14
2.51 −0.22 −0.30 2.28
−0.17 0.25 0.07 −0.18 0.27
0.09 −0.11 0.01 0.07 −0.05 0.08
1.88 −0.30 −0.19 0.20 0.05 0.00 1.61
−0.53 0.30 0.05 −0.10 −0.02 0.02 −0.40 0.29
−0.20 0.06 0.03 −0.02 −0.02 −0.02 −0.17 0.05 0.05
0.07 0.10 −0.05 0.07 0.03 −0.01 0.02 0.02 −0.01 0.17
−0.03 0.03 0.01 0.04 0.01 0.01 −0.06 0.02 0.01 0.02 0.06





















As A1 and A2 indicate, the level factors and the curvature factor of real interest rates can be
modelled as AR(1) processes. The diagonal structure of A1 and the few values in A2 can be
explained by the existence of the high autocorrelations in the variables.
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4. TESTING THE YIELD-MACRO MODEL

To compare the goodness of fit of our models with a random walk (RW) and an autoregressive
process of order one (AR(1)) we calculate the following ratios.

R2
RW∗ = 1 −

SSmodel

SSRW

dfRW

dfmodel

R2
AR(1)∗ = 1 −

SSmodel

SSAR(1)

dfAR(1)

dfmodel

Models R2
RW∗ R2

AR(1)∗

Nominal Spot Rates
Level 0.16 0
Slope 0.31 0.26
Curvature 0.30 0.20
Implied Inflation
Level 0.13 0
Slope 0.51 0.43
Curvature 0.24 0.10
Real Spot Rates
Level 0.10 0
Slope 0.26 0.21
Curvature 0.07 0
Realized Inflation 0.25 0.19
Output Gap 0.14 0.08

Table 1: Model Comparison

Zeros in the third column of the above table indicate that the fitted models are already AR(1).
According to the Table 1, nominal spot rate models explain a significant amount of variability
compared with the RW and AR(1) models. Implied inflation slope model improves the explained
variability by about 51% and 43% comparing with the RW and AR(1) respectively. On the other
hand, the real slope model shows a significant improvement while real level and curvature do not.
It is also seen that the realized inflation model performs better than the RW and AR(1) when it
includes the nominal curvature and output gap lagged values as explanatory variables. Finally, the
output gap model performs slightly better than the RW and AR(1) with the help of the nominal
slope factor as an explanatory variable.

We also test the one quarter ahead forecasts obtained by fitting the VAR model to show that the
Fisher relation 2 is still satisfied. This enables us to decrease the number of models and derive one
of the yield curves by modelling the other two.

2The Fisher relation indicates that the nominal interest rates can be decomposed into two parts: real rates and
expected future inflation.
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5. CONCLUSIONS

In this work, the three term structures (nominal, implied inflation and real spot rates) and two
macroeconomic variables (realized inflation and output gap) have been modelled by considering
the bidirectional relations between the two sets of variables. The correlations between the variables
show that the yield curve factors highly depend on their lagged values and the other yield curves’
corresponding factors as well as the output gap. A parsimonious VAR model has been fitted to the
data to forecast the yield curves simultaneously. The VAR model has performed better than the RW
and AR(1) processes in terms of the explained variability in the data. One quarter ahead forecasts
are well within the 95% confidence limits for all yield curves and maturities. Furthermore, the
model is consistent with the Fisher relation.
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De Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten coördineert
jaarlijks tot 25 wetenschappelijke bijeenkomsten, ook contactfora genoemd, in de domeinen
van de natuurwetenschappen (inclusief de biomedische wetenschappen), menswetenschappen
en kunsten. De contactfora hebben tot doel Vlaamse wetenschappers of kunstenaars te vereni-
gen rond specifieke thema’s.

De handelingen van deze contactfora vormen een aparte publicatiereeks van de Academie.

Contactforum “Actuarial and Financial Mathematics Conference” (4-5 februari 2010, Prof.
M. Vanmaele)

De “Actuarial and Financial Mathematics Conference 2010” was de 8ste editie van het “Actuarial and

Financial Mathematics” contactforum dat ondertussen zijn plaats veroverd heeft tussen de internationale

conferenties die focussen op de wisselwerking tussen financieel en actuarieel wiskundige technieken.

De eerste dag was opgebouwd rond het thema Market Consistent Valuation met voordrachten door

gerenommeerde internationale sprekers gevolgd door een leerrijke en levendige paneldiscussie. Op dag

twee mochten we naast genodigde sprekers ook sprekers uit de praktijk verwelkomen met onderwerpen

zoals Solvency II en spread opties. Gedurende beide dagen was er ook een postersessie tijdens de welke

jonge onderzoekers de mogelijkheid kregen om hun onderzoeksresultaten voor te stellen aan een

ruim publiek bestaande uit academici uit binnen- en buitenland alsook collega's uit de bank- en

verzekerings wereld. In deze publicatie vindt u een samenvatting van een van de voordrachten over

Market Consistent Valuation. Verder zijn er bijdragen over het prijzen van afgeleide producten zoals

catastrophe  bonds, spread options en swaptions, over optimal trading strategies, proportional reinsur-

ance, strong Taylor approximation of stochastic differential equations en implied inflation.




