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PREFACE 
 
The yearly meeting “Actuarial and Financial Mathematics Conference” of academic 
researchers and practitioners to discuss recent developments at the interplay between finance 
and insurance took place on February 10 and 11, 2011 as a contactforum in the buildings of 
the Royal Flemish Academy of Belgium for Science and Arts in Brussels. At this occasion 
researchers in actuarial and financial mathematics from Belgian universities and from abroad 
on the one side, and professionals of the banking and insurance business on the other side took 
the opportunity to get in touch with each other or to strengthen the ties. The number of 
conference partcipants is each year growing. For the AFMathConf2011 about 130 participants 
from 21 different countries were registered, illustrating the large interest in this event. 
 
For this 2011 edition, eight internationally esteemed researchers were invited to give an 
overview talk on their recent research topic. During the first day, we welcomed Damir 
Filipovic (Ecole Polytechnique Fédérale de Lausanne and Swiss Finance Institute, 
Switzerland), Carole Bernard (University of Waterloo, Canada), Rama Cont (CNRS, France 
& Columbia University, USA) and Andreas Kyprianou (University of Bath, UK). Their very 
clear expositions gave the audience some insight in a quadratic term structure model for the 
variance swap rates, in the explicit construction of an optimal strategy when investors have  
state-dependent constraints, in an approach to measuring systemic risk based on explicit 
modeling of counterparty relations between financial institutions as a weighted graph and in 
some of the remarkable developments that have occurred in the development of ruin theory 
and de Finetti’s classical control problem in the last two or three years. The second day, the 
attendants had the opportunity to listen to the following invited speakers: Mario Wüthrich 
(ETH Zurich, Switzerland), Pierre Devolder (Université catholique de Louvain, Belgium), 
Alexander McNeil (Heriot-Watt University, Scotland) and Giulia Di Nunno (University of 
Oslo, Norway). The first three talks dealt with insurance issues such as a novel stochastic 
model for claims reserving that allows to combine claims payments and incurred losses 
information, some various stochastic models in continuous time in order to estimate solvency 
capital for two important risks faced by pension funds: market risk and inflation risk and an 
approach to multivariate stress testing for solvency. Optimal investment in assets subject to 
risk of default for investors that rely on different levels of information was the topic of the last 
invited talk. 
 
Next to the invited lectures, the scientific committee selected eight contributions which were 
spread over the two days. These talks with topics in finance and insurance were given by 
Florence Guillaume (T.U.Eindhoven, The Netherlands), Łukasz Delong (Warsaw School of 



 
 

Economics, Poland), Eva Lütkebohmert (University of Freiburg, Germany), Kathrin Glau 
(University of Vienna, Austria), Robert Salzmann (ETH Zurich, Switzerland), Elisa Luciano 
(Università degli Studi di Torino, Italy), Catherine Donnelly (Heriot-Watt University, 
Scotland) and Zorana Grbac, University of Evry, France). In addition, twelve researchers 
presented a poster during an appreciated poster session. We thank them all for their 
enthusiasm and their nice presentations which made the conference a great success.  
 
The present proceedings give an overview of the activities at the conference. They contain one 
article related to an invited talk, five papers corresponding to contributed talks, and ten short 
communications of posters presented during the poster sessions on both conference days. 
 
We are much indebted to the members of the scientific committee, Hansjörg Albrecher (HEC 
Lausanne, Switzerland), Freddy Delbaen (ETH Zurich, Switzerland), Michel Denuit 
(Université Catholique de Louvain, Belgium), Ernst Eberlein (University of Freiburg, 
Germany), Rob Kaas (University of Amsterdam, the Netherlands), Ragnar Norberg (London 
School of Economics, UK), Noel Veraverbeke (Universiteit Hasselt, Belgium) and the chair 
Griselda Deelstra (Université Libre de Bruxelles, Belgium), for the excellent scientific 
support. We also thank Wouter Dewolf (Ghent University, Belgium), for the administrative 
work. 
 
We cannot forget our sponsors, who made it possible to organise this event in a very enjoyable 
and inspiring environment. We are very grateful to the Royal Flemish Academy of Belgium 
for Science and Arts, the Research Foundation ─ Flanders (FWO), the Scientific Research 
Network (WOG) “Fundamental Methods and Techniques in Mathematics”, le Fonds de la 
Recherche Scientifique (FNRS), Dexia, Electrabel-GDF Suez and the BNP Paribas Fortis 
Chair in Banking at The Vrije Universiteit Brussel and Université Libre de Bruxelles. 
 
The success of the meeting encourages us to go on with the organisation of this contactforum. 
We are sure that continuing this event will provide more opportunities to facilitate the 
exchange of ideas and results in our fascinating research field. 
 
 
 
The editors: 
Griselda Deelstra 
Ann De Schepper 
Jan Dhaene 
Steven Vanduffel 
Michèle Vanmaele 
David Vyncke 
 
The other members of the organising committee: 
Jan Annaert 
Michel Denuit 
Pierre Patie 
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Paul Van Goethem 
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OPTIMAL INVESTMENT UNDER PROBABILITY CONSTRAINTS

Carole Bernard† and Steven Vanduffel§1

†Department of Statistics and Actuarial Science, University of Waterloo, Canada.
§Faculty of Economic, Political and Social Sciences and Solvay Business School, Vrije Universiteit
Brussel, Belgium.
Email: c3bernar@uwaterloo.ca, steven.vanduffel@vub.ac.be

Abstract

Bernard and Boyle (2010) derive the lowest cost strategy (also called“cost-efficient” strategy)
that achieves a given wealth distribution. An optimal strategy for a profit seeking investor with
law-invariant preferences is necessarily cost-efficient. In the specific case of a Black-Scholes
market the optimal strategy is always path-independent and non-decreasing with the stock
price. Assuming now that investors still want to achieve a given distribution at a fixed horizon
but have a probability constraint, we propose an explicit construction of the optimal strategy.
In the case of the Black-Scholes market, we show that the optimal strategy is not necessarily
non-decreasing in the stock price any more.

1. INTRODUCTION

This note extends Bernard and Boyle (2010) by including additional probability constraints. An
investor with law-invariant preferences but with some probability constraints has “state-dependent”
preferences. We show that the non-decreasing property of the optimal investment for law-invariant
preferences does not hold when preferences are state-dependent. Section 2 gives our assumptions,
the framework and recalls what cost-efficiency is and its link with optimal investment. Section 3
provides some theoretical results on bounds on copulas under probability constraints and how to
use them to solve our optimization problem. We apply theoretical results of Section 3 to some
optimal investment problems in Section 4.

1Both authors gratefully acknowledge the program “Brains Back to Brussels” that funded an extended research visit
of C. Bernard at VUB in Brussels during which this paper was completed. S. Vanduffel acknowledges the financial
support of the BNP Paribas Fortis Chair in Banking. C. Bernard also acknowledges support from WatRISQ and the
Natural Sciences and Engineering Research Council of Canada.
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4 C. Bernard and S. Vanduffel

2. COST-EFFICIENCY & OPTIMAL INVESTMENT

In this section we first present the model assumptions and thesetting. We then give the general
form of the optimal investment problem we want to solve in this paper. In particular we relate
the optimal investment choice to the concept of “cost-efficiency” (originally defined by Dybvig
(1988a,b)).

2.1. Agent’s Preferences

Denote byU(·) the investor’s objective function he wants to maximize. We make the following
assumptions.

• All investors have a fixed investment horizonT > 0 and there is no intermediate consump-
tion.

• Investors prefer “more to less”, in other words their respective objective functions preserve
first order stochastic dominance relationships (denoted by≺fsd). Hence ifYT ≺fsd XT then
U(XT ) > U(YT ) andU(·) is non-decreasing.

• Investors have “state-independent preferences” or “law-invariant preferences”: ifYT has the
same distribution asXT thenU(YT ) = U(XT ).

Such set of preferences is quite general and consistent witha wide range of decision theories,
including the expected utility theory (von Neumann and Morgenstern (1947)), Yaari’s dual theory
of choice (Yaari (1987)), the cumulative prospect theory (Tversky and Kahneman (1992)) and the
rank dependent utility theory (Quiggin (1993)). For example, in the particular case of expected
utility the preferences for a final wealthXT would be calculated asU(XT ) = E[u(XT )] whereu is
the investor’s utility function. Instead of maximizing an objective function, one may also minimize
any law-invariant risk measure that preserves first stochastic dominance (for example the quantile
or a general distorted expectation).

2.2. Financial Market

The financial market contains a (risk-free) bond with price process{Bt = B0e
rt, t > 0}. Further,

there is also a risky assetS with price process{St, t > 0}. We assume trading can be done
continuously, the market is frictionless and arbitrage-free, and all investors agree on the pricing
kernel used to value derivatives in this market. The initialprice c(XT ) of a given contract with
payoffXT maturing at the fixed horizonT > 0 is given by

c(XT ) = E[ξTXT ]. (1)

Here the expectations are taken with respect to the physicalprobability measureP, and{ξt, t > 0}
is called the state-price process. We will also assume thatξt is continuously distributed. In partic-
ular it holds that

c(1) = E[ξT ] = e−rT . (2)
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It is also well-known thatc(XT ) can be presented as the discounted expectation under the risk-
neutral measureQ defined throughξt = e−rt(dQ

dP
)t. In the remainder of the paper all expectations

are taken under theP measure. We refer to Bjork (2004) for extensive theory on arbitrage-free
pricing.

Note that the above description is rather general and includes the Black-Scholes setting in
which case the process{ξT , t > 0} is known unambiguously. For the ease of exposition we present
all the results in the one-dimensional Black-Scholes market2. In this setting there is a bijection
between the state-price processξt and the risky assetSt. Recall that the risky asset priceSt evolves
according to

dSt

St

= µdt+ σdWt, (3)

where{Wt, t > 0} is a standardP-Brownian motion and assumeµ > r. The state price process
{ξt, t > 0} exists, is unique and is given by

ξt = a

(

St

S0

)− θ
σ

, (4)

wherea = e
θ
σ
(µ−σ2

2
)t−(r+ θ2

2
)t andθ = µ−r

σ
. Note thatξt is decreasing inSt. Denote byFξ the cdf

of ξT . LetMT denote the mean oflog(ξT ), MT = −1
2
θ2T − rT . The variance oflog(ξT ) is equal

to θ2T . Then,

Fξ(x) = P (ξT ≤ x) = Φ

(

log(x)−M

θ
√
T

)

. (5)

2.3. Cost Efficiency & Investment

The concept of “cost-efficiency” was first introduced by Cox and Leland (1982, 2000) and Dybvig
(1988a,b).

Definition 2.1 A strategy (or a payoff) is cost-efficient if any other strategy that generates the same
distribution costs at least as much.

It is clear that if investors prefer more to less (as per our assumptions in Section 2.1), then
in the absence of additional constraints optimal investment strategies will necessarily be cost-
efficient. Given the cdf that the investor would like to achieve at a given maturity dateT (possibly
a retirement date), the optimal strategy then solves the following problem

(P1)
min
XT

E [ξTXT ]

subject to∀x ∈ R, P(XT 6 x) = F (x)
(6)

The objective is to minimize the cost of a payoffXT such thatXT has cdfF . DefineF−1 as
follows

F−1(y) = inf {x | F (x) > y} .
2It would be possible to be more general and include the multidimensional case as studied by Bernard et al. (2011)

or the Levy market presented in Vanduffel et al. (2011).
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The inverse is left-continuous and non-decreasing. Theorem 2.1 characterizes the optimal invest-
ment strategy.

Theorem 2.1 LetF be a cdf. The solution toP1 given by(6) is equal to

Y ⋆
T = F−1 (1− Fξ (ξT )) , (7)

and it is the almost surely unique optimal solution to(6).

This theorem corresponds to the main result of Bernard and Boyle (2010). We will see that it can
be obtained as a special case of our approach.

Assume now that the investor is subject to additional constraints that are “state-dependent”.
The cost-efficient strategy (7) solution toP1 may not satisfy these constraints and therefore the
optimal strategy may be strictly more expensive. We formulate the problem as follows.

(P2)

min
XT

E [ξTXT ]

subject to

{

∀x ∈ R, P(XT 6 x) = F (x)
(Ci)i∈I

(8)

The optimal strategy is distributed with the cdfF but in addition eachCi denotes an additional con-
straint andI can be finite or infinite. Each constraintCi contains information about the dependency
structure between the state-price process and the optimal strategy of the investor given by

P(ξT < ℓi, XT < xi) = bi.

In a Black-Scholes market, the state-price process is a function of the risky asset. Then a natural
example is a simple probability constraint ensuring that the investment strategy is greater than
some guaranteed level when the market itself is very low. Theconstraint can then write as

P(ST < αS0, XT > b) 6 ε,

whereα < 1, see equation (4).
Adding such constraints is important because investors have state-dependent constraints. For

example an investor who invests in a put option, is not interested in cost-efficiency only (because
it is decreasing in the underlying stock) but wants positiveoutcomes when the market goes down.

3. SOLUTIONS TO PROBLEMS (P1) AND (P2)

3.1. Formalization

ProblemsP1 andP2 presented above can be reformulated as “dependence” problems (in other
words as problems on copulas). Indeed ProblemP1 is clearly a minimization ofE[XT ξT ] where
marginals ofXT andξT are known but where no information about the dependency betweenXT

andξT is given. It can also be interpreted as the minimization ofE[XT g(ST )] where marginals of
ST andXT are known and whereg(y) = a(y/S0)

−b for someb > 0 because of (4). ProblemP2 is
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similarly a minimization ofE[XT ξT ] orE[XT g(ST )] but with some information on the dependency
betweenXT and the marketST .

Let (X, Y ) be a couple of random variables. It is well-known that the joint distribution for
(X, Y ) is fully determined upon knowledge of the marginal distributionsFX andFY together with
the copula functionC := C(X,Y ) for (X, Y ) (this result is known as Sklar’s theorem).

Let us define supermodular functions. Letei denote thei-th ndimensional unit vector, and
let f : Rn → R be some function. Forx = (x1, · · · , xn) ∈ Rn we then define∆ε

if(x) =
f(x+ ε ei)− f(x) (εi > 0, 1 6 i 6 n).

Definition 3.1 (Super modularity) A functionf : Rn → R is said to be supermodular (or 2-
increasing) if for allx ∈ Rn, δ > 0, ε > 0 and1 6 i < j 6 n it holds that.

∆δ
i∆

ε
j f(x) > 0.

If f : Rn → R is twice differentiable thenf is supermodular if and only if ∂2

∂xi∂xj
f (x) > 0 holds

for everyx ∈ Rn and1 6 i < j 6 n.

See for example Marshall and Olkin (1979), p. 146. A functionf is submodular when−f is
supermodular.

The problemP2 given in (8) we want to solve amounts to studying integrals ofthe form
E[f(X, Y )] wheref is submodular or supermodular. Theorem 3.1 below can be found in Tankov
(2011) and provides, under suitable assumptions, an expression for the integralE[f(X, Y )] in
terms of the copulaC, and the marginal distributionsFX andFY .

Theorem 3.1 (Bounds forE[f(X, Y )]) Assumef : R2
+ → R is supermodular and left-continuous

in each of the arguments. Assume also that

E [|f(X, 0)|+ |f(0, X)|+ |f(Y, 0)|+ |f(0, Y )|+ |f(X,X)|+ |f(Y, Y )|] < ∞,

thenΠ(C) = E[f(X, Y )] is given by

Π(C) = −f(0, 0) + E [f(X, 0)] + E [f(0, Y )] (9)

+

∫ ∞

0

∫ ∞

0

µf (dx× dy)(1− FX(x)− FY (y) + C(FX(x), FY (y))

whereµf is the measure onR2
+ induced by the supermodular functionf .

In addition, if the copulaC admits pointwise boundsL andU

∀u ∈ (0, 1), ∀v ∈ (0, 1) L(u, v) 6 C(u, v) 6 U(u, v).

Then
Π(L) 6 Π(C) 6 Π(U), (10)

whereL andU are not necessarily copulas but could be more general functions (such that the
double integral in(9) exists).
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Proof. The expression (9) is given in Proposition 2 of Tankov (2011).
It seems that the expression (9) did not appear yet elsewherein the literature although it is not

the focus of Tankov (2011)3. As a first application of Theorem 3.1 let us consider the supermodular
functionf defined asf(x, y) = xy. In this caseµf (dx× dy) = dx× dy. Hence

E[XY ] =

∫ ∞

0

∫ ∞

0

P(X > x, Y > y)dxdy, (11)

which is well-known.
Another example of supermodular function isf(x, y) = −xg(y) whereg(y) = a · (y/S0)

−b.
This function appears in the case of a one dimensional Black-Scholes market as the bijection
between the risky asset (respectively the market portfolio) and the state price process. In this case,
the objective to minimize in problemsP1 andP2 corresponds to minimizingE[f(XT , ST )]. Note
that ∂2f

∂x∂y
6 0 which means that it is a submodular function. In that case,µf (dx×dy) = g′(y)dxdy.

Hence

E[Xg(Y )] =

∫ ∞

0

∫ ∞

0

P(X > x, Y > y)g′(y)dxdy. (12)

Theorem 3.1 is very useful to actually compute bounds forE[f(X, Y )] in case one knows the
marginal distributions ofX andY, with limited information on the dependence betweenX andY .
The main idea is to translate the information one has on the dependence to derive bounds on the
unknown copulaC(X,Y ). Using Theorem 3.1 (precisely the inequality (10)), solving problemsP1

andP2 amounts to finding bounds on copulas. Problem(P1) given in (6) and Problem(P2) given
in (8) can then be formulated as special cases of the following general problem

min
X

E [f(X, Y )]

subject to

{

X ∼ F, Y ∼ G
∀i ∈ I, P(Y < ℓi, X < xi) = bi

(13)

whereI is the set of constraints. ProblemP1 corresponds toI = ∅. Each additional constraint
directly provides information on the dependence betweenX andY . In ProblemP1 andP2, the
r.v. Y is the state-price process or a function ofST , its distributionG is known and depends on the
financial market.

The rest of the paper focuses on deriving the boundsA andB such that the unknown copula
betweenX andY satisfies

∀u, v ∈ (0, 1), A(u, v) 6 C(X,Y )(u, v) 6 B(u, v) (14)

3It generalizes many existing formulas in the literature. For example consider the supermodular functionf ,
f(x, y) = (x+ y − d)+. In this case we obtain:µf (dx× dy) = δy=d−x.dx× dy. Hence

E[(X + Y − d)+] = E [(X − d)+] + E [(Y − d)+] +

∫ d

0

P(X > x, Y > d− x)dx

= E[X] + E[Y ]− d+

∫ d

0

P(X 6 x, Y 6 d− x))dx

which conforms with the expression forE[(X + Y − d)+] that was derived in Dhaene and Goovaerts (1996). Their
result now appears as a special case of Theorem 3.1.
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In general the boundsA andB are not copulas but quasi-copulas. First recall that a two-dimensional
copula is any supermodular functionC : [0, 1]

2 → [0, 1] such that for all u∈ (0, 1) it holds that
C(0, u) = C(u, 0) = 0 and also thatC(u, 1) = C(1, u). It is well-known that this definition
implies thatC is increasing in each argument and also thatC is Lipschitz continuous, i.e that
|C(u1, v1)− C(u2, v2)| 6 |u1 − u2| + |v1 − v2| for all (u1, v1), (u2, v2) ∈ [0, 1]2. These two
properties together with the boundary conditions define theweaker concept of quasi-copula:

Definition 3.2 (Quasi-copula) A two-dimensional quasi-copula is any functionQ : [0, 1]2 →
[0, 1] with the following properties:

(i) Boundary conditions: for all u∈ (0, 1) it holds thatQ(0, u) = Q(u, 0) = 0 and also that
Q(u, 1) = Q(1, u);

(ii) Q is increasing in each argument and Lipschitz continuous.

Of course any copula is a quasi-copula but the opposite is nottrue; for an insightful treatment
of copulas we refer to Nelsen (2006). For example a characterization of quasi-copulas is given in
Theorem 2.1 of Nelsen et al. (2002).

3.2. Solution toP1

In ProblemP1, the marginal distributionsFX andFY are known but no information is given.

Theorem 3.2 (Classical Fŕechet bounds)Consider a random couple(X, Y ), it is well-known
that

∀u, v ∈ (0, 1), min(u, v) 6 C(u, v) 6 max(0, u+ v − 1)

which respectively correspond to the comonotonic and anti-comonotonic copula. Letf be a su-
permodular function. Then,

E
[

f
(

F−1
X (U) , F−1

Y (1− U)
)]

6 E[f(X, Y )] 6 E
[

f
(

F−1
X (U) , F−1

Y (U)
)]

.

Proof. This result is well-known and the proof is omitted.
Solving ProblemP1 is now straightforward and Theorem 2.1 can be seen as a particular case

of Theorem 3.2 wheref(x, y) = xy. For everyXT with cdf F it holds that

E[F−1(1− FξT (ξT ))] 6 E[ξTXT ] 6 E[F−1(FξT (ξT ))] (15)

Note that(U, 1− U) is a legitimate copula so that the bounds are reached.

3.3. Solution toP2 under probability constraints

We assume that the information on the dependence betweenX andY is such that the copula C(X,Y )

is known on a compact subset of the unit square. Bounds were given by Tankov (2011) and we
recall here his results
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Theorem 3.3 Let S be a compact subset of[0, 1]2 and consider a quasi-copulaQ. Let us define
for all u,v∈ [0, 1]

US,Q(u, v) = min

(

u, v, min
(a,b)∈S

{

Q(a, b) + (u− a)+ + (v − b)+
}

)

,

LS,Q(u, v) = max

(

0, u+ v − 1, max
(a,b)∈S

{

Q(a, b)− (a− u)+ − (b− v)+
}

)

(16)

Then for every quasi-copulaQ∗ so thatQ∗(a, b) = Q(a, b) for all (a, b) ∈ S it holds that for all
u, v ∈ [0, 1]

LS,Q(u, v) 6 Q∗(u, v) 6 US,Q(u, v). (17)

Furthermore for all(a, b) ∈ S we have that

LS,Q(a, b) = US,Q(a, b) = Q(a, b). (18)

MoreoverLS,Q andUS,Q are quasi-copulas. Finally, whenS is increasing andQ is a copula, we
have thatLS,Q is a copula whereas ifS is decreasing, we have thatUS,Q is a copula.

Proof. The proof can be found in Tankov (2011).

Note that Theorem 3.3 can be applied whenever the values of a copulaC are known on a
compact subsetS (C just plays the role ofQ in this case).

Special case whereS ={a, b}.
LetC∗ a copula such thatC∗(a, b) = ϑ with ϑ such thatmax(a+ b− 1, 0) 6 ϑ 6 min(a, b) holds.
Then for allu, v ∈ [0, 1] the upper and lower bounds are now given by

Ua,b,ϑ(u, v) = min
(

u, v, ϑ+ (u− a)+ + (v − b)+
)

,

La,b,ϑ(u, v) = max
(

0, u+ v − 1, ϑ− (a− u)+ − (b− v)+
)

(19)

respectively. Both are copulas and satisfyLa,b,ϑ(a, b) = Ua,b,ϑ(a, b) = C∗(a, b) = ϑ. These
copulas are called shuffles. In short, a shuffle copula has a support constituted of line segments of
slope +1 and -1. More details on shuffles are presented in Section 3.2.3 of Nelsen (2006).

4. EXAMPLES IN BLACK SCHOLES

4.1. Optimization with a unique probability constraint C(a, b) = ϑ

We now describe the simulation of a couple of uniform random variables(U, V ) with copula equal
to the lower or upper bound found in (19). Draw first a random numberu from the uniform (0,1)
distribution, thenV is fully determined. To obtain a couple(U, V ) with the copulaLa,b,ϑ, v is
calculated as the following function ofu















v = 1− u if 0 6 u 6 a− ϑ,
v = a+ b− ϑ− u if a− ϑ 6 u 6 a,
v = 1 + ϑ− u if a 6 u 6 1 + ϑ− b,
v = 1− u if 1 + ϑ− b 6 u 6 1.

(20)
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ForUa,b,ϑ, it is similar and omitted here. Panel A of Figure 1 gives the support of the shuffle copula
La,b,ϑ.

We now apply this to the construction of the “optimal” solution toP2 when the probability
constraint is given by

P(ST < αS0, XT > b) = ε (21)

whereα > 0. This probability constraint ensures that the realized payoff is greater than some
guaranteed levelb when the market itself is low (case whenα < 1).

In the Black-Scholes model,ST = g(ξT ) whereg is non-increasing therefore

P(ST < αS0, XT > b) = P(ξT > ℓ,XT > b)

= P(G(ξT ) > G(ℓ);F (XT ) > F (b))

= 1−G(ℓ)− F (b) + C(G(ℓ), F (b))

whereℓ = g(S0) and whereC is the copula of(ξT , XT ). We are solving a special case of the
problem(P2) given in (8),

min
XT

E [ξTXT ]

subject to











XT ∼ F

ln(ST ) ∼ N
(

ln(S0) +
(

µ− σ2

2

)

T, σ2T
)

P(ST < αS0, X > b) = ε

This can be rewritten in terms of the state-price process. Note then thatP(ξT 6 ℓ,XT 6 b) =
ε− 1 + FξT (ℓ) + F (b). Therefore the problem can be restated as

min
XT

E [ξTXT ]

subject to







XT ∼ F
ln(ξT ) ∼ N (MT , VT )
C(FξT (L), F (y0)) = ϑ

whereϑ = ε−1+FξT (ℓ)+F (b) andC is the copula betweenξT andXT . We will use Theorem 3.1
where the copulaC that appears in the formula is replaced by the copulaL of the lower bound. We
construct explicitly the optimal strategy by simulatingU = FξT (ξT ) and constructingV following
(20) to simulate a couple(U, V ) of uniform (0,1) such that the copula isLFξT

(ℓ),F (b),ϑ. V is a
function ofU , let h be such thatV = h(U). Then the optimal solution toP2 with the probability
constraint (21) given explicitly by

F−1(h(Fξ(ξT ))).

4.2. Example whenF is the cdf of a put option and there is one constraint.

Consider a put option with strikeK and maturityT , its payoff isXT = (K − ST )
+. The cost

efficient strategy was found in Bernard and Boyle (2010). We first recall their result and study
the effect of adding the probability constraint. LetF be the cdf of the payoff of the put option.
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Bernard and Boyle (2010) show that the put option is the (a.s.) unique payoff that has the highest
possible cost with cdfF . This cdf,F , is

F (x) = P (XT 6 x) =















1 if x > K

P (ST > K − x) = Φ

(
(

µ−σ2

2

)

T−log
(

K−x
S0

)

σ
√
T

)

if 0 6 x < K

0 if x < 0

It is straightforward to invert it. Defineν = Φ

(
(

µ−σ2

2

)

T−log
(

K
S0

)

σ
√
T

)

and considery ∈ (0, 1),

F−1(y) =

(

K − S0e

(

µ−σ2

2

)

T−σ
√
TΦ−1(y)

)+

Note thatF−1(1) = K andF−1(0) is not well defined. The cost-efficient payoff that gives the
same distribution as a put option is

Y ⋆
T = F−1 (1− Fξ (ξT )) =

(

K − S0e

(

µ−σ2

2

)

T−σ
√
T
(

M−log(ξT )

θ
√

T

)

)+

=
K

ST

(

ST − c

K

)+

,

whereFξ is given by (5) (see Theorem 2.1) and wherec = S2
0e

2
(

µ−σ2

2

)

T . Y ⋆
T is the optimal solution

to (P1) (cheapest strategy with cdfF ). We now want the cheapest strategyXT with cdf F and

P (XT > b ; ST < 0.95S0 ) = ε

Panel A Panel B

Figure 1: Panel A corresponds to the support of the copulaLa,b,ϑ given by (19). This is an extract
from Fig. 3.10 in Nelsen (2006). Panel B displays the cheapest strategy as a function ofST

under the probability constraint under study. Assumptionsfor Panel B are:S0 = 100, K = 100,
µ = 0.05, σ = 0.2, T = 1, r = 0.03, b = K/7 andε = .15.

Panel B in Figure 1 illustrates the optimum.
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4.3. Example whenF is the cdf of a put option and there is an infinite number of constraints

With several probability constraints, we can solve(P2) using the general result in Theorem 3.3.
Assume that for all(a, b) ∈ I, the copula betweenξT andXT is comonotonic and therefore the
copula betweenXT andST is anti-comonotonic.

C(a, b) = min(a, b)

whereI is the segment with extremities(0.7, 0.7) and(1, 1). The constraint on the copula applies
for ST ≤ 92.8 andXT ≥ 7.21 = F−1(0.7). We are looking for the cheapest strategyXT with cdf
F andXT is anti-comonotonic with the stock market when the stock price is low.

The following figure gives the support of the copulaL and the optimal strategy.

Panel A Panel B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
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0.7
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0.9

1

u

v
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S
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Figure 2: Panel A: Support of the lower bound of the copula betweenST andXT . Panel B:
Optimal Strategy under State-Dependent Constraint. Assumptions:S0 = 100,K = 100, µ = 0.05,
σ = 0.2, T = 1, r = 0.03.

Note that Panels B of Figure 1 and Figure 2 both display an optimal strategy under probability
constraints that is not non-decreasing with respect to the underlyingST .

5. CONCLUSIONS

This paper presents optimal investment strategies in the presence of state-dependent constraints.
Similarly as Bernard and Boyle (2010) the assumption is that one knows the cdf of terminal wealth
and one wants to reach this objective cdf at the cheapest possible cost given some probability
constraints. Investors with law-invariant preferences will solely invest in strategies that are non-
decreasing in the underlying risky asset. In the presence ofprobability constraints, non-decreasing
strategies in the risky asset are not necessarily optimal.
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Abstract

We consider the pricing of a maturity guarantee, which is equivalent to the pricing of a Eu-
ropean put option, in a regime-switching market model. Regime-switching market models
have been empirically shown to fit long-term stockmarket data better than many other models.
However, since a regime-switching market is incomplete, there is no unique price for the ma-
turity guarantee. We extend the good-deal pricing bounds idea to the regime-switching market
model. This allows us to obtain a reasonable range of prices for the maturity guarantee, by
excluding those prices which imply a Sharpe Ratio which is too high. The range of prices can
be used as a plausibility check on the chosen price of a maturity guarantee.

1. INTRODUCTION

Maturity guarantees are a common addition to many life insurance policies. The policyholder is
given a guarantee by the life insurance company that the proceeds of the policy at the maturity
date is subject to a minimum value. Ensuring that the guarantee is properly valued is of concern
to the life insurance company, since it is a potential threat to the solvency of the company. When
investment market returns are depressed, the company’s investments are reduced in value but this
is precisely the time when the guarantee is likely to bite. Thus the financial burden of the guarantee
on the company is exacerbated.

To begin to quantify the risks inherent in a maturity guarantee, we must value them appropri-
ately. The primary aim of this paper is to obtain a method for the reasonable valuation of maturity
guarantees within a model which is appropriate to the long-term nature of the guarantees. We
ignore mortality and focus on the financial market model.

It is well-known that maturity guarantees have the same payoff as a European put option.
To show this, denote the time to maturity of the insurance contract byT and suppose that the
guaranteed benefit is amountK at timeT . If the amount payable before the guarantee is applied
equalsS(T ), then the policyholder receivesmax[K,S(T )] at timeT . This means that the insurance

17
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company is liable to pay an additional amount ofK − S(T ) to the policyholder if the guarantee
bites at the maturity date. We can write this mathematically as

max[K − S(T ), 0].

The above cost to the insurer is recognised as the payoff of a European put option with strike price
K and time to maturityT . Thus valuing the maturity guarantee is equivalent to valuing a European
put option.

To value the maturity guarantee, we assume a model of the stockmarket called a regime-
switching market model. Regime-switching market models are a way of capturing discrete shifts in
market behavior. These shifts could be due to a variety of reasons, such as changes in market regu-
lations, government policies or investor sentiment. In particular, regime-switching market models
are effective at capturing the long-term behaviour of the stock market (for example, see Hardy
(2003, Chapter 3)). This is an extremely appealing feature if we are valuing maturity guarantees
since often the guarantees are applied after many years.

Due to the regime-switching, the market is incomplete and hence there are no unique prices for
derivatives. In fact, the range of possible prices for a particular derivative is too wide to be useful
in practice. Various suggestions have been made on either how to choose a single price or how to
obtain a more restricted, and therefore potentially more useful, range of prices. We focus in this
paper on the latter because it is the market which ultimately decides the price and so we should
take into account our uncertainty about what the market price will be. Therefore, we believe it is
better to find a range of prices that the market-determined price might reasonably be expected to
lie in, rather than determining a single price.

The idea that we build upon is that of thegood-deal bound. This idea is due to Cochrane and
Sáa Requejo (2000) and is based on the Sharpe Ratio, which is the excess return on an investment
per unit of risk. Their idea is to bound the Sharpe Ratios of all possible assets in the market
and thus exclude Sharpe Ratios which are considered to be too large. The method of applying
the good-deal bound gives a set of risk-neutral martingale measures which can be used to price
options. This results in anupper and lower good-deal pricing boundon the prices of an option.
The idea was streamlined and extended to models with jumps in Björk and Slinko (2006), and it is
their approach that we follow in this paper.

The good-deal pricing bounds can be used by a life insurance company in the pricing of ma-
turity guarantees in various ways. First, since ultimately a single price must be chosen so that an
appropriate premium can be charged for the insurance contract, the good-deal pricing bounds can
act as a plausibility check on the chosen single price. In this case, the life insurance company can
select the bound on the Sharpe Ratio in accordance with their own risk preferences. Second, if we
examine the change in the pricing bounds as the bound on the Sharpe Ratio changes, we see the
sensitivity of the price of the maturity guarantee to changes in the market’s price of risk. Third, the
upper pricing bound could itself be used as the single price for the maturity guarantee.

The aim of this paper is to apply the good-deal bound idea to the pricing of derivatives in
a regime-switching diffusion market. The paper is structured as follows. Section 2 details the
regime-switching market model. In Section 3 we identify the set of equivalent martingale measures
via the set of Girsanov kernel processes. In Section 4 the Sharpe Ratio of an arbitrary asset in the
market is defined and we state the extended Hansen-Jagannathan bound. The definitions of the
upper and lower good-deal bounds on the price of a derivative are in Section 5. The stochastic
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control approach that we use to find them is outlined in Section6. A numerical example illustrating
the upper and lower good-deal pricing bounds on a 10-year maturity guarantee (i.e. a 10-year
European put option) is given in Section 7.

2. MARKET MODEL

We consider a regime-switching market model in which there is one traded asset and a risk-free
asset.

Description of the market model

We consider a continuous-time financial market model on a complete probability space(Ω,F ,P)
where all investment takes place over a finite time horizon[0, T ], for a fixedT ∈ (0,∞). The
probability space carries both a 1-dimensional standard Brownian motionW and a Markov chain
α.

The information available to the investors in the market at timet is the history of the Markov
chain and Brownian motion up to and including timet. Mathematically, this is represented by the
filtration

Ft := σ{(α(s),W (s)), s ∈ [0, t]} ∨ N (P), ∀t ∈ [0, T ],

whereN (P) denotes the collection of allP-null events in the probability space(Ω,F ,P). We
assume thatF = FT .

The market is subject to regime-switching, as modelled by the continuous-time Markov chain
α which takes values in a finite state spaceI = {1, . . . , D}, for some integerD ≥ 2. We assume
that the Markov chain starts in a fixed statei0 ∈ I, so thatα(0) = i0, a.s. The Markov chain has
a generatorG, which is aD × D matrixG = (gij)

D
i,j=1 with the propertiesgij ≥ 0, for all i 6= j

andgii = −∑

j 6=i gij. To avoid states where there are no transitions into or out of, we assume that
gii < 0 for each statei.

Associated with each pair of distinct states(i, j) in the state space of the Markov chain is a
point process, or counting process,

Nij(t) :=
∑

0<s≤t

χ [α(s−) = i] χ [α(s) = j] , ∀t ∈ [0, T ],

whereχ denotes the zero-one indicator function. Define the intensity process

λij(t) := gij χ [α(t−) = i] .

If we compensateNij(t) by
∫ t

0
λij(s)ds, then the resulting process

Mij(t) := Nij(t)−
∫ t

0

λij(s)ds

is a martingale (see Rogers and Williams (2006, Lemma IV.21.12)). We refer to the set of martin-
gales{Mij ; i, j ∈ I, j 6= i} astheP-martingales ofα.
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For simplicity, we consider a financial market that is built upon one traded asset, which we
call the risky asset, and a risk-free asset. The risk-free rate of return in the market is denoted by
the scalar stochastic processr and the risk-free asset’s price processS0 = {S0(t), t ∈ [0, T ]} is
governed by

dS0(t)

S0(t)
= r(t)dt, ∀t ∈ [0, T ], S0(0) = 1. (1)

The mean rate of return of the risky asset is denoted by the scalar stochastic processµ and the
volatility process of the risky asset is denoted by the scalar stochastic processσ. The price process
S = {S(t), t ∈ [0, T ]} of the risky asset is then given by

dS(t)

S(t)
= µ(t)dt+ σ(t)dW (t), ∀t ∈ [0, T ], (2)

with the initial valueS(0) being a fixed, strictly positive constant inR.
We assume that the market parametersr, µ and σ are sufficiently regular to allow for the

existence of a unique strong solution to (1) and (2). Furthermore, we assume that the volatility
processσ of the risky asset is non-zero.

3. MARTINGALE MEASURES

In the regime-switching market model, while there is no arbitrage, the market is incomplete. This
means that while equivalent martingale measures (“EMMs”) exist, there is no unique one and
hence we obtain a range of prices, called the no-arbitrage bounds, rather than a unique price for
each derivative. The good-deal bound approach is a means of narrowing the no-arbitrage bounds,
which are too wide to be useful in practice. The essential idea is to exclude those EMMs which
imply a Sharpe Ratio that is too high. However, rather than dealing directly with the EMMs, we
use instead the Girsanov kernel processes which generate EMMs.

3.1. The martingale condition

Given a Girsanov kernel process(h,ηηη), we can generate a corresponding measureQ by defining
the likelihood processL as the process with dynamics

dL(t)

L(t−)
= h(t)dW (t) +

D
∑

i=1

D
∑

j=1,
j 6=i

ηij(t)dMij(t), ∀t ∈ [0, T ],

and then construct the measureQ by

dQ

dP
= L(t), onFt.

LetQ be the measure generated by the Girsanov kernel process(h,ηηη). Consider an arbitrary asset
in the market, with price processΠ = {Π(t); t ∈ [0, T ]}. Note that this asset is not restricted to
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the traded asset or the risk-free asset, but it could be any derivative or self-financing strategy based
on them and the Markov chainα. TheP-dynamics of the asset’s price processΠ are of the form

dΠ(t)

Π(t−)
= µΠ(t)dt+ σΠ(t)dW (t) +

D
∑

i=1

D
∑

j=1,
j 6=i

γΠ
ij(t)dMij(t). (3)

The processesµΠ, σΠ and(γΠ
ij)j 6=i are suitably integrable and measurable with the condition, in

order to avoid negative asset prices, thatγΠ
ij(t) ≥ −1 for eachj 6= i.

Applying a Girsanov theorem, we obtain the price dynamicsΠ of the arbitrarily chosen asset
under the measureQ:

dΠ(t)

Π(t−)
=









µΠ(t) + h(t)σΠ(t) +
D
∑

i=1

D
∑

j=1,
j 6=i

γΠ
ij(t)ηij(t)λij(t)









dt

+ σΠ(t)dWQ(t) +
D
∑

i=1

D
∑

j=1,
j 6=i

γΠ
ij(t)dM

Q

ij (t),

in whichWQ is aQ-Brownian motion andMQ

ij is aQ-martingale of the Markov chainα, for each
j 6= i.

Proposition 3.1 Martingale condition.The measureQ generated by the Girsanov kernel process
(h,ηηη) is an equivalent martingale measure if and only if

ηij(t) > −1, ∀j 6= i,

and for any asset in the market whose price processΠ hasP-dynamics given by (3), we have

r(t) = µΠ(t) + h(t)σΠ(t) +
D
∑

i=1

D
∑

j=1,
j 6=i

γΠ
ij(t)ηij(t)λij(t), ∀t ∈ [0, T ]. (4)

We refer to a Girsanov kernel process(h,ηηη), with ηηη = {ηij; i, j ∈ I, j 6= i}, for which the
generated measureQ is a martingale measure as anadmissibleGirsanov kernel process.

Remark 3.1 From (4) we have the following economic interpretation of an admissible Girsanov
kernel process(h,ηηη): the process−h is the market price of diffusion risk and−ηij is the market
price of regime change risk, for a jump in the Markov chain from statei to statej (i.e. a change
from market regimei to market regimej).

Suppose we are given a Girsanov kernel process(h,ηηη) for which the generated measureQ is an
equivalent martingale measure. The price dynamics underP of the traded asset are as in (2). By
Proposition 3.1, we must have that

r(t) = µ(t) + h(t)σ(t), ∀t ∈ [0, T ].

This means that the market price of diffusion risk−h is determined by the price dynamics of the
traded asset.
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4. THE SHARPE RATIO AND GOOD-DEAL BOUND

We define a Sharpe Ratio process for an arbitrarily chosen asset, withP-dynamics as in (3).
Broadly, the Sharpe Ratio is the excess return above the risk-free rate of the asset per unit of
risk. We make this definition precise in our model. Define avolatility processν for the asset as the
process which satisfies

ν2(t) = |σΠ(t)|2 +
D
∑

i=1

D
∑

j=1,
j 6=i

|γΠ
ij(t)|2 λij(t).

AsµΠ is the local mean rate of return of the asset under the measureP, we define theSharpe Ratio
process(SR) for the arbitrarily-chosen asset as

(SR)(t) :=
µΠ(t)− r(t)

ν(t)
. (5)

The Sharpe Ratio process depends on the chosen asset’s price process. However, we seek a
bound that applies to all assets’ Sharpe Ratio processes. To do this, we use the extended Hansen-
Jagannathan inequality, which is derived in Björk and Slinko (2006) and is an extended version of
the inequality introduced by Hansen and Jagannathan (1991).

Lemma 4.1 (An extended Hansen-Jagannathan Bound)For every admissible Girsanov kernel
process(h,ηηη) and for any asset in the market whose price processΠ hasP-dynamics given by
(3) and, consequently, whose Sharpe Ratio process(SR) is given by (5), the following inequality
holds:

|(SR)(t)|2 ≤ |h(t)|2 +
D
∑

i=1

D
∑

j=1,
j 6=i

|ηij(t)|2 λij(t). (6)

Proof. The proof follows that of Bj̈ork and Slinko (2006, Theorem A.1) and is therefore omitted.

The key idea is that, in order to restrict the set of equivalentmartingale measures by way of
the Sharpe Ratio, we use the Hansen-Jagannathan bound. Rather than bounding the Sharpe Ratios
directly, we bound the right-hand side of (6) by a constant. We call the constant agood-deal bound.

Definition 4.1 A good-deal bound is a constantB ≥ supt∈[0,T ]|h(t)|2, a.s.

Remark 4.1 A chosen good-deal boundB bounds the Sharpe Ratio process(SR) of any asset in
the market as follows:

|(SR)(t)|2 ≤ |h(t)|2 +
D
∑

i=1

D
∑

j=1,
j 6=i

|ηij(t)|2 λij(t) ≤ B. (7)

In other words,|(SR)(t)| ≤
√
B. The economic interpretation is that, under the good-deal bound

approach,
√
B and−

√
B are the highest and lowest achievable instantaneous Sharpe Ratio in the

market, respectively. However, in the regime-switching diffusion market, we see from (7) that the
good-deal boundB is really a bound on the price−ηij of market price of regime change risk, since
the price−h of diffusion risk is determined by the traded asset.
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5. THE GENERAL PROBLEM

We consider the valuation of a general contingent claimZ of the form

Z := Φ(S(T ), α(T )),

for a deterministic, measurable functionΦ. We consider the problem of finding the upper and
lower good-deal bounds on the range of possible prices of the contingent claimZ.

Definition 5.1 Suppose we are given a good-deal boundB and a positive constantǫ ≪ 1. The
upper good-deal price processV upper for the boundB is the optimal value process for the control
problem

sup
(h,ηηη)

EQ

(

e−
∫ T

t
r(τ)dτΦ(S(T ), α(T ))

∣

∣

∣

∣

Ft

)

, (8)

where the predictable processes(h,ηηη) are subject to the constraints

h(t) = −σ−1(t) (µ(t)− r(t)) , (9)

ηij(t) ≥ −1 + ǫ, for i, j = 1, . . . , D, j 6= i, (10)

and

|h(t)|2 +
D
∑

i=1

D
∑

j=1,
j 6=i

|ηij(t)|2 λij(t) ≤ B, (11)

for all t ∈ [0, T ].

Definition 5.2 Thelower good-deal price processV lower is defined as in Definition 5.1 except that
“sup” in (8) is replaced by “inf”.

Remark 5.1 The risk-neutral valuation formula in (8) implies that the local rate of return of the
price process corresponding to the contingent claimZ = Φ(S(T ), α(T )) equals the risk-free rate
r under the measureQ. The equality constraint (9) ensures thath is consistent with the market
price of diffusion risk. Together with the constraint (10), these ensure that the measureQ generated
by (h,ηηη) is an equivalent martingale measure, as in Proposition 3.1.

Remark 5.2 The only unknown in the constraints (9)-(11) is the market price of regime change
risk −ηij(t). If we obtain wide good-deal pricing bounds for a derivative then this tells us that
the choice of the market price of regime change risk−ηij(t) has a large impact on the derivative’s
price. Thus wide good-deal pricing bounds are a signal that we should explore additional ways of
further restricting the possible values of the market price of regime change risk−ηij(t). This point
is also made in Cochrane and Saá Requejo (2000).

The goal is to calculate the upper and lower good-deal price processes and we do this using a
stochastic control approach.
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6. STOCHASTIC CONTROL APPROACH

To ensure that the Markovian structure is preserved under the martingale measureQ, we need the
condition that the maximum in (8) is taken over Girsanov kernel processes(h,ηηη) of the form

h(t) = h(t, S(t), α(t−)) and ηij(t) = ηij(t, S(t), α(t−)), ∀j 6= i. (12)

Under this condition, the optimal expected value in (8) can be written asV upper(t, S(t), α(t−))
where the deterministic mappingV upper : [0, T ] × R+ × I → R+ is known as theoptimal value
function. From general dynamic programming theory (for example, see Björk (2009, Chapter 19)),
the optimal value function satisfies the following Hamilton-Jacobi-Bellman equation

∂V

∂t
+ sup

(h,ηηη)

{

A(h,ηηη)V
}

− rV = 0 (13)

V (T, x, i) = Φ(x, i),

where the supremum in (13) is subject to the constraints (9) - (11). An application of Itô’s formula
(for example, see Protter (2005, Theorem V.18, page 278)) shows that the infinitesimal operator
A(h,ηηη) is given by

A(h,ηηη)V (t, x, i) = r(t, x, i)x
∂V

∂x
(t, x, i) +

1

2
σ2(t, x, i)x2∂

2V

∂x2
(t, x, i)

+
D
∑

j=1,
j 6=i

gij(1 + ηij(t, x)) (V (t, x, j)− V (t, x, i)) ,
(14)

for all (t, x, i) ∈ [0, T ]× R+ × I.

Definition 6.1 Given a good-deal boundB and a positive constantǫ ≪ 1, theupper good-deal
functionfor the boundB is the solution to the following boundary value problem

∂V

∂t
(t, x, i) + sup

(h,ηηη)

{

A(h,ηηη)V (t, x, i)
}

− r(t, x, i)V (t, x, i) = 0 (15)

V (T, x, i) = Φ(x, i),

whereA(h,ηηη) is given by (14) and the supremum is taken over all functions(h,ηηη) of the form (12)
and satisfying

h(t, x, i) = −σ−1(t, x, i) (µ(t, x, i)− r(t, x, i)) , (16)

ηij(t, x) ≥ −1 + ǫ, for j = 1, . . . , D, j 6= i, (17)

and

|h(t, x, i)|2 +
D
∑

j=1,
j 6=i

gij|ηij(t, x)|2 ≤ B, (18)

for all (t, x, i) ∈ [0, T ]× R+ × I.



Good-deal bounds in a regime-switching diffusion market 25

Definition 6.2 Thelower good-deal functionis the solution to (15) but with the supremum replaced
by an infimum.

Rather than attempting to solve the partial integro-differential equation of (15) directly, we reduce
it to two deterministic problems which we solve for each fixed triple(t, x, i) ∈ [0, T ] × R+ ×
I. Moreover, ash is completely determined by (16), we need to solve only for the optimalηηη.
Therefore, givenh satisfying (16), we do the following:

1. Solve the static optimization problem of finding the optimalη̄ηη which attains the supremum
of A(h,ηηη)V (t, x, i) subject to the constraints (17) and (18).

2. Using the optimal̄ηηη found above, numerically find the solutionV to

∂V

∂t
+ A(h,η̄ηη)V − rV = 0

V (T, x, i) = Φ(x, i).

Examining (14), we see that the static optimization problem reduces to a problem of maximizing a
linear function ofηij(t, x) (that is, maximizing the last term on the right-hand side of (14)), subject
to a linear inequality constraint (17) and a quadratic inequality constraint (18). This can be solved
using the Kuhn-Tucker method; a further discussion of the solution can be found in Donnelly
(2011).

7. NUMERICAL EXAMPLE

Having applied the good-deal bound idea in a regime-switching diffusion market, we examine their
usefulness by calculating the upper and lower good-deal pricing bounds for a10-year European
put option in a market where there are two regimes. This corresponds to calculating the pricing
bounds on a 10-year maturity guarantee.

7.1. Market model

Suppose there are only two market regimes and time is measured in years. Assume the values of
the market parameters given in Table 1 and take the generator of the Markov chain to be

G =

(

g11 g12
g21 g22

)

=

(

−0.15 0.15
2 −2

)

,

These figures are based loosely on the estimated parameters found in Hardy (2003, page 226) for a
2-state regime-switching model fitted to monthly return data from 1956 to 2001 from the FTSE-All
Share Index, which covers over 98% of the U.K. stockmarket weighted by market capitalization.
From the table, we see that regime 1 is a low volatility regime and regime 2 a high volatility
regime. From the generatorG, we see that the average time spent in regime 1 is nearly 7 years
and the average time spent in regime 2 is 6 months. Thus the market is most of the time in the low
volatility regime and only occasionally in the high volatility regime.
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Regimei r(i) µ(i) σ(i)
1 0.06 0.15 0.12
2 0.06 -0.22 0.26

Table 1: Market parameters for the numerical example

7.2. Results

We fix the good-deal boundB = 0.3, which corresponds to the instantaneous Sharpe Ratio in the
market being confined to the range[−0.55, 0.55], and, considering all resulting bounds as open
bounds, setǫ = 0. The upper and lower pricing bounds corresponding toB = 0.3 were calculated
for a range of initial stock prices. The results are plotted as solid lines in Figure 1. The absolute
prices are shown in Figure 1(a), with the dashed line corresponding to the price derived from the
minimal martingale measure (the minimal martingale measure is determined by setting the market
price of regime change risk−ηij(t) to be zero). Figure 1(b) shows the ratio of the bounds to the
minimal martingale measure price. The latter figure demonstrates the impact of any assumption
on the market price of the regime change risk; it shows the large variation of the pricing bounds,
which allow for a non-zero price being assigned to the market price of regime change risk, from
the minimal measure price, which assigns zero price to the market price of regime change risk.
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(a) Absolute prices.
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Figure 1: The upper and lower good-deal pricing bounds for a 10-year European put option plotted
against the initial stock price for a fixed good-deal boundB = 0.3. The strike priceK = 100
and the initial market regime is regime 1. The upper solid line on each plot corresponds to the
upper good-deal pricing bound, the lower solid line corresponds to the lower good-deal pricing
bound and the dashed line corresponds to the minimal martingale measure price. The left plot
shows the absolute prices and the right plot shows the bounds relative to the minimal martingale
measure price. For example, the upper solid line in the right plot is obtained by dividing the upper
good-deal bound price by the minimal martingale measure price.

Next we examine exactly how the pricing bounds change as we vary the good-deal boundB.
We fix the initial stock priceS(0) = 100 andǫ = 0 (again, the interpretation of the resulting pricing
bounds is that they are open bounds), and calculate the pricing bounds for various choices of the
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good-deal boundB. These results are shown in Figure 2, with Figure 2(a) and 2(b) corresponding
to the market starting in regime 1 and 2, respectively. Again, the minimal martingale measure
prices are the dashed lines in the middle of each plot. As the good-deal boundB is increased, the
permitted range of the instantaneous Sharpe Ratio in the market increases, and thus the pricing
bounds increase. This demonstrates the sensitivity of the pricing bounds to the choice of the good-
deal boundB. Notice that the lower bound in Figure 2(a) is constant forB ≥ 0.4 because the
inequality constraint (17) is binding at these values. Thus forB ≥ 0.4 and starting in regime 1,
the lower pricing bound is constant since it is calculated with a constant market price of regime
change risk−ηij(t, x) = 1− ǫ = 1.
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(a) Starting in regime 1.
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(b) Starting in regime 2.

Figure 2: The upper and lower good-deal pricing bounds for a10-year European put option with
strike priceK = 100 plotted against the good-deal bound. The initial stock price isS(0) = 100.
The left plot assumes that the market is in regime 1 at time 0 and the right plot assumes that the
market is in regime 2 at time 0. On both plots, the minimal martingale measure price is the dashed
line.
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Abstract

Feynman–Kac formulas establish a fundamental link between conditional expectations and
deterministic partial integro differential equations (PIDEs). In the contextof option pricing in
Lévy models, this relation has recently led to the development of various numerical methods
to calculate prices via solving PIDEs. We give the precise link between certain conditional
expectations and weak solutions of the corresponding PIDEs in Sobolev–Slobodeckii spaces.
We apply the main result to price barrier options in (time-inhomogeneous) Lévy models and
illustrate this by numerical results using a wavelet-Galerkin method.

We look at the characterization of option prices via solutions of PIDEs fromtwo sides. In
view of efficient numerical solutions, we concentrate on the formulation as parabolic equations
in Sobolev–Slobodeckii spaces. Interpreting these equations as pseudo differential equations
provides an appropriate access, when starting from Lévy models. A classification of Ĺevy
processes according to their Fourier transforms is obtained.

The article provides a short description of parts of the results obtained in Glau (2010).

1. INTRODUCTION

The Feynman–Kac formula provides a link between conditional expectations and solutions of
PDEs. In the context of Ĺevy processes, conditional expectations are linked to solutions of Partial
Integro Differential Equations (PIDEs). In the last years this has lead to a remarkable development
of algorithms to price options in Ĺevy models by solving PIDEs based on finite elements. In Mat-
ache et al. (2004), Matache et al. (2005b), Matache et al. (2005a), wavelet-Galerkin methods for
pricing European and American options have been developed.The methods have been extended
to multivariate models, see Reich et al. (2010), Winter (2009) and the references therein. Also

29
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standard finite element methods are efficiently used for pricing basket options in high dimensional
models using dimension reduction techniques, see Hepperger (2010).

To study weak solutions of the PIDEs related to Lévy processes in terms of properties of the
processes, in Glau (2010) and Glau (2011), the Sobolev indexis defined and discussed in detail.
While PIDEs are classified via their operators, due to the Lévy Khintchine formula, Ĺevy processes
are completely described by their characteristic functions. Various classes of Lévy processes, as
e.g. CGMY processes, are actually defined by specifying theircharacteristic function. On the
other side the theory of weak solutions of partial differential equations relies on properties of the
bilinear form which is associated with the operator of the equation. In the classical result about
existence and uniqueness of weak solutions of evolution problems, both properties are related to
the so-called G̊arding and continuity inequalities for the bilinear form. The same relation is true
for elliptic equations.

Within the framework of a time-inhomogeneous Lévy model for stock prices in Glau (2010)
European, barrier, and lookback options are evaluated.

A Feynman–Kac representation for weak solutions of linear parabolic equations in Sobolev–
Slobodeckii spaces is deduced. To adapt the result to the pricing of European options, we work with
exponentially weighted Sobolev–Slobodeckii spaces. In order to characterize prices of barrier op-
tions by solutions of parabolic boundary value problems, weuse a method known as “pénalisation
du domaine“.

The result is applied to price barrier and lookback options numerically for a CGMY-model
using a wavelet-Galerkin method.

2. THE MODEL AND BASIC NOTATION

We choose an exponential time-inhomogeneous Lévy model to describe stock prices. Time-
inhomogeneous Ĺevy processes have proved to be useful for modeling financialderivatives, es-
pecially in the case of interest rate derivatives, see for example Eberlein et al. (2005), Eberlein
andÖzkan (2005), Eberlein and Kluge (2006), Eberlein and Koval(2006) and Eberlein and Liinev
(2007).

In Glau (2010), a multivariate stock price model is considered. For the sake of brevity, we
restrict ourselves in this article to the univariate case.

Let the stock priceS = (St)0≤t≤T be given as

St = S0 e
Lt , 0 ≤ t ≤ T (1)

with a time-inhomogeneous Lévy processL = (Lt)0≤t≤T whereL0 = 0 and the local characteris-
tics with respect to the truncation functionh are(bt, σt, Ft)t∈[0,T ]. Furthermore we model a riskless
savings accountS0 via

S0
t = e

∫ t

0 rs ds, 0 ≤ t ≤ T (2)

with deterministic interest rater = (rt)0≤t≤T . We additionally assume

∫ T

0

∫

{x>1}
ex Fs(dx) ds <∞ , (3)
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which is equivalent toESt <∞ for t ∈ [0, T ].
We model under a risk-neutral measure. In view of assumption(3) this is the case iff the

following drift condition is given

bt = rt −
1

2
σ2
t −

∫

R

(

ex−1− h(x)
)

Ft(dx), 0 ≤ t ≤ T . (4)

The infinitesimal generatorG of the time-inhomogeneous Lévy processL is given by

Gtf(x) =
σt
2
f ′′(x) + btf

′(x) (5)

+

∫

R

(

f(x+ y)− f(x)− h(y)f ′(x)
)

Ft(dy)

for f ∈ C2
0(R).

We define the operatorA = −G . It turns out thatA is a pseudo differential operator (PDO)
with symbolA i.e.

A u(x) =
1

2π

∫

R

e−iξxA(ξ)û(ξ) dξ

for all Schwartz-functionsu. The symbol of the processL satisfies

At(ξ) =
σt
2
ξ2 + ibtξ −

∫

R

(

e−iξy −1− ih(y)ξ
)

Ft(dy) = −θt(−ξ) (6)

with
E eiξLt = e−

∫ t

0 As(−ξ) ds

for 0 ≤ t ≤ T .

3. PRELIMINARIES

Let us consider a European option with payoff

g̃(ST ) = g(LT )

at maturityT wherex 7→ eηx g(x) is in L2(R) i.e. g ∈ L2
η(R). For example, for a call option the

payoff isg(x) := S0(e
x−K/S0)

+ and we haveg eη· ∈ L2(R) for everyη < −1.
Moreover we study barrier options with payoff

g(LT )1{T<τ
D
}

at maturityT , whereD is an open set inR andτD denotes the first exit time of the processL from
the closureD of D,

τD = inf{s ≥ 0|Ls /∈ D } .
We characterize fair prices of those options by weak solutions of PIDEs in Sobolev–Slobodeckii

spaces.
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A function u belongs to the Sobolev–Slobodeckii spaceHs(R) for a certains ∈ R iff u ∈
L1
loc(R) andu has a Fourier transformF(u) in the weak sense and

∫

(1 + |ξ|2)s|F(u)(ξ)|2 dξ <∞ .

Furthermore we define the weighted Sobolev–Slobodeckii spacesHs
η(R) for s > 0 andη ∈ R as

the spaces of functionsu ∈ L2
η(R), wherex 7→ u(x) eηx belongs toHs(R). Moreover fors ∈ R

the dual space ofHs
η(R) is isomorphic toH−s

η (R).
We consider the following additional assumptions which were introduced in Glau (2010), p.

154. Letα ∈ [1, 2] andη ∈ R. By U−η we denote the stripU−η := R − i sgn(η)[0, |η|) in the
complex plane forη 6= 0, andU0 := R.

(A1) Assume
∫ T

0

∫

{|x|>1}
e−ηx Fs(dx) ds <∞ .

(A2) There exists a constantC1 > 0 with
∣

∣At(z)
∣

∣ ≤ C1

(

1 + |z|
)α

for all z ∈ U−η and for all t ∈ [0, T ].

(A3) There exist constantsC2 > 0 andC3 ≥ 0, such that for a certain0 ≤ β < α

ℜ
(

At(z)
)

≥ C2

(

1 + |z|
)α − C3

(

1 + |z|
)β

for all z ∈ U−η and for all t ∈ [0, T ].

(A4) The mappingt 7→ ℜ(At(ξ−iη)) is continuous and piecewise continuously differentiable with
∣

∣∂tℜ(At(ξ−iη))
∣

∣ ≤ C4

(

1 + |ξ|
)α

for everyt ∈ (0, T ), wheret 7→ At(· −iη) is differentiable.

The symbol of a Ĺevy process does not depend on time and hence condition (A4) is irrelevant
for Lévy processes. Conditions (A1)–(A3) are for example satisfied for CGMY-processes with
parametersC, G, M > 0 andY ∈ [1, 2) with α = Y andη ∈ (−G,M).

For Lévy processes with Brownian part, conditions (A2) and (A3) can be verified forα = 2
and thoseη ∈ R that satisfy assumption (A1). In particular the Brownian motion (with drift)
itself satisfies the assumptions for everyη ∈ R. See Glau (2011) and Glau (2010) for a detailed
discussion of examples.

Condition (A1) about the existence of exponential moments isequivalent toE e−η′Lt < ∞
for every0 ≤ t ≤ T andη′ with |η′| ≤ |η| andsgn(η′) = sgn(η). SymbolsA that satisfy this

assumption have a continuous extension toU−η that is analytic in the interior
◦
U−η of U−η.

Under assumptions (A2) and (A3) the bilinear forma, given by

a(t;ϕ, ψ) :=
(

Atϕ
)

(ψ)
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for all continuous functionsϕ, ψ with compact support, is continuous and satisfies a Gårding
inequality with respect to the norm‖ · ‖α/2,η of the Hilbert spaceHα/2

η (R). This means the bilinear

form a has a unique extension to[0, T ]×H
α/2
η (R)×H

α/2
η (R) which is continuous in the sense

∣

∣a(t; u, v)
∣

∣ ≤ c1‖u‖Hα/2
η

‖v‖
H

α/2
η

(

u, v ∈ Hα/2
η (R)

)

for everyt ∈ [0, T ] with a constantc1 > 0 and satisfies the G̊arding inequality

ℜ
(

a(t; u, u)
)

≥ c2‖u‖2
H

α/2
η

− c3‖u‖2L2
η

(

u, v ∈ Hα/2
η (R)

)

with constantsc2 > 0 andc3 ≥ 0. See (Glau 2010, Theorem II.7 and II.9).
Let us emphasize that both conditions, the continuity and the Gårding condition, are required

uniformly in time.
In this case the PIDEs of the form

u̇+Atu = f

u(0) = g ,

with f in the dual space of the Sobolev–Slobodeckii spaceH
α/2
η (R) and with initial condition

g ∈ L2
η(R) possess a unique solutionu ∈ W 1

(

0, T ;H
α/2
η (R);L2

η(R)
)

. We then have thatu ∈
L2

(

0, T ;H
α/2
η (R)

)

with a derivativeu̇ with respect to time in the weak sense that satisfiesu̇ ∈
L2

(

0, T ;H
−α/2
η (R)

)

.

The spaceW 1
(

0, T ;H
α/2
η (R), L2

η(R)
)

consists of those functionsu ∈ L2
(

0, T ;H
α/2
η (R)

)

that have a derivative with respect to timeu̇ in a distributional sense that belongs to the space
L2

(

0, T ;
(

H
α/2
η (R)

)∗)
. For a Hilbert spaceH, the spaceL2

(

0, T ;H
)

denotes the space of func-

tionsu : [0, T ] → H, that are weakly measurable and that satisfy
∫ T

0
‖u(t)‖2H dt <∞. For the defi-

nition of weak measurability and for a detailed introduction of the spaceW 1
(

0, T ;H
α/2
η (R), L2

η(R)
)

that relies on the Bochner integral, we refer to the book of Wloka (1987).

4. SOBOLEV INDEX OF A LEVY PROCESS

Let us briefly discuss the definition of a Sobolev index for Lévy processes. The index is discussed
in detail in Glau (2011).

Definition 4.1 LetA be a PDO with symbolA. If there exists a real numberα ∈ (0, 2] such that
for all ξ ∈ R

∣

∣A(ξ)
∣

∣ ≤ C1 (1 + |ξ|2)α/2 (continuity condition), and

ℜ
(

A(ξ)
)

≥ C2|ξ|α − C3 (1 + |ξ|2)s/2 (Gårding condition)

with 0 < s < α and constantsC1, C3 ≥ 0 andC2 > 0, then we callα theSobolev indexof the
symbolA. If L is a Lévy process with symbolA with Sobolev indexα, we callα theSobolev index
of the Lévy processL.
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Not every Ĺevy process has a Sobolev index, but for a wide range of Lévy processes there is a
Sobolev index, and if the index is smaller than 2, it is equal to the Blumenthal-Getoor index. The
Sobolev index exists e.g. for CGMY and generalized hyperbolic (GH) processes and for Lévy
processes with a Ĺevy measure which has a Lebesgue density.

The following relationship to parabolic equations is derived.

Theorem 4.1 LetA be a PDO whose symbolA has a Sobolev indexα for someα > 0. Then the
parabolic equation

∂tu+A u =f

u(0) =g ,
(7)

for f ∈ L2
(

0, T ;H−α/2(R)
)

and initial conditiong ∈ L2(R) has a unique weak solutionu in the
spaceW 1

(

0, T ;Hα/2(R), L2(R)
)

.

5. PIDE TO PRICE EUROPEAN OPTIONS

Let Πg
t denote the fair price of a European option with payoffg(LT ) at maturityT . Using the

Markov property of the processL we derive

Πg
t = E

(

g(LT ) e
−

∫ T

t
rs ds

∣

∣Ft

)

= E
(

g(LT ) e
−

∫ T

t
rs ds

∣

∣Lt

)

= u(T − t, Lt) .

The following theorem is deduced in (Glau 2010, Theorem V.2), see also (Glau 2010, Satz II.13
and Theorem IV.9).

Theorem 5.1 Let us assume (A1)–(A4) for anα ∈ [1, 2] and anη ∈ R with g ∈ L2
η(R). The fair

priceΠg
t of the option at timet ∈ [0, T ] is given by

u(T−t, Lt) = E
(

g(LT ) e
−

∫ T

t
rs ds

∣

∣Lt

)

where the functionu ∈ W 1
(

0, T ;H
α/2
η (R);L2

η(R)
)

is the unique solution of the parabolic equa-
tion

∂tu+Atu+ rtu = 0

u(0) = g .

Furthermoreu ∈ C1
(

0, T ;Hm
η (R)

)

for everym ∈ N and the following holds:

F
(

eη u
)

(t) = ĝ(· −iη) e−
∫ t

0 As(·−iη) ds e−
∫ T

t
rs ds . (8)

Equation (8) coincides with the so-called convolution formula derived in Raible (2000), and in
Carr and Madan (1999) for the case of a call option.

To summarize: the prices of European options are given in terms of weak solutions of PIDEs.
The interpretation as pseudo differential equation corresponds to the convolution method, where
the option price is written as a convolution and is represented via Fourier transforms.



PIDEs for option pricing in Ĺevy models 35

6. PIDE TO PRICE BARRIER OPTIONS

We price barrier options with payoff
g(LT )1{T<τ

D
}

whereτD denotes the first exit time of the processL fromD.
We derive a stochastic representation of the parabolic equation of the form

u̇+Atu = f in D ⊂ R

u(0) = g ,

u ≡ 0 in Dc. The precise mathematical formulation of the equation is achieved by introducing
the (weighted) Sobolev–Slobodeckii space˜Hα/2

η (D) which is the subspace of those functionsu ∈
H

α/2
η (R) that are vanishing onDc, the complement ofD.

We obtain the Feynman–Kac formula using a method called ‘pénalisation du domaine’, that is
outlined in (Glau 2010, Kapitel III), see also (Glau 2010, Theorem V.4 and Theorem IV.9).

Theorem 6.1 Let the assumptions (A1)–(A4) be satisfied for anα ∈ [1, 2] and anη ∈ R with
g ∈ L2

η(R). The fair price of the barrier option at timet ∈ [0, T ] is given byΠt = u(T−t, Lt)1t<τ
D

where
u(T−t, Lt) = E

(

g(LT )1{T<τ
t,D

} e
−

∫ T

t
rs ds

∣

∣Ft

)

with τt,D = inf{s ≥ t|Ls /∈ D }. The functionu is the unique weak solution in the spaceu ∈
W 1

(

0, T ; ˜H
α/2
η (D);L2

η(D)
)

of

∂tu+Atu+ rtu = 0

u(0) = g .

For a digital up-and-out barrier option with barrierH = S0 e
B for example, the initial function is

chosen asg(x) = 1(−∞,B)(x). The price of the digital barrier option is

Πdigi,B
t = udigi,B(T−t, Lt)1{t<τ

(−∞,B)
} ,

whereudigi,B is the unique solutionu ∈ W 1
(

0, T ; ˜H
α/2
η (−∞, B);L2

η(−∞, B)
)

of the parabolic
boundary value problem

∂tu+Atu+ rtu = 0

u(0) = 1(−∞,B) ,
(9)

compare (Glau 2010, Korollar V.5).

7. PRICING LOOKBACK OPTIONS VIA PIDES

Let the processL be a Ĺevy process and let the assumptions (A1)–(A4) be satisfied for anα ∈ [1, 2]
and a certainη > 0. In this case, the price of the digital barrier option at timet = 0 corresponds to
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the distribution functionFLT of the supremumLT = sup0≤t≤T Lt, i.e.

FLT (x) = P (LT < x) = udigi,0(T,−x) .

The fair price

V0 = V0(S0) = e−
∫ T

0 rs dsE
(

sup
0≤t≤T

St −K
)+

of the lookback option at time0 is then given by

V0(S0) = S0 e
−

∫ T

0 rs ds

(
∫ ∞

k−log(S0)

(

1− udigi,0(T,−x)
)

ex dx+ (1−K/S0)
+

)

, (10)

where the functionudigi,0 is the unique solution of the parabolic boundary value problem (9) for
B = 0. This is the basis for deriving a PIDE to price the lookback option in (Glau 2010, Kapitel
VI.2.2). More precisely, a PIDE for the integrand in equation (10) is derived and solved numeri-
cally using a wavelet-Galerkin scheme, see (Glau 2010, p. 187-190).

8. NUMERICAL EVALUATION

For the numerical evaluation we choose a Lévy model with a CGMY process as driving process.
We calculate the option prices using a wavelet-Galerkin method. The main part of the method was
developed by Schwab et al., see e.g. von Petersdorff and Schwab (2003), Matache et al. (2004),
Matache et al. (2005b). They also provided a large part of thecode. For a description of the specific
algorithm see (Glau 2010, Kapitel VI.1).

0 1000
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tio

n 
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Figure 1:Price of a digital barrier option with Barrier at1000 and maturity 1 year in a CGMY model.



PIDEs for option pricing in Ĺevy models 37
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Figure 2:The figure shows the price of the lookback option and the payoff function(S0−K)+ at maturity
1 year with strike1300.
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K. Glau. Sobolev index: a classification of Lévy processes. Working paper, University of Vienna,
2011.

P. Hepperger. Option pricing in Hilbert space valued jump-diffusion models using partial integro-
differential equations.SIAM Journal on Financial Mathematics, 1:454–489, 2010.

A.-M. Matache, T. von Petersdorff, and C. Schwab. Fast deterministic pricing of options on Ĺevy
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S. Raible.Lévy processes in finance: theory, numerics, and empirical facts. PhD thesis, University
of Freiburg, 2000.

N. Reich, C. Schwab, and C. Winter. On Kolmogorov equations for anisotropic multivariate Ĺevy
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Abstract

This paper extends the αVG model (Semeraro 2008) by relaxing the constraints on the Gamma
subordinator parameters, leading to marginal characteristic functions of the asset log-returns
which become a function of the whole parameter set. Hence, the calibration of this generalized
model does not require anymore any correlation fit, which might turn out to be a significant
advantage in practice since the risk-neutral calibration of the correlation requires the existence
of a liquid market for multivariate derivatives which is nowadays pretty rare. Moreover, the
volatility of the log-returns depends on both the common and idiosyncratic subordinator set-
tings, and not only on the idiosyncratic one as under the original model, which makes the
generalized model more in line with the empirical evidence of the presence of both an idiosyn-
cratic and a common component in the business time.

1. INTRODUCTION

The use of a time-changed Brownian motion in finance was first proposed by Clark to model cotton
future prices (Clark 1973). His pioneer work was motivated by the fact that the information flow
directly affects the evolution of the price through time. More precisely, when the amount of avail-
able information is low, the trading is slow and the price process evolves slowly and the other way
around. Since then the concept of business clock has been widely considered in the financial liter-
ature, first to model univariate stock price processes (Ané and Geman (2000), Carr et al. (2003),
Madan and Senata (1990)), before being extended to the multivariate setting. Madan and Senata
(1990) first proposed to subordinate a multivariate Brownian motion by an univariate Gamma time
change. However, the uniqueness of the business clock makes impossible to capture independency
of the stock log-returns. Hence, Semeraro (2008) proposed the so-called αVG model which rests
on a multivariate subordinator process composed of the weighted sum of two independent Gamma
processes: an idiosyncratic and a common component. Later, Luciano and Semeraro (2010) ex-
tended the αVG model to other Lévy distributions by considering other subordinators. This class

39
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of multivariate models was motivated by the empirical work of Lo and Wang (2000) which gives
evidence for the presence of a significant common component in the trading volume and by the
study of Harris (1986) which shows that the distribution of the information flow is not identical
for all securities. In the original setting, Luciano and Semeraro imposed some restrictions on the
subordinator parameters such that the subordinator follows the same distribution as its two com-
ponents, leading to marginal log-return processes of a particular Lévy type. Under this restricted
setting, the marginal characteristic functions become independent of the common subordinator
setting which affects only the dependence structure of the asset log-returns. This might lead to
two undesired features in practice. First, the risk-neutral calibration of the common subordinator
parameters requires liquid multivariate derivative quotes which are often unavailable. Secondly,
the variance and therefore the volatility of the asset log-returns turn out to be independent of the
common subordinator setting. Since the volatility level is directly related to the trading activity, the
conditions imposed on the time change parameters imply that the trading activity does not depend
on the common component of the business clock, but only on the idiosyncratic one.
If the marginal class is not a desired feature, the model can be extended by relaxing the constraints
imposed on the subordinator parameters. The such obtained generalized αVG model belongs to
the class of exponential Lévy model, although the particular underlying Lévy distribution is not
known anymore. We will show that the marginal characteristic functions and consequently also
the volatility of the asset log-returns then depend on both the idiosyncratic and common subordi-
nator settings and more specifically on the whole set of parameters. Hence the calibration of the
generalized αVG model does not require the existence of actively traded multivariate derivatives
anymore.

2. THE αVG MODEL

Under the αVG model, the N-dimensional stock price process satisfies:

St =


S
(1)
t

S
(2)
t
...

S
(N)
t

 =


S
(1)
0 exp

(
(r − q1 + ω1)t+ Y

(1)
t

)
S
(2)
0 exp

(
(r − q2 + ω2)t+ Y

(2)
t

)
...

S
(N)
0 exp

(
(r − qN + ωN)t+ Y

(N)
t

)

 =



S
(1)
0 exp

(
(r−q1)t+Y (1)

t

)
E
[
exp
(
Y

(1)
t

)]
S
(2)
0 exp

(
(r−q2)t+Y (2)

t

)
E
[
exp
(
Y

(2)
t

)]
...

S
(N)
0 exp

(
(r−qN )t+Y

(N)
t

)
E
[
exp
(
Y

(N)
t

)]


,

where S(i)
0 is the spot price of the ith underlying, r is the risk-free interest rate, qi denotes the

dividend yield of the ith stock and ω = (ω1, ω2, . . . , ωN)
T is the mean correcting vector making

the model risk-neutral. The process Y = {Yt, t ≥ 0} is a N -dimensional time-changed Brownian
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motion:

Yt =


Y

(1)
t

Y
(2)
t
...

Y
(N)
t

 =


θ1G

(1)
t + σ1W

(1)

G
(1)
t

θ2G
(2)
t + σ2W

(2)

G
(2)
t...

θNG
(N)
t + σNW

(N)

G
(N)
t

 , (1)

whereW (i), i = 1, . . . , N are independent standard Brownian motions and where the subordinators
G

(i)
t ’s are the weighted sum of two Gamma processes, one idiosyncratic and one common process:

Gt =


G

(1)
t

G
(2)
t
...

G
(N)
t

 =


X

(1)
t + α1Zt

X
(2)
t + α2Zt

...
X

(N)
t + αNZt

 ,

where αi > 0, Z1 ∼ Gamma(c1, c2), c1, c2 > 0 and X
(i)
1 ∼ Gamma(ai, bi), ai, bi > 0 are

independent random variables and are independent on the W (i)’s.

• The Gamma process

The characteristic function of the Gamma distribution Gamma(a, b) with parameters a > 0,
b > 0 is given by:

φGamma(u; a, b) =

(
1− iu

b

)−a
.

The Gamma processX = {Xt, t ≥ 0} is a Lévy process such thatXt follows a Gamma(at, b)
distribution. The Gamma distribution satisfies the following scaling property: if X ∼
Gamma(a, b) then cX ∼ Gamma(a, b/c), c > 0. Moreover, the sum of independent
Gamma random variables with the same parameter b is also Gamma distributed: if Xi ∼

Gamma(ai, b), i = 1, . . . , N are N independent random variables then
N∑
i=1

Xi ∼ Gamma

(
N∑
i=1

ai, b). The first four moments of the Gamma distribution are given in Table 1.

Gamma(a, b)

mean a
b

variance a
b2

skewness 2√
a

kurtosis 3
(
1 + 2

a

)
Table 1: Characteristics of the Gamma distribution.
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• The Variance Gamma process

The characteristic function of the Variance Gamma distribution VG(σ, ν, θ) with parameters
σ > 0, ν > 0 and θ ∈ R is given by:

φVG(u;σ, ν, θ) =
(
1− iuθν +

u2σ2ν

2

)−1
ν
, u ∈ R.

The Variance Gamma process X = {Xt, t ≥ 0} is a Lévy process such that Xt follows a
VG(
√
tσ, ν

t
, θt) distribution. The VG distribution satisfies the following scaling property: if

X ∼ VG(σ, ν, θ) then, for c > 0, cX ∼ VG(cσ, ν, cθ). The first four moments of the VG
distribution are given in Table 2.

VG(σ, ν, θ)

mean θ

variance σ2 + νθ2

skewness
θν
(
3σ2+2νθ2

)(
σ2+νθ2

) 3
2

kurtosis 3
(
1 + 2ν − νσ4

(σ2+νθ2)2

)
Table 2: Characteristics of the Variance Gamma distribution.

A VG(σ, ν, θ) process can be seen as a Gamma time-changed Brownian motion with drift:

XVG
t = θGt + σWGt

where G = {Gt, t ≥ 0} is a Gamma process with parameters a = b = 1
ν

and W =
{Wt, t ≥ 0} is a standard Brownian motion.

3. The GENERALIZED αVG MODEL

The characteristic function of the process Yt (see Equation (1)) is given by:

φY(u, t) =
N∏
i=1

φ
X

(i)
1

(
uiθi + i

1

2
σ2
i u

2
i , t

)
φZ1

(
N∑
i=1

αi

(
uiθi + i

1

2
σ2
i u

2
i

)
, t

)
. (2)

Indeed, we have

φY(u, t) = E [exp(iu′Yt)] = E

[
E

[
N∏
i=1

exp(iuiY
(i)
t )|G(i)

t , i = 1, . . . , N

]]
.
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Moreover, since θiG
(i)
t + σiWG

(i)
t
|G(i)

t ∼ Normal(θiG
(i)
t , σ

2
iG

(i)
t ) are independent, we have

φY(u, t) = E

[
N∏
i=1

E
[
exp(iuiY

(i)
t )|G(i)

t

]]
= E

[
n∏
i=1

exp

(
i
(
uiθi + i

1

2
σ2
i u

2
i

)(
X

(i)
t + αiZt

))]
.

Given the independence of the X(i)
t ’s, i = 1, . . . , N and Zt, we finally obtain Equation (2).

The marginal characteristic functions are directly obtained from (2):

φY (i)(u, t) = E
[
exp(iuY (i)

t )
]
=

(
1− i

uθi + i1
2
σ2
i u

2

bi

)−ait(
1− i

αi
c2

(
uθi + i

1

2
σ2
i u

2

))−c1t
.

(3)
From the marginal characteristic function (3), it is clear that each process Y (i) = {Y (i)

t , t ≥ 0}, i =
1, . . . , N is a Lévy process (although not necessarily VG) since the marginal characteristic function
can be rewritten as φY (i)(u, t) = (φY (i)(u, 1))

t.
The linear correlation between the processes Y (i)

t and Y (j)
t is time independent:

ρij =
Cov

(
Y

(i)
t , Y

(j)
t

)
√

Var
[
Y

(i)
t

]
Var
[
Y

(j)
t

] , (4)

where

Cov
(
Y

(i)
t , Y

(j)
t

)
= θiθjαiαj

c1
c22
t and Var

[
Y

(i)
t

]
=

(
θ2i

(
ai
b2i

+ α2
i

c1
c22

)
+ σ2

i

(
ai
bi

+ αi
c1
c2

))
t.

The parameter set of the generalized αVG model is {θi;σi;αi; ai; bi, i = 1, . . . , N ; c1, c2} lead-
ing to a number of parameters amounting to 5N + 2. However, we can scale the parameter c2 to 1
since multiplying c2 by a constant c is equivalent to dividing the parameters αi’s by c. Moreover,
for the sake of coherence, we will impose that the business time G(i)

t increases on average as the
real time t, i.e. we impose that E

[
G

(i)
t

]
=
(
ai
bi
+ αi

c1
c2

)
t = t which is equivalent to

ai
bi

= 1− αi
c1
c2
. (5)

Hence the number of independent parameters is reduced to 4N+1: {θi;σi;αi; bi, i = 1, . . . , N ; c1}.
We note that Equation (5) implies the following constraints on the model parameters

bi

(
1− αi

c1
c2

)
> 0, i = 1, . . . , N (6)

to ensure the positivity of the parameters ai’s. If we do not impose any other restrictions, the
marginal characteristic functions (3) depend on all the model parameters which makes impossible
the decoupling of the univariate implied volatility surface calibration and the correlation calibra-
tion. Indeed, once the calibration of the option surfaces is performed, there is no parameter left
to calibrate the dependence structure. Hence, we can either use only univariate derivatives in the
calibration procedure or take into account a penalty in the option surface calibration which mea-
sures the correlation goodness of fit. However, some additional conditions can be imposed to make
the marginal characteristic functions independent on the model parameter c1. This will lead to the
original αVG model proposed by Semeraro (2008).
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4. THE ORIGINAL αVG MODEL

The αVG model proposed by Luciano and Semeraro (Luciano and Semeraro (2010), Semeraro
(2008)) is obtained by imposing the equality

bi =
c2
αi

∀i = 1, . . . , N (7)

such that the Gamma subordinator G(i) is Gamma distributed: G
(i)
1 ∼ Gamma(ai + c1,

c2
αi
).

The condition (5) then becomes ai = c2
αi
− c1 and the marginal characteristic functions become

independent on c1:

φY (i)(u, t) =

(
1− i

αi
c2

(
uθi + i

1

2
σ2
i u

2

))− c2
αi
t

.

The unitary time change associated to the ith underlying stock,G(i), is then Gamma(c2/αi, c2/αi)
distributed and the ith asset log-return follows a VG(σi, αi/c2, θi) process. The number of free pa-
rameters amounts then to 3N + 1 ({θi;σi;αi, i = 1, . . . , N ; c1}).

Under the reduced setting, the linear correlation between the asset-log returns can be rewritten
as:

ρij =
θiθjαiαj√(

θ2i
bi
+ σ2

i

)(
θ2j
bj
+ σ2

j

)c1 ∝ c1. (8)

5. CALIBRATION PROCEDURE

For the calibration of the original αVG model, we follow the same procedure as in Leoni and
Schoutens (2008) and Luciano and Semeraro (2010) since we can then dissociate the calibration
of the univariate option surfaces and the calibration of the correlations. On the other hand, the
generalized αVG model can not be calibrated by following this methodology since the marginal
characteristic functions depend on the whole parameter set. Hence, we can either perform the cali-
bration of the option surfaces and the correlations simultaneously or calibrate the whole parameter
set on univariate derivatives only.

5.1. The decoupling calibration

The decoupling calibration procedure proposed by Leoni and Schoutens (2008) might be applied
for any multivariate model as long as the marginal characteristic functions are independent on at
least one model parameter since the methodology consists of dissociating the univariate option
surface calibration from the correlation calibration. Hence the calibration might be performed in
two successive steps:

1. calibration of the univariate option surfaces
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We first perform a simultaneous calibration of each option surface by using fast Fourier
transform techniques such as the Carr-Madan formula (Carr and Madan (1998)). For a par-
ticular choice of the common parameters pc (i.e. the parameters which are included in more
than one marginal characteristic function), we calibrate the idiosyncratic parameters pi (i.e.
the parameters which only appear in one marginal characteristic function). We then repeat
the procedure for a wide range of the common parameters. The optimal marginal parameter
set pm =

{
pc,pi

}
(i.e. the set of both the common and idiosyncratic parameters) is the

parameter set which leads to the best fit of all the univariate option surfaces.

For the calibration of the marginal distributions, we consider a straightforward multidimen-
sional extension of the widely used one dimensional root mean square error (RMSE) objec-
tive function by taking the mean of the marginal RMSE functionals:

MRMSE =
N∑
i=1

RMSE(i)

N
=

N∑
i=1

1

N

√√√√√M(i)∑
j=1

(
P

(i)
j − P̂

(i)
j

)2
M (i)

, (9)

where N is the number of underlying stocks, M (i) is the number of quoted options for
the ith stock and P

(i)
j and P̂

(i)
j denote the jth market and model option prices of the ith

stock, respectively. The multivariate weighted RMSE objective function, MRMSE allows
to calibrate separately each option surface. Indeed, we can minimize separately RMSE(i) =
RMSE(i)(pi

i|pc), where pi
i = {θi, σi, αi} denotes the idiosyncratic parameter set of the ith

underlying. Hence opting for the MRMSE objective function might turn out to significantly
reduce the calibration time, especially for a large number of underlyings. In the particular
case of the original αVG model we consider, the MRMSE actually reduces to N univari-
ate VG calibrations since the marginal characteristic functions do not share any common
parameter pc.

2. calibration of the dependence structure
We fix the marginal parameters pm to their optimal value according to the first step and
we calibrate the correlation parameters pd (i.e. the parameters which do not influence any
marginal characteristic function, in the present case, pd = c1) on the market implied corre-
lations by minimizing a root mean squared objective function:

RMSEρ =

√√√√ 1
N2−N

2

N∑
i,j 6=i

(ρij − ρ̂ij)2 (10)

where ρij and ρ̂ij denote the market implied and the model correlations between the ith and
jth asset log-returns, respectively. The model correlation ρ̂ij is directly inferred by Equation
(4).

5.2. The joint calibration

If no reliable estimate of the dependence structure can be inferred from liquid market quotes,
we can then calibrate the whole parameter set of the generalized model on the univariate option
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surfaces only by following the procedure described in the option surface calibration phase of the
decoupling calibration procedure. In other words, we can successively minimize MRMSE|c1 =
N∑
i=1

RMSE(i)(θi,σi,αi,bi|c1)
N

and repeat the procedure for different values of the common parameter c1.

On the other hand, a joint calibration procedure of the univariate option surfaces and the corre-
lations is required when the marginal characteristic functions depend on the whole model parame-
ter set if the correlation matching is a desired feature. It requires an adequate specification of the
penalty function to take into account the correlation matching in the calibration procedure of the
option surfaces. We propose to minimize the following objective function:

MRMSEJ =
N∑
i=1

RMSE(i)

N
+ αρMRMSE∗

√√√√ 1
N2−N

2

N∑
j,k 6=j

(ρjk − ρ̂jk)2, (11)

where ρjk and ρ̂jk denote the market implied and the model correlations between the jth and kth
log-returns, respectively and where MRMSE∗ is the optimal value of the multivariate root mean
square error obtained by fitting the option surfaces only. The scaling of the correlation goodness
of fit by this factor ensures that both terms of Equation (11) are of the same magnitude order. The
parameter αρ ≥ 0 allows the user to specify the relative importance of the correlation matching; a
parameter αρ equal to 0 indicating that the correlation calibration is not a desired feature and that
the model is calibrated on the univariate option surfaces only.

6. CALIBRATION PERFORMANCE

The calibration of the original and generalized αVG models is performed for a time period rang-
ing from the 2nd of June 2008 until the 30th of October 2009 with weekly quotes and therefore
including the recent credit crunch. We consider a basket composed of four major stocks included
in the S&P500 index, namely Apple, Exxon, Microsoft and Intl. Moreover, we infer the depen-
dence structure of the asset log-returns from the CBOE S&P 500 implied correlation index which
measures the expected average correlation between the index components (CBOE (2009)). The
original model is calibrated by performing the decoupling calibration procedure described in Sec-
tion 5.1 whereas the generalized model is calibrated on the univariate option surfaces only or by
including a penalty term which assesses the correlation goodness of fit (referred to as step 2) (see
Section 5.2).

6.1. The option surface goodness of fit

The MRMSE (9) which assesses the univariate option surfaces goodness of fit as well as the VIX
volatility index which measures the future expected market volatility over the next 30 calendar days
are shown on Figure 1. We observe that the Lévy models lead to a better fit of the univariate option
surfaces than the Black-Scholes model except during the panic wave period which is characterized
by a high value of the VIX and which occurred in the aftermaths of the bankruptcy of Lehman
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Brothers, namely from October 2008 until December 2008. When calibrated on univariate option
surfaces only, the generalized model is characterized by a slightly lower MRMSE than the original
model. Moreover, taking into account the correlation goodness of fit in the calibration of the
generalized model leads to an option surface fit of roughly the same quality as the original and the
generalized model when this is calibrated on option surfaces only.
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Figure 1: Evolution of the global option surface calibration performance (upper) and evolution of
the VIX volatility index (lower) through time.

6.2. The correlation goodness of fit

Figure 2 shows the correlation RMSE (10) under the original and generalized αVG models. We
clearly see that although the original αVG model has a free parameter to calibrate the linear depen-
dence between the underlying stocks, i.e. c1, it is usually not able to fit accurately the correlation
structure. This gives some evidence against the use of the decoupling procedure to calibrate the
original model and might be explained by two reasons: first there exists only one single param-
eter to fit the N2−N

2
linear correlations between the N underlyings and secondly, imposing the

constraint (5) that on average the business clock grows as the real time, implies some additional
constraints on the subordinator parameters. Indeed, to ensure the positivity of the idiosyncratic
subordinator parameters ai’s, we have to impose the conditions c1 < 1

αi
∀i = 1, . . . , N ; which

is equivalent to impose an upper bound for c1: c1 ∈ (0, 1
maxαi

). Hence the range of admissible
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values of c1 might be really small since the parameters αi’s are calibrated during the option surface
calibration phase and can not be adjusted during the correlation calibration phase. Since under the
original setting the correlation is proportional to c1 (see Equation (8)), this might in turn severely
restrict the range of attainable correlations. As it can be seen from Figure 3, the common subor-
dinator parameter c1 is usually set at the upper bound 1

maxαi
, which explained the poor fit of the

dependence structure under the original αVG model.
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Figure 2: Evolution of the correlation calibration performance of the original and generalized
models through time.

04/06/08 10/09/08 24/12/08 08/04/09 22/07/09 28/10/09
0

20

40

60

80

100

Trading day

c 1

c
1

 

 

original αVG
generalized αVG
generalized αVG (step2)

1/max(α
i
)

Figure 3: Evolution of the common subordinator parameter c1 of the original and generalized
models through time.

6.3. Influence of αρ

Figure 4 shows the influence of the parameter αρ on the option surfaces and the correlations good-
ness of fit for the trading day which leads to the highest value of RMSEρ under the generalized
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αVG model for αρ = 1. We observe that it might be judicious to allocate more weight to the
correlation goodness of fit in order to improve the correlation fit when the option surfaces RMSE
is pretty low.
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Figure 4: Influence of αρ for the generalized αVG model.

7. CONCLUSION

This paper features an extension of the αVG model, where the constraints on the Gamma sub-
ordinator parameters are relaxed. The such obtained generalized αVG model leads to marginal
characteristic functions which remain of Lévy type but become dependent on the whole parame-
ter set, which might be of a particular interest for practitioners as regards two criteria. First, the
market-implied calibration does not require anymore the existence of a liquid market for multi-
variate derivatives which is nowadays pretty rare and secondly, the volatility, and hence the trading
activity becomes a function of both the idiosyncratic and common subordinator settings, which is
in line with the empirical evidence of the presence of both an individual and common business
clock. The calibration of the two models has emphasized the fact that the correlation goodness of
fit is significantly improved by performing a second calibration of the generalized model which
takes into account a penalty term assessing the correlation goodness of fit into the option surface
calibration optimizer. This paper also points out the shortfall of the decoupling calibration pro-
cedure in the case of the original αVG model. Indeed, imposing the condition that the business
time grows on average as the calendar time implies an upper bound on the common parameter c1
which is a function of the αi’s. By first calibrating the marginal parameters (including the αi’s) on
the univariate option surfaces, we then limit severely the admissible value range of the parameter
c1 and consequently the value range of attainable correlations. In particular, the numerical study
clearly shows that c1 is usually set at its upper bound, giving some evidence against the use of the
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decoupling calibration procedure.
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Abstract

We present a static bank-run model for liquidity risk where a financial institution finances its
risky assets by a mixture of short- and long-term debt. Insolvency can happen at any time
until maturity. Short-term creditors have the possibility not to renew their funding at a fixed
rollover date. We compute both insolvency and illiquidity default probabilities in acontinuous
time asset value model. Our implications show, in particular, that illiquidity risk is increasing
in volatility and in the outside option ratio.

1. INTRODUCTION

Insolvency risk is defined as the risk that some obligors may default on their obligations or the
risk of a deterioration in the credit quality of some investments resulting in unexpected losses.
The credit crisis of 2007-2008 has dramatically shown that credit risk cannot only be reduced to
insolvency risk but is also intertwined with liquidity aspects. The failures of Bear Stearns and
Lehman Brothers are just two examples of bankruptcies due to arun by short-term creditors. Both
institutions had capital cushions well above the Basel II minimal capital requirements, but had fi-
nanced their long duration risky assets mostly through short-term debt. Thereby, they were heavily
exposed to liquidity risk. It is now understood that short duration financing, for example through
commercial papers and repo transactions, increases the exposure to panic runs which was one of
the main causes of the credit crisis of 2007-2008. There already exists extensive theoretical lit-
erature on potential causes for bank runs due to illiquidityrisk. The models of Bryant (1980),
Diamond and Dybvig (1983) and Rochet and Vives (2004), for example, provide evidence for the
fact that runs can occur due to self-fulfillment of depositor’s expectations concerning the behavior
of other depositors. Thus bank runs are a result of coordination problems among short duration
depositors’ roll-over decisions. He and Xiong (2009) extend these models of static coordination
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problems to a dynamic one where the firm’s debt expirations follow a Poisson distribution with in-
finite time horizon. Thus, the decision of a short-term creditor whether to roll-over his debt or not
after expiration depends also on his expectation about the rollover decisions of creditors maturing
at different times.

Using a global game model Morris and Shin (2009) succeed in decomposing a financial in-
stitution’s total credit risk in an insolvency risk and an illiquidity risk component. They propose
a two-period model where short-term creditors face only onerollover decision at an interim time
point. In particular, the authors analyze the policy implications on the balance sheet induced by
the increase in total credit risk which arises from the additional illiquidity risk component. More-
over and in contrast to the aforementioned literature, theydirectly model the influence of future
insolvency risk on the roll-over decision of short-term creditors and thus on illiquidity risk.

Inspired by Morris and Shin (2009) we construct in this papera continuous time model with
a mixture of short-term and long-term debt. More specifically, we consider a financial institution
financing its risky assets using short- and long-term debt. Short-term debt earns lower return, but
short-term creditors have the choice not to renew their funding at a fixed rollover datet∗. When
rolling over their funding at datet∗, short-term creditors earn a return rate ofrS at final maturityT
from the financial institution. When choosing not to renew their funding at datet∗, they can earn
a return rate ofr∗ on the market. The decision of a short-term creditor whetherto roll over or not
at datet∗ surely depends on the outside return rater∗. In case several short-term creditors choose
not to roll over their funding, the financial institution might default due to illiquidity caused by
a run of short-term creditors. We define illiquidity risk as the risk of a default due to a run by
short-term creditors when the firm would otherwise have beensolvent. The default probability due
to illiquidity will then be specified by an illiquidity barrier such that when the asset value at the
rollover date falls below this barrier a successful run willoccur. We implement our model in a
binomial tree framework. Our results show that illiquidityrisk is increasing in volatilityσ and in
the ratio of the outside return over the return for short-term debt. These results are in accordance
with previously derived implications by Morris and Shin (2009) for the situation of a discrete asset
value model with a single rollover date. Moreover, we can explicitly quantify the increase in total
default probability that is due to illiquidity risk.

2. FINANCING STRUCTURE

Suppose a financial institution finances a risky asset by short- and long-term debt. We model the
value process(Vt)t≥0 of the risky asset by a geometric Brownian motion

dVt
Vt

= µdt+ σdWt

with constant driftµ and volatilityσ > 0 whereW is a standard Brownian motion.
Long-term debt with principle value ofL0 and maturityT is issued at timet0 = 0. The

promised (continuously compounded) rate of return for long-term debt isrL per annum. So if
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there is no default, the value of long-term debt at maturityT is

LT = erLTL0.

At initiation time t0 = 0 short-term debt with principle valueS0 and maturityt∗ is issued. Assume
that at timet∗ short-term creditors can decide whether they want to renew their funding or not. If
some short-term creditors decide not to renew their funding, the financial institution will sell the
corresponding short-term bonds to new creditors, if it doesnot default due to illiquidity at that time
point.1 Note that by this assumption the face value of short term debtat final maturityT is known
in advance. If short-term debt is rolled over at timet∗, i.e. if the face valueSt∗ is invested anew
until time T and if the (continuously compounded) rate of return earned on short-term debt isrS
per annum which is assumed to be constant in time, then the face value at timeT of short-term
debt is

ST = erSTS0.

The decision at timet∗ of short-term creditors to roll-over or not depends on the return they can
earn on the outside market as well as on the default probability of the financial institution in the
time period[t∗, T ]. We assume the (continuously compounded) outside rate of return to be constant
and equal tor∗ for all time periods. It can be set to equal the risk-free rate, however, it can also be
the return from a risky project with a different financial institution. Then it should also incorporate
the default probability of that project. It is a variable we will assume to be known and given in the
market.
We assume that the financial institution also holds a cash amountM on the asset side which will
be continuously compounded at the risk-free rater.

3. DEFAULT PROBABILITIES

The current financial crisis has shown that many financial institutions have gone bankrupt even
though their asset value was still greater than their debt value. In the above framework we calcu-
late the default probabilityPDins caused by insolvency of the financial institution and the default
probabilityPDill due to illiquidity at any timet ∈ [0, T ]. The decomposition of total credit risk
into these two components will allow us to hedge every risk component more effectively. More-
over, it will provide a method to determine an optimal composition of the liabilities side of the
balance sheet to reduce illiquidity risk and thereby total credit risk of the financial institution. The
key to calculate the default probability and its decomposition is to derive the default barriers due
to insolvency and illiquidity.

In the computation of the default barriers due to insolvencyand due to illiquidity of the financial
institution we are motivated by the idea in Morris and Shin (2009). At the rollover datet∗ the short-
term creditors face a binary decision problem. They have to decide whether they rollover the debt
or not depending on the corresponding returns from both decisions.

Unlike in Morris and Shin (2009) our model can accommodate a continuous time asset value
model where insolvency can happen at any time until final maturity. Moreover, in Morris and

1If not all short-term creditors decide to run away, the financial institution should always be able to find some new
creditors in the market.
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Shin (2009) it is assumed that, when short-term creditors choose not to roll over their debt, they
can always get the face value of their debt back and go to market to earn the returnr∗. This,
however, is only true when the financial institution is healthy and has enough cash to pay back the
creditors. This assumption increases the incentive of the short-term creditors to run their debt. In
our paper we model the return from not rolling over the debt according to the financial institution’s
condition. If it is healthy, the creditors will get the face value of their debt back; if it is in distress
(with significant hair-cut of the asset value), then the creditors may get almost nothing.

Assume that the firm defaults due to insolvency at the first-passage time

τ := inf{t ≥ 0 : Vt ≤ αt},

where theinsolvency barrierαt is similar to Black and Cox (1976)

αt =
(

S0e
rSt + L0e

rLt −Mert
)

· ρ

with ρ ∈ [0, 1] being a safety covenant that determines how much of the firm value is available
to compensate creditors and equity holders according to a pre-described seniority when the firm
bankrupts. The default probability due to insolvency conditional on the information available at
any timeti is then

PDins(t
∗) = E[1{t∗≤τ≤T}|Vt∗ ]

= P

(

inf
t∗≤s≤T

(Vs − αs) ≤ 0
∣

∣

∣
Vt∗

)

.
(1)

Besides the insolvency risk the firm might fail because of illiquidity. To compute the corre-
sponding illiquidity barrier we need to fix some assumptions.

Assumption 1 (a) A run can only happen at the decision timet∗ and short-term debt can only
be rolled over until final maturityT.

(b) Assume that each short-term creditor believes that the firm will survive a bank run with a
probability

λ(Vt∗) = min

{

1,
ψVt∗ + ert

∗

M

St∗

}

whereψ is the haircut rate.

(c) The short-term return raterS is strictly larger than the outside return rater∗.

Assumption 1 (a) specifies our bank-run setting. Assumption1 (b) describes the survival prob-
ability from a bank-run. Here the haircut takes values between 0 and 1. Intuitively, the ratio

between the raised funds and the principle of short-term debt ψVt∗+e
rt

∗

M

St∗
represents the likelihood

that the short-term creditors get back their face value of the debt. Because the creditors at most
get their debt back, the above ratio is cut off at1. The higherλ(Vt∗) is, the more funds the firm
can raise, the more likely the short-creditors get their debt back. Assumption 1 (c) is necessary as
short-term creditors would otherwise directly choose the risk-free outside option which would be
more attractive.
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To compute the illiquidity probability we first compute an illiquidity barrier and then analyze
the event when the asset value at the rollover datet∗ falls below this barrier. Denote the expected
outside return rate the short-term creditor earns by investing in the market if he decides not to
rollover debt at timet∗ byR∗(Vt∗) . Recall the market rate is denoted byr∗. The real market return
is given by the market return times the survival probabilityfrom a bank run

eR
∗(Vt∗ ) (T−t∗) = er

∗(T−t∗) · λ(Vt∗) (2)

as the short-term debt is payed back in full only if the firm survives from a bank-run otherwise
only a ratio of the face value will be payed back to short-termcreditors. On the other hand, the
short-term creditor earnsrS if he rolls over the debt provided that the firm does not default due to
a bank-run at timet∗ or due to insolvency in the final time period[t∗, T ]. The expected return rate
RS(Vt∗) is given by the short-term debt return times the survival probability from insolvency for
time [t∗, T ] multiplied by the survival probability from a bank-run at timet∗

eRS(Vt∗ ) (T−t∗) = erS(T−t
∗) · P

(

inf
t∗≤s≤T

(Vs − αs) ≥ 0
∣

∣

∣
Vt∗

)

· λ(Vt∗) (3)

A run at timet∗ occurs if the expected return rateRS(Vt∗) is smaller than the expected outside
return rateR∗(Vt∗). This provides anilliquidity barrier βt∗ at timet∗ for the asset returnVt∗ given
as the solution of the following equation

er
∗(T−t∗) = erS(T−t

∗) · P
(

inf
t∗≤s≤T

(Vs − αs) ≥ 0
∣

∣

∣
Vt∗

)

(4)

Note that the survival probability from a bank-run at timet∗ drops out of the equation for the illiq-
uidity barrier. This is due to the fact that in case of a run by short-term creditors at timet∗ they
will get their debt back with the same probabilityλ(Vt∗) whether they roll over or not. Hence the
decision of each short-term creditor whether to roll over ornot actually does not depend on his
believes about the behavior of other short-term creditors.It is only influenced by the insolvency
probability of the financial institution.

For the computation of theex antedefault probability due to illiquidity, suppose we have al-
ready computed the default barrierβt∗ for the rollover datet∗. The financial institution can default
because of a run at the rollover datet∗ and because of insolvency at maturityT . At time 0 the
survival probability that the financial institution will stay alive from0 to T is

E

[

1l{Vt∗≥βt∗} · 1l{ inf
0<s≤T

{Vs−αs}≥0}

]

From this, we can easily calculate theex antedefault probability for the period from0 to T as

PDtotal(t0) = 1− E

[

1l{Vt∗≥βt∗} · 1l{ inf
0<s≤T

{Vs−αs}≥0}

]

(5)

which accounts for all bankruptcy scenarios such as the default at t∗ because of a run by short-term
creditors and also for the default because of insolvency in[0, T ] although the financial institution
survives the rollover date.
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We can then derive the default probability due to illiquidity as the difference between the total
PD and the insolvency PD, i.e.

PDill(t0) = PDtotal(t0)− PDins(t0) (6)

wherePDins(t0) is computed using equation (1).

4. STATIC ANALYSIS OF DEFAULT PROBABILITIES

We have implemented our model in a binomial tree setting. Therefore, we assume the roll-over
time to be at the midpointT/2 to final maturity. To increase accuracy of the approximationof the
continuous time asset value process in the tree, we introduced some interim time steps between
times 0 andt∗ and betweent∗ andT . We choose the time steps of the binomial tree to be equidis-
tantly distributed with step size∆t such thatm∆t = T/2 for some natural numberm > 0, i.e. the
binomial tree is of size2m.
As mentioned before, the asset value process is assumed to follow a geometric Brownian motion

Vt = V0 exp

((

µ− 1

2
σ2

)

t+ σWt

)

. (7)

A time discrete version of this process can be represented ina binomial tree if we setu = eσ
√
∆t

andd = 1
u

(see e.g. Hull (2010)). At each node in the binomial tree the asset value goes up with a
probability

p =
eµ∆t − u

u− d

and down with1− p.

For the numerical results we chose the following set of parameters. The initial asset value
V0 = 100 and final maturity is set toT = 1 year. Drift and volatility of the risky asset equal
µ = 6% andσ = 15% resp.. The risk-free rate is set tor = 1%. We assume a haircut value of
ψ = 70% and a safety covenant ofρ = 70%. Moreover, we assume a face-value of short-term
debt ofST = 40 and for long-term debtLT = 60. For simplicity we assume the cash amount to
beM = 0. Assume that the outside returnr∗ equals the risk-free rate of 1% while the promised
return for short-term debt isrS = 4%. The difference between outside returnr∗ and return raterS
corresponds approximately to the spread one currently obtains for an A-rating compared to risk-
free. We assume a return rate for long-term debt ofrL = 6%. Our numerical results are based on
a binomial tree implementation withm = 1000 interim dates to increase accuracy of our calcula-
tions.

Figure 1 shows the decomposition of the total default probability into its insolvency and illiq-
uidity components for increasing initial asset valueV0. For very lowV0 the financial institution will
almost surely default due to insolvency, i.e.PDins = 1. In these cases the reason for a default is
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Figure 1: Influence of initial asset value on default probability

clearly insolvency and not any liquidity problems. ThusPDill = 0 in these situations. For higher
initial asset values a default due to insolvency becomes more and more unlikely while the proba-
bility that the financial institution will default due to a run by short-term creditors increases up to
a critical point. When the initial asset value is higher than some critical value, the illiquidity de-
fault probability decreases again as a run by short-term creditors becomes more and more unlikely.
This is due to the fact that the probability that the asset value at the roll-over date is less than the
illiquidity barrier becomes smaller and smaller. The figureshows that, when taking liquidity risk
into account, the total default probability of the financialinstitution increases.

Moreover, in analogy to the results in Morris and Shin (2009)we obtain that illiquidity risk is
increasing in volatilityσ as is illustrated in Figure 2. This is also intuitive as higher volatility leads
to higher fluctuations in the asset value and thus increases default risk in general. Thus all com-
ponents of the total default probability, i.e. insolvency and illiquidity risk, increase with volatilityσ.

Figure 3 illustrates the dependence of the illiquidity probability on the outside option return
rater∗ and on the short-term debt return raterS. Similarly to the result of Morris and Shin (2009),
we obtain that illiquidity risk is increasing in the outsideoption return rater∗ and correspond-
ingly decreasing in the short-term debt raterS since the risk-free outside investment opportunity
becomes more attractive.
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Figure 2: Influence of volatilityσ on default probability
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Figure 3: Influence of outside option return and short-term debt return on default probability
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5. CONCLUSION AND DISCUSSION

In this paper we presented a model for the quantification of liquidity risk in a continuous time asset
value framework where a financial institution finances its risky assets by both short- and long-term
debt. Insolvency risk can occur at any time until maturity asin the Black and Cox (1976) frame-
work. Short-term creditors have the possibility not to rollover their funding at a fixed decision
time t∗. We succeeded in splitting total default probability into an insolvency and an illiquidity
component and we studied their dependencies on the individual model parameters. Our implica-
tions show, in particular, that illiquidity risk is increasing in volatility σ and in the outside option
return rater∗ and decreasing in the short-term return raterS. These results are in accordance with
previously derived implications by Morris and Shin (2009) for the discrete asset value situation.

The extension to a multi-period setting where short-term creditors can decide whether to roll
over their funding or not at a finite number of roll over dates is current work in progress. In such
a setting the illiquidity barrier at early decision points will depend not only on the insolvency
probability of the financial institution but also on the survival probability from a bank-run at later
decision points. Thereby we obtain a dynamic coordination problem among short-term creditors
rollover decisions. Studying the optimal debt structure with and without liquidity risk under some
additional constraints in such a dynamic model setting is also current work in progress.

An interesting extension would be to consider the continuous bank-run case, i.e. where cred-
itors can decide at any time to run the bank. We will investigate in future work the optimal time
point τ for short-term creditors to run the bank. Short-term creditors can earn the return raterS
until they decide to run the bank (as long as the bank is still solvent). After running the bank they
earn the outside return rater∗ until maturity if there is no bank run at timeτ. Note that on the event
τ = T there is no real bank run, so the creditor will receive the principal value of his debt if the
insolvency does not occur. The creditor will choose an optimal stopping timeτ to maximize his
expected return.
Since the outside return rater∗ is not equal to the short-term return raterS, we obtain a time in-
consistent optimization problem, meaning that the creditors’ preferences are changed over time.
Recall, that e.g. for American options, the investors alwaysearn the risk-free interest rater no
matter whether they continue or exercise their options. This is one of the key differences between
our model and American option framework. Solving this time inconsistent optimization problem
is current work in progress.

Acknowledgement

We thank participants at theModelling and Managing Financial Risksconference in Paris 2011
and at theActuarial and Financial Mathematicsconference 2011 in Brussels for many helpful
comments and suggestions.



60 G. Liang et al.

References

F. Black and J.C. Cox. Valuing corporate securities: some effects of bond indenture provisions.
Journal of Finance, 31(2):351–367, 1976.

J. Bryant. A model of reserves, bank runs, and deposit insurance.Journal of Banking and Finance,
4:335–344, 1980.

D. Diamond and P. Dybvig. Bank runs, deposit insurance and liquidity. Journal of Political
Economy, 91:401–419, 1983.

Z. He and W. Xiong. Dynamic debt runs. University of Chicago, 2009.

J. Hull. Options, Futures and other Derivatives. Prentice Hall International, 2010.

S. Morris and H.S. Shin. Illiquidity component of credit risk. Princeton University, 2009.

J. Rochet and X. Vives. Coordination failure and the lender of last resort.Journal of European
Economic Association, 2:1116–1147, 2004.



DELTA AND GAMMA HEDGING OF MORTALITY AND INTEREST RATE RISK

Elisa Luciano†, Luca Regis§ and Elena Vigna ‡

† University of Torino, ICER and Collegio Carlo Alberto, Italy.
§ University of Torino, Italy.
‡ University of Torino, CeRP and Collegio Carlo Alberto, Italy.
Email: luciano@econ.unito.it, luca.regis@carloalberto.org and

elena.vigna@econ.unito.it

1. INTRODUCTION

This paper is based on Luciano et al. (2011) and studies the hedging problem of life insurance
policies, when the mortality rate is stochastic. In recent years, the literature has focused on the
stochastic modeling of mortality rates, in order to deal with unexpected changes in the longevity of
the sample of policyholders of insurance companies. This kind of risk, due to the stochastic nature
of death intensities, is referred to as systematic mortality risk. In the present paper we deal with
this, as well as with two other sources of risk life policies are subject to: financial risk and non-
systematic mortality risk. The former originates from the stochastic nature of interest rates. The
latter is connected to the randomness in the occurrence of death in the sample of insured people
and disappears in well diversified portfolios.
The problem of hedging life insurance liabilities in the presence of systematic mortality risk has at-
tracted much attention in recent years. It has been addressed either via risk-minimizing and mean-
variance indifference hedging strategies, or through the creation of mortality-linked derivatives and
securitization. The first approach has been taken by Dahl andMøller (2006) and Barbarin (2008).
The second approach was discussed by Dahl (2004) and Cairns etal. (2006b) and has witnessed
a lively debate and a number of recent improvements, see f.i.Blake et al. (2010) and references
therein.
We study Delta and Gamma hedging. This requires choosing a specific change of measure, but has
two main advantages with respect to risk-minimizing and mean-variance indifference strategies.
On the one side it represents systematic mortality risk in a very intuitive way, namely as the differ-
ence between the actual mortality intensity in the future and its “forecast” today. On the other side,
Delta and Gamma hedging can easily be implemented and adapted to self-financing constraints. It
indeed ends up in solving a linear system of equations. The comparison with securitization works
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as follows. The Delta and Gamma hedging complements the securitization approach strongly sup-
ported by most academics and industry leaders in two senses.On the one hand, as is known, the
change of measure issue on which hedging relies will not be such an issue any more once the
insurance market, thanks to securitization and derivatives, becomes liquid. On the other hand,
securitization aims at one-to-one hedging or replication,while we push hedging one step further,
through local, but less costly, coverage.
The paper proceeds as follows: first we present the general framework for representing stochastic
mortality through Cox processes, then we focus on two particular affine processes and we show
they satisfy an HJM-condition for no arbitrage after an appropriate change of measure. Then we
describe Delta and Gamma hedging of pure endowments and we provide an example calibrated on
the UK market.
We refer the reader to Luciano et al. (2011) for details, proofs and a more comprehensive account
of the technique we present here and its application to a UK calibrated example.

2. THE MODEL FOR MORTALITY AND FINANCIAL RISK

Following a well established stream of actuarial literature, we adopt the setting of risk-neutral
interest rate modelling to represent stochastic mortality. Hence, we represent death arrival as the
first jump time of a doubly stochastic process. To enhance analytical tractability, we assume a pure
diffusion of the affine type for the spot mortality intensity. Namely, the process has linear affine
drift and instantaneous variance-covariance matrix linear in the intensity itself.
In particular, we consider a probability space(Ω,F,P) and restrict our attention to two affine
processes, belonging to the Ornstein-Uhlenbeck and the Feller class, for mortality intensityλ:

• Ornstein-Uhlenbeck (OU) process without mean reversion:

dλx(t) = aλx(t)dt+ σdWx(t)

• Feller Process (FEL) without mean reversion:

dλx(t) = aλx(t)dt+ σ
√

λx(t)dWx(t)

with a > 0, σ ≥ 0, andWx a univariate Brownian motion underP.

These processes turn out to be appropriate choices for the description of human mortality, as
already pointed out by Luciano and Vigna (2008) and have already been used in the modelling of
dependent lives (see Luciano et al. (2008)).
We then recall the definition of forward mortality intensity, which we define asfx(t, T ). We point
out that the risk factor against which one could be interested to hedge its positions is the difference
between the (stochastic) future realization of the mortality intensity at a future timet and the
forward intensity, which can be interpreted as its “best forecast” today. We show that in the affine
case forward intensities can be easily computed as affine functions of the solutionsα andβ of the
Riccati ODEs associated to the intensity process:

fx(t, T ) = −α′(T − t)− β′(T − t)λx(t) = −α′(T − t)− β′(T − t)fx(t, t).
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For what concerns interest-rates, we model the instantaneous forward rate directly as

dF (t, T ) = A(t, T )dt+ Σ(t, T )dWF (t) (1)

where the real functionsA(t, T ) andΣ(t, T ) satisfy the usual assumptions for the existence of a
strong solution to (1), andWF is a univariate Brownian motion underP independent ofWx for all
x.

3. CHANGE OF MEASURE AND HJM RESTRICTION ON FORWARD DEATH INTEN-
SITIES

After having defined both markets, we tackle the issue of finding an appropriate change of mea-
sure. Following Dahl and Møller (2006) among the possible changes, we select the minimal one,
the one which permits to remain in the Ornstein-Uhlenbeck and Feller class. We follow a common
assumption and set the premium on non-systematic mortalityrisk to zero, which is equivalent to as-
suming that the portfolio of insured people is well diversified. We further parametrize the measure
by assuming that the premium for systematic mortality risk is constant and that the interest-rate
market is complete. Hence, under these assumptions, the fair premium and the reserves of life
insurance policies can be computed as expected values underthe measureQ equivalent toP.
We are interested in pure endowment contracts starting at time zero and paying one unit of account
if the headx is alive at timeT . The fair premium or price of such an insurance policy,P (0, T ),
given the independence between the financial and the actuarial risk, is:

P (0, T ) = Sx(T )B(0, T ) = eα(T )+β(T )λx(0)EQ

[

− exp

(
∫ T

0

r(u)du

)]

,

whereSx(T ) is the survival probability of the headx from time 0 toT , B(0, T ) is the price at zero
of a zero-coupon bond with maturityT andr(t) denotes the short rate at timet. The value of the
same policy at any future datet is:

P (t, T ) = Sx(t, T )B(t, T )

= EQ

[

exp

(

−
∫ T

t

λx(s)ds

)

| Gt

]

EQ

[

− exp

(
∫ T

t

r(u)du

)

| Ht

]

,

whereGt is the sigma-algebra containing all the information on mortality andHt contains all the
information on the financial market up to timet (see Luciano et al. (2011) for details).
Hence, we can define a “term structure of pure endowment contracts”. The last expression, net
price of the initial premium, is also the timet reserve for the policy, which the insurance company
will be interested in hedging. Notice that we did not impose ano-arbitrage condition on the market
for these instruments. Once the change of measure has been performed, we can writeP (t, T ) in
terms of the instantaneous forward intensity and interest rate (f andF respectively):

P (t, T ) = exp

(

−
∫ T

t

[fx(t, u) + F (t, u)] du

)

.
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In this setting, Cairns et al. (2006a) point out that the HJM no-arbitrage condition typical for
the financial market can be translated into an equivalent HJM-like condition for forward death
intensities. Usually, the aspect of the HJM condition on theinsurance market is imposed a priori.
In our paper we show that, for the two non-mean reverting processes for the mortality intensity we
consider, namely OU and FEL, there exists an infinity of probability measures — equivalent to the
historical one — in which forward death intensities satisfyan HJM condition. No-arbitrage holds
under any of these measures, characterized by a constant risk-premium on mortality, even though
it is not imposed a priori.

4. DELTA AND GAMMA HEDGING

After having selected the appropriate change of measure, wecan avoid using risk minimizing or
mean-variance indifference strategies. We can instead focus on Delta and Gamma hedging.
For the sake of simplicity we assume that the market of interest rate bonds is not only arbitrage-
free but also complete. First, we consider a pure endowment hedge in the presence of systematic
mortality risk only. Then, under independence of mortalityand financial risks, we provide an
extension of the hedging strategy to both these risks. We show that our technique simply involves
the solution of linear systems of equations.
We show that when the mortality intensity follows the OU process, the reserve of the longevity
bondP (t, T ) (i.e. the survival probability when the interest rate is deterministic and null) can be
written as an easily tractable exponential affine function of the risk factor. Moreover, its change
dP — through Ito’s lemma — can be simply written as a function of its first and second order
sensitivities to the risk factor, which — in the financial literature — are usually referred to as Delta
and Gamma.
We then describe the Delta and Gamma coverage technique for pure endowments, using as hedging
tools either pure endowments or zero-coupon survival bondsfor mortality risk and zero-coupon-
bonds for interest rate risk. Since all these assets can be understood as Arrow-Debreu securities
— or building blocks — in the insurance and fixed income market, the Delta and Gamma hedge
could be extended to more complex and realistic insurance and finance contracts.

5. APPLICATION

Finally, we provide a calibrated example. We use UK mortality rates for the male generation
born in 1945 and we calibrate the Hull-White model for interest rates on the UK government
bonds market. We compute the Delta and Gamma factors for different maturities and we provide
the computation of the Delta and Gamma hedged strategies foran insurer who has issued a pure
endowment on a certain head with maturity 15 or 30 years. We show strategies which involve both
the use of longevity bonds/pure endowments only or also the use of interest-rate bonds and which
can be self-financing or not.

Our application shows that:
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1. the unhedged effect of a sudden change on mortality rate isremarkable, especially for long
time horizons;

2. the corresponding Deltas and Gammas are quite different if one takes into consideration or
ignores the stochastic nature of the death intensity;

3. the hedging strategies are easy to implement and customize to self-financing constraints;

4. Delta and Gamma are bigger for mortality than for financialrisk.

In particular, we find that the effects of comparable changesin the interest-rate and in the
mortality rate lead to comparable effects on the prices of policies. This is a clear indication that
hedging systematic mortality risk could be very important for a life-insurer.
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Asset backed securities (ABSs) are structured finance products backed by pools of assets and cre-
ated through a securitization process. The ratings of assetbacked securities are partly based on
quantitative models for the defaults and prepayments of theassets in the pool. This quantitative
assessment is based on assumptions and estimations of inputparameters that are affected by uncer-
tainty. The uncertainty in these variables propagates through the model and produces uncertainty
in the ratings. We propose to work with global sensitivity analysis techniques to investigate ABS
ratings sensitivity to the input parameters and we introduce a novel structured financial rating to
take into account uncertainty in assessment.

1. INTRODUCTION

The rating and valuation of securitization transactions have been in focus the last years due to the
enormous losses anticipated by investors and the huge amount of downgrades among structured
finance products. A rating is an assessment of the different risks inherent in a structure and how
well these risks are mitigated. The rating process is based on both a quantitative assessment and
a qualitative analysis, which assess the originator’s and the servicer’s operations and legal issues
concerning the transfer of the assets from the originator tothe issuer. For the quantitative as-
sessment, models with one or more parameters are used to generate defaults and prepayments in
the asset pool. Typically the input parameters are unknown and estimated from historical data or
given by expert opinions. In any way, the values used for the parameters are uncertain and these
uncertainties are propagated through the model and generate uncertainty in the rating output (see
Jönsson and Schoutens (2009), Jönsson and Schoutens (2010), and Jönsson et al. (2009)).

1The views expressed are the author’s and do not necessarily represent the views of BNP Paribas Fortis Bank and
BNP Paribas Group.

69



70 F. Campolongo et al.

There have been an increased attention to the rating of assetbacked securities due to the credit
crisis of 2007 - 2008 (see Moody’s Investor Service (2000) and Moody’s Investor Service (2009)).
The objectives of this paper are twofold. Firstly, we advocate the use of global sensitivity analy-
sis (SA) techniques to enhance the understanding of the mainsources of output uncertainties.We
quantify the percentage of output variance that each input factor is accounting for and we also
detect how interactions among input parameters affect the rating variability.

Secondly, we propose a novel rating approach calledglobal rating, that takes this uncertainty
in the output into account when assigning ratings to tranches. The global ratings should therefore
become more stable and reduce the risk of cliff effects, thatis, that a small change in one or several
of the input assumptions generates a dramatic change of the rating. The global rating methodology
proposed gives one answer of a way forward for the rating of structure finance products.

2. ASSET BACKED SECURITIES

Asset backed securities (ABSs) are securities created through a securitization process whose value
and income payments are backed by a specific pool of underlying assets (see Fabozzi and Kothari
(2008)). Illiquid assets cannot be sold individually so they are pooled together and transferred to a
shell entity specially created to be bankruptcy remote (Special Purpose Vehicle or SPV) which in
turn issues notes (liabilities) to investors with distinctrisk return profiles and different maturities:
senior, mezzanine and junior notes.

The assessment of the ABS is related with the risks inherent inthe structure. The ratings are
indicators of the credit risk embedded in these instruments. The assessment of a final rating for as-
set backed securities relies on modelling of the cashflows produced by the assets, the collections of
these cashflows and the distribution of the cashflows to the liabilities according to a payment prior-
ity. The modelling of the cashflows from the asset pool is based on default and prepayment models
of different level of sophistication. We focus just on the default models and the prepayments are
not included in the analysis for simplicity.

By using Monte Carlo simulations, different default scenarios are generated by first sampling
a cumulative portfolio default rate from a default distribution and then distributing this default
rate over time using a default curve. The default distribution of the pool is assumed to follow a
Normal Inverse distribution in accordance with Moody’s methodology for granular portfolios and
the default curve is modelled by the Logistic model. In the sequel, we will calculate theExpected
LossandExpected Average Lifeof the notes. Having estimated these two quantitative outputs,
we can map them into a qualitative Moody’s rating using Moody’s Idealised Cumulative Expected
Loss Table.

3. SENSITIVITY ANALYSIS

We fill the need of investigating the rating sensitivity withrespect to input assumptions by us-
ing sophisticated methods. We have already seen that the assessment of this financial product is
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based on a quantitative model containing some input parameters whose values are affected by un-
certainty. This uncertainty propagates through the model and generates uncertainty in the rating
output. By using a sensitivity analysis, we want to investigate on this uncertainty. Different sensi-
tivity analysis techniques can be followed to test the sensitivity of a model, ranging from the global
variance method (see Saltelli (2002), Saltelli et al. (2008) and Saltelli et al. (2004)), which decom-
poses quantitatively the total output variance into contributions of each input, to the simplest class
of the screening tests which provides a qualitative information by varying one factor at a time.
The start point for both of them is to run the model different times in order to take into account
that each input can assume a different value: from each parameter setting of the input factor, we
evaluate the model. The first class requires a high number of model evaluations and an extreme
computational cost but we take advantage of using it becausewe get the contribution of each input
factor to the variance of the output taking into account the interactions among factor. Within the
screening methods, the elementary effects method (EE method) identifies important factors with
few simulations.

Because of the ABS structure’s complexity, our model is computationally expensive and the
EE method is very well suited to screen the input space in a first step. All the non-influential factors
will be determined and their values will be fixed without affecting the output variance of interest.
Following, the variance based method will be applied to quantify and distribute the uncertainty of
our model among the parameters identified to be influential bythe elementary effect.

4. UNCERTAINTY AND SENSITIVITY ANALYSIS RESULTS

The sensitivity analysis is performed on a structure where the collateral pool’s characteristics, the
structural characteristics and the waterfall have been fixed. Without loss of generality, the investor
is assumed to be informed about them, so that these features do not affect the output variance of
interest. Assuming the default distribution of the pool to follow a Normal Inverse distribution and
the default curve to be modelled by the Logistic model, the uncertain input factors in the sensitivity
analysis are related to the parameters of both distributions and also to the default timing and the
recoveries. Each one of these inputs can assume a discrete number of values within a range of
variation that have to be fixed at the beginning.

The fundamental qualitative output in our study is the rating of the ABSs, addressing the loss a
note investor might suffer. Having a look at the empirical distribution of these ratings on each note,
we obtain information on the uncertainty in the model. The analysis points out that the problem
of providing a credible rating gets more difficult for the mezzanine tranche; the uncertainty is too
wide and the possibility of failure in the rating determination is too high and must be reduced.
The senior tranche instead looks to provide good and reliable results. The reasons of this good
or bad performance are not explicit to us. It would be interesting to find out which uncertainties
are driving these results. Under these circumstances it is wise to investigate through sensitivity
analysis techniques which variable drives most of this uncertainty. We know that each rating has
been derived from mapping theExpected Average Lifeand theExpected Lossof the notes, thus
these two values are the quantitative outputs the sensitivity analysis should investigate in order to
assess the influence of the unknown inputs in the ABS ratings.



72 F. Campolongo et al.

The exploration of the input space by using the EE method (seebar plots ofµ∗ in Figure 1)
leads to the conclusion that among all seven input factors just five of them (µcd, Coeff. Variation,
RR, t0, andc) play a major role in determining the uncertainty in the output rating. This leads to
the need of including them in a more sophisticated analysis.
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Figure 1: Bar plots of theµ∗ values.

We therefore proceed to perform a quantitative sensitivityanalysis in order to assess the im-
portance of each factor by computing its contribution to thevariability of the output. By using the
variance based method we calculate the exact percentage of the output variance removed by learn-
ing the true value of an input factor taking into account the individual effect and the interactions in
which each factor is involved (see Figure 2).
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Figure 2: First Order and Second Order Sensitivity Index

The variance based method provides an encouraging insight:the mean cumulative default in
the ABSs modeling is the main contributor to the uncertainty in the output. As this is a controllable
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factor we are encouraged to carry out further analysis searching for the optimal value for this factor
thus reducing uncertainty in the analysis outcome. The mezzanine tranche that has been detected
to be unreliable due to the uncertainty, can be controlled ifwe try to better assess the value for the
mean cumulative default. If this would not be the case we would have accepted the fact that most of
the uncertainty in the mezzanine tranche is due to an intrinsic problem and therefore unavoidable.

5. GLOBAL RATING

We have already seen that the uncertainty in the input parameters propagates through the model
and generates uncertainty in the outputs. We propose to use anew strategy which takes into
account this uncertainty when rating ABSs. We call this new approach aglobal rating. The global
approach derives the rating of a note from the empirical distribution of ratings generated from the
global scenarios. This new scale is superimposed on a ratingscale used by a rating agency or
by a financial institution and it is based on a percentile mapping of the underlying rating scale,
that is, to assign a global rating to a tranche if a predetermined fraction of the ratings generated
using the global scenarios is better than or equal to a given underlying rating. In order to take
into account the uncertainty, rather than using a single rating that is very accurate but may easily
change when changing one input value, we would prefer to use aglobal rating that incorporates
several underlying ratings resulting to be more stable.

As can be seen in Table 1 the idea is to let the global rating reflect a range of possible credit
risks. Hence, to set up the global rating scale we first have todecide on the ranges of the credit risk
and of the underlying rating scale. Secondly, we have to choose the fraction of rating outcomes that
should be laying in the credit risk range. As first attempt, wehave defined the scale with respect
to the 80th percentile of the local rating scale (in this caseMoody’s ratings) and we find the global
rating to be A, D, and E for the senior, mezzanine and junior tranche respectively.

Global Rating Credit Risk Range Moody’s
A Low A3–Aaa
B Low to Medium Baa3–Aaa
C Low to High Ba3–Aaa
D Low to Higher B3–Aaa
E Low to Highest N.R.–Aaa

Table 1: The global rating scale and the corresponding ranges in credit risk and in Moody’s rating
scale

6. CONCLUSION

The valuation of different types of asset backed securities(ABSs) have been in focus the last years
due to the enormous losses anticipated by investors and the huge amount of downgrades among
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structured finance products. The assessment of the risk inherent in an ABS structure and how well
these risks are mitigated is detected by the ratings.

By the uncertainty analysis, we figure out that the mezzanine tranche seems to be unreliable
due to the uncertainty that is too wide so that the possibility of failure in the rating determination
is too high. The senior tranche instead seems to provide goodand reliable results. By using
sensitivity analysis techniques we detect the main sourcesof uncertainty in the ratings of asset
backed securities (ABSs) and we quantify the uncertainty in the model due to each different sources
of uncertainty in the assessment. In particular, the mean cumulative default rate plays a major role
in determining a rating in the senior, mezzanine and junior tranche. As our second research line,
we introduce a methodology to evaluate the asset backed securities based on percentiles, that takes
into account the uncertainty and produces more stable ratings. We propose to work with a new
rating concept called global rating, where a new rating scale is used indicating the range of the
credit risk of an asset backed security.
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A NOVEL BOOTSTRAP TECHNIQUE FOR ESTIMATING THE DISTRIBUTION OF
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I present a novel non-parametric bootstrap method for estimating claims reserves for claims
triangles, which I call thelocal chain ladder bootstrap technique. The method is simple and can
readily be implemented in a spreadsheet. The behaviour of the method is illustrated on a simulated
claims triangle, in which the distribution of reserves is known. It appears that the distributional
shape of the reserves is estimated quite well, however thereis a location bias. If this bias could
estimated and be corrected for, then the method might well beof interest to practitioners.

1. INTRODUCTION

For many years the chain-ladder technique for estimating claims reserves has been widely used
(Taylor 2000). Two reasons can be put forward for this: (i) a chain-ladder analysis is simple for
practitioners to implement; (ii) the results from a chain-ladder analysis usually accord reasonably
well with the expectations of experienced practitioners. One restriction of the basic chain-ladder
technique is that it only provides a point estimate of the reserves. In recent years there have been a
number of proposals to overcome this limitation in order to model the distribution of reserves (for
a good overview see Ẅuthrich and Merz (2008)). Several of these proposals use stochastic models
that either are based upon the chain-ladder technique, or are constructed in order to reproduce
the chain-ladder estimates in expectation. Interest in these models has grown among academic
actuaries because of the realization that the variability in the reserves can be more informative than
only a simple point estimate. These concerns have also prompted interest from practising actuaries,
however the use of such models in practise appears limited. Two reasons could be put forward for
why this is. Firstly, such models can be quite complex mathematically, and so be difficult to
implement. Secondly, there is no agreement on which of the stochastic models is best to use.
Even a single stochastic model may have several variants distinguished, for example, by choice of
distributions (gamma, over-dispersed Poisson, normal, log-normal, etc.). In addition, some models
based upon positive distributions might not be applicable to data in which incremental claims are
negative in one or more development years.
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This variety of stochastic models, and the lack of consensuson which model is appropriate for
particular data (eg: why use a gamma distribution instead ofa log-normal distribution?), means that
a practising actuary could have difficulty in justifying theuse of a particular model to a regulator.
One approach would be to estimate the distribution of reserves using several models, and see if
they approximately agree in their predictions: the one providing the most conservative estimates
might then used. This would not be a problem if the models weresimple to implement. However,
as already mentioned earlier, some models are quite complex, and so such a strategy could be
beyond the resources available to many practising actuaries.

Here I present a new method of estimating reserves based on a simple bootstrap simulation
method. The result of the simulation is a sample from which the distribution of reserves may be
constructed and analysed numerically. The method is non-parametric in nature — no distributional
assumptions, for example, about individual claim sizes or their number are made. The model can
cope with negative incremental claims.

The plan of this paper is as follows. The next section introduces some notation and summarises
the standard chain-ladder technique. I then present the newbootstrap method, which I call the
local chain ladder bootstrap model. Three variants of the method are presented and applied to a
simulated triangle whose distribution of true completionsare known.

2. THE CHAIN LADDER TECHNIQUE

It is assumed that the reader is familiar with the standard chain ladder technique: expositions may
be found in Taylor (2000) and Ẅuthrich and Merz (2008). I shall work with claims triangles,
in which rows label the period of origin of the claim. The columns represent the development
year. The data in the upper triangle represents the amount paid out on claims. Inflation etc. is
not modelled. Following (England and Verrall 2002), I useCij to represent the incremental claim
amount in origin year (row)i and development year (column)j. With this notation, the claims are
laid out as in Table 1.

Development year
Origin year 1 2 · · · j · · · n− 1 n

1 C1,1 C1,2 · · · C1,j · · · C1,n−1 C1,n

2 C2,1 C2,2 · · · C2,j · · · C2,n−1

· · · · · · · · · · · · · · · · · ·
i Ci,1 Ci,2 · · ·
· · · · · · · · · · · ·
n− 1 Cn−1,1 Cn−1,2

n Cn,1

Table 1: Incremental claims-triangle format
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Summing a row year up to a certain development period leads tocumulative claims,

Dij =

j
∑

k=1

Cik,

The chain ladder technique consists of using the values in the development triangle to construct
so-calleddevelopment factors λj, for each development yearj = 2, . . . , n,

λj =

∑n−j+1
i=1 Di,j

∑n−j+1
i=1 Di,j−1

.

These are used as multiplicative factors to fill-in the lowerhalf of the cumulative claims triangle,
in a recursive manner according to the formula:

D̂i,j+1 = λjD̂i,j , for j > n− i− 1

where we define the diagonal entries:

D̂i,n−i+1 = Di,n−i+1 for i = 2, . . . , n.

The values in the final column of the completed square give theestimates of the total claims
for each year — also known as theultimate claims. Subtracting from the ultimate of each row the
corresponding diagonal entry in the triangle yields the estimate of the reserves required for each
year to meet the expected claim. Adding up the expected reserves for each gives the total estimate
of reserves required to meet the claims.

There is a variant of the chain ladder technique in which multiplicative factors are constructed
row-wise for the accident years instead of the column-wise development years. It turns out that
reserves estimated by his methods are the same as those obtained using the development factors.
A simple mathematical proof may be found in Cowell (2009).

3. THE NEW BOOTSTRAP METHOD

In the standard chain ladder technique, development factors are formed by taking the ratios of
column sums in the cumulative claims triangle. For the localchain ladder bootstrap method we
form just the ratios of neighbouring values in the cumulative claims distribution table. That is, we
calculate the ratios

λi,j+1 = Di,j+1/Di,j ,

for each pair of neighbouring values in the cumulative claims distribution table. This stage is only
performed once.

The second step is to construct a bootstrap sample, in analogy to the chain ladder technique:

D̂i,j+1 = Λi,j+1D̂i,j, for j > n− i− 1,
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whereΛi,j+1 ∈ {λ1,j+1, λ2,j+1, · · · , λj,j+1} is a randomly chosen value from the set of local ratios
calculated for columnj + 1 of the claims triangle, and where we define the diagonal entries as for
the standard chain ladder technique.:

D̂i,n−i+1 = Di,n−i+1 for i = 2, . . . , n.

Having filled the cumulative claims distribution table using the randomly sampled local devel-
opment factors, the ultimate claims for each row can be foundin the same manner as for the chain
ladder technique.

By repeatedly carrying out the second step on the lower diagonal, we obtain as big a bootstrap
sample as desired, from which the distribution of the reserves for individual years and the distribu-
tion of total reserves may be empirically estimated, together with summary statistics such as mean
and variance of reserves.

In analogy with the chain ladder technique there is a variantin which the local factors are
found from row-wise ratios instead of column-wise ratios, and the table is completed stochastically
using these row-wise factors. However, unlike the chain ladder technique, this procedure leads to
a different distribution of reserves. A third variant whichuses either a randomly chosen row
or column factor when filling in an entry is also possible. These three variants will be called
respectivelyacross, down andboth methods. Further details may be found in (Cowell 2009).

4. A SIMPLE SIMULATION STUDY

I carried out a simple simulation study in which a claims triangle was simulated from a model
described by Schiegl (2004). This meant that the true distribution of reserves was known. The pre-
dictions of the bootstrap method were compared to this true distribution, and also against those of
Mack’s method (Mack 1993) and an over-dispersed Poisson model of England and Verrall (1999).
The simulation steps were as follows:

1. Use the model to simulate an upper claims triangle.

2. Use the model to simulate 1000 completions of the lower triangle (to give a sample from the
true distribution of the reserves).

3. Use the local chain ladder bootstrap method (all three variants), the over-dispersed Poisson
method, and Mack’s method, to estimate the distributions ofreserves, using as input the
upper triangle of Step 1 (by creating 1000 samples from each model).

4. Compare the true and estimated reserve distributions using quantile-quantile plots and box-
plots.

The results of the simulation are summarized in the plots of Figure 1 showing the distribution of
total outstanding reserves. The QQ-plot in the top left is made from splitting the data generated on
Step 2 above to show that the simulated values are behaving properly, with the points lying close to
the line of slope 1. The middle top QQ-plot shows the distribution estimated using Mack’s method,
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and to the right of this the estimated using the over-dispersed Poisson model. Below these are the
three bootstrap variants, from left to right the across, down and both methods. Also shown are
comparative box-plots of the true distribution (left) and the various modelling estimates. What is
apparent is that the variability of the non parametric bootstrap method is much smaller than Mack’s
method and the over-dispersed Poisson model, and much more in line with the true variability. All
methods underestimate the true median or median by a similaramount. Other simulations (not
presented here due to lack of space) have shown similar behaviour, with sometimes the median
under-estimated and sometimes over-estimated (in the samedirection by all methods), with usu-
ally but not always the “down” bootstrap variant producing variability estimates closer to the true
variability.
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Figure 1: Results from a simulated triangle. The local chain ladder bootstrap appears to have
variability closer to the true distribution, with the “across” and “both” variants performing better.
All methods underestimate the mean.

5. SUMMARY

I have presented a simple and novel non-parametric bootstrap method, in three variant forms, for
estimating the distribution of reserves given data in the form of a claims triangle

A simple simulation study showed that the local chain ladderbootstrap method tend to be
biased in location of the distribution (median), but in an unpredictable way. Curiously the local
chain ladder bootstrap method appears to be biased in the same direction and about the same
amount as the over-dispersed Poisson method and Mack’s method in each simulation

This suggests that if it could be understood when and by how much the bias is happening, and
could be corrected for by a simple estimable translation, the local chain ladder bootstrap method
could provide a practising actuary with reasonable simple and robust method for estimating the
distribution of claims reserves.

More details of results from other simulations, and also comparative estimates for some histor-
ical data, may be found in Cowell (2009).
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Finally, a simple program (running under Microsoft Windows) for carrying out the analysis of
the bootstrap method using either supplied data, or for simulating triangles using Scheigel’s model,
may be downloaded from the software page of the author’s web page at
http://www.staff.city.ac.uk/∼rgc, which is free for research and non-commercial
use only.
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1. INTRODUCTION

Traditionally the capital markets limited their role in insurance to provide capital in the form of
shares and bonds to insurance and reinsurance companies. However, in recent years a whole new
range of insurance linked products has become available. Inthis work we focus on an insurance-
linked derivative which is a derivative whose value is linked to an insurance index (or company
specific losses) rather than a stock price. Longevity and mortality derivatives are financial contracts
that allow market participants to either take exposure, or hedge exposure, to the longevity and
mortality experience of a given population of individuals.

In the past century remarkable improvements in human life expectancy have been observed.
However, future demographic patterns are uncertain and difficult to be predicted accurately. The
uncertainty affecting such trends is referred to as longevity risk. Longevity risk derives from sys-
tematic deviations of the number of death from its expected value; it is a macro risk, or systematic
risk, which cannot be reduced by diversification. A good understanding of mortality rate patterns
over time is needed, so that the underlying changes can be accurately modelled and projected into
the future. A failure to allow appropriately for longevity risk would mean that the premiums and
reserves for annuity and pension products would be understated with potentially disastrous con-
sequences for governments and financial institutions involved. Recently, on the one hand there is
an increasing emphasis on the market value of longevity riskin a regulatory context (Solvency II,
IFRS), where authorities are focusing on capital adequacy toface the adverse impact of the risk
and pension and annuities providers need to hedge their exposure to longevity. To have an idea of
the impact of longevity risk, in 2007 the UK pension regulator estimated that the present value of
UK’s pension fund liabilities increases by 3% per additional year of life expectancy. On the other
hand, there is an increasing appetite from investors for mortality linked securities. To satisfy both
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hedgers and investors, several investment banks are building the technology for trading longevity
risk. In particular, according to the OECD report (2010), thepotential size of the longevity market
is valued of the order of $ 25 trillion. In other words, longevity becomes a new asset class for
different stakeholders like Insurance Companies, Pension Buyout Funds, Hedge Funds and so on.
For such institutional investors, longevity represents a potentially attractive investment opportunity
primarily because it is not correlated to non-life, credit and market risks. Investors see longevity as
a new asset class providing good diversification due to low correlation with other assets and posi-
tive risk premium. In this perspective, capital markets cantransfer longevity exposure and start to
promote the development of a liquid traded market in longevity risk transfer. Blake and Burrows
(2001) were the first to advocate the use of mortality-linkedsecurities to transfer longevity risk to
the capital markets. Their proposal has generated considerable attention in the last few years, and
major investment banks and reinsurers are now actively innovating in this space (see Blake et al.
(2008), for an overview). To break down the barriers to market growth, capital markets support the
development of consistent standards, methodologies and benchmarks, for building a liquid trad-
ing market, particularly in UK through the Life & Longevity Markets Association (LLMA). The
standardisation process involves a default methodology, in terms of full and detailed disclosure of
data sources, algorithms, rules, degree of discretion and governance procedures, and provides a
template that market participants can use to develop credible, robust customised longevity indices
that facilitate longevity transactions. Derivatives on mortality index can be developed to transfer
longevity risk. In order to price this kind of products, manyfactors have to be kept into account:
the structure of the product, including pension amount, payment frequency, details on guaranteed
payments; data on the reference lives and base mortality rates, the starting point for analyzing
the possible evolution of future cash flows; the expected mortality improvement, important for
estimating the possible evolution of the future cash flows and the risk premium.

In this extended abstract, we focus on derivatives involving the exchange of the realized mortal-
ity rate of a population at some future date, in return for a fixed mortality rate agreed at inception:
the q-forwards. We present the stochastic Lee Carter model for projecting mortality and finding
the best estimates of the mortality probabilities necessary to define the fixed leg of theq-forward.
In D’Amato et al. (2011) we deepen the analysis and discuss the possible uses of financial tools
for pricing and managing, mortality-dependent contracts.In particular, we make use of the sim-
ilarities between mortality and financial setting to show how we can model mortality risks and
price mortality-related instruments using adaptations ofthe pricing frameworks that have been
developed for financial derivatives.

2. THE MODEL

The q-forward contract is the simplest instrument for transferring longevity risk. Aq-forward is
an agreement between two counterparties to exchange at a future date an amount equal to the
realized mortality rate of a given population (the floating leg) at that future date, in return for a
fixed mortality rate (the fixed leg) agreed upon at the inception of the contract. The floating leg
of the instrument references the uncertain future mortality rate of the population, as reflected by
an appropriate index. A counterparty hedging longevity risk will receive fixed and pay floating
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mortality. A q-forward can be stipulated between a pension fund or annuityprovider (protection
buyer) and a life insurer provider (protection seller). Initially the value of the contract is zero as
the present values (PV) of floating and fixed legs are equal. Ifthe realized mortality is less than
expected the protection buyer receives a net payment.

LLMA provides a simple framework to price this kind of contract: starting from the base
mortality table, they consider mortality improvements in terms of a given percentage of the his-
torical mortality rates. D’Amato et al. (2011) show the impact of longevity risk on the pricing
of q-derivatives projecting the mortality improvements in a more accurate way. To this aim, we
consider a stochastic model for mortality projections. A large number of projection models are
available to generate future mortality rates from historical death. Such models include the Lee-
Carter (LC) model (1992), widely considered because it produces fairly realistic life expectancy
forecasts, which are used as reference values for other methods. In recent years, there have been
several extensions of the standard LC method; Renshaw and Haberman (2003) have shown an im-
provement in the fitting using a Poisson iterative version ofthe Lee-Carter. Our main contribution
is to exploit this mortality projection model in the pricingof q-forward, improving the algorithm
used to define the fixed leg of the contract.

The model can be summarized as in the following:

E[Dx,t] = dx,t = Poisson(Ex,tµx,t)

whereDx,t is the number of deaths at agex and timet, Ex,t is the exposure at risk andµx,t is the
death rate, where

µx,t = exp(αx + βxκt).

The parameters of the model are estimated by maximising the Poisson likelihood function. In
order to fit the Poisson log-bilinear model, we resort to the iterative fitting method as described in
Renshaw and Haberman (2003). According to this method, it is possible to optimise the Poisson
likelihood by monitoring the associated deviance:

D(dx,t, d̂x,t) =
∑

x,t

dev(dx,t, d̂x,t) =
∑

x,t

2{dx,t log(
dx,t

d̂x,t
)− (dx,t − d̂x,t)},

whered̂x,t = Ex,t exp(α̂x + β̂xκ̂t).

3. NUMERICAL APPPLICATION

We have produced an application to the Italian population. We have considered aq-forward with
notional amount equal to 10 000 euro, with trade date 31 December 2006 and maturity date 31
December 2017. The population data considered are those collected in the Italian mortality table
from 1974 to 2007 downloaded from the Human Mortality Database. The reference population is
represented by Italian males aged between 70 and 74 in 2007; the aggregate mortality rate for the
portfolio is an average of the mortality rates for each of theindividual ages, see Table 1.



84 V. D’Amato et al.

Age q(2007)
70 2.02195%
71 2.29090%
72 2.56166%
73 2.84514%
74 3.19871%
mean 2.58367%

Table 1: Base mortality rate for the reference population

Let qFE(2007 : 2017) be the fixed forward mortality rate and letq(2017) the floating rate, given
by the mortality rate in 2017. In order to determine the fixed payment of theq-contract, we have
to consider that the longevity market is net short; thus investors require compensation to take on
longevity risk. For this reason, forward mortality rates should be lower than expected mortality to
provide a risk premium. For illustrative purpose, LLMA quotes the fixed mortality rates in terms
of the best estimate mortality rate according the followingformula:

qFE(2007 : 2017) = qBE(2017)(1− r)t

whereqBE is the best estimate mortality rate andr is a given risk premium.
In our application we have calculated the best estimate mortality rate projecting the mortality
through the iterative Poisson Lee Carter model. Table 2 showsthe results.

Age qBE(2017)
70 1.81760%
71 2.02330%
72 2.24682%
73 2.50887%
74 2.78085%
mean 2.27549%

Table 2: Best Estimate mortality rate

If there were no risk premium for transferring longevity risk, then the best estimate mortality
rate would correspond to the fixed rate in theq-forward transaction. However, the longevity market
is net short; thus investors require compensation to take onlongevity risk. For this reason, forward
mortality rates should be lower than expected mortality. Different approaches can be used to
include the risk premium in the pricing. For illustrative purpose, LLMA quotes the risk premium
in terms of a given decrease in the level of the best estimate mortality rate. In D’Amato et al.
(2011) a different way of defining the risk premium is presented.
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In the present work we apply matrix-analytic methods to build up a pension fund model with our
main objective being to describe the profit arising from the launch of a pension plan. We chose
the Present Value to describe the profitability of the new project because it is a widely used and
transparent measure, as shown in Smart (1977). Present Value consists of discounted cash inflows
and outflows which we obtain for every individual at future times. The problem requires that we
calculate tariffs and give a proper description of the evolution of plan participants before and after
the stabilization moment, which we also need to determine.

Here, we consider a defined benefit pension plan with a lump-sum payment upon retirement
and the sum of accrued premiums in case of a death or upon leaving the plan for other reasons.

The evolution of plan participants is assumed to follow a Markov chain with four sets of states:
active participant, retired participant, dead participant and participant stopping the contract. Re-
tired and dead participants, and those stopping their contracts are replaced by new participants.
The policy, whereby the replacements take place is a part of the model and composed of a delay
and a structure of the replacement. We need to estimate the transition rates of the Markov chain
and, in particular, the rates at which an individual dies, retires or stops the contract.

In order to determine Cash inflow and Cash outflow we need to determine these properly for
every individual. To do this we look for the distribution of the number of years already spent in
the plan by an active participant, and the succession of phases which he visited in the past.

This type of models may be used with more than one objective in mind. For instance, it allows
us to find values of pension plan characteristics to increase the profit. In the present work we look
for the optimal replacement speed to balance future cash flows in the long-run.

1. EVOLUTION OF PLAN PARTICIPANTS

We use Markov chains to describe the evolution of pension plan participants. This approach was
used by Bertschi et al. (2003) and by Mettler (2005), where an evolution of plan participants is
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described by a generator matrix. We assume that phases for participants are grouped into four
categories: active (A), retired (R), surrendered (S) and dead (D), and denote the conjunction of
phases forR, S andD asQ. Denote the phase at timet asΦt. We look at the evolution in
continuous time and organize the structure of the generator matrix according to these four sets of
phases. Therefore, we assume the generator matrix to have the form

Π =









ΠAA ΠAR ΠAS ΠAD

ΠRA ΠRR 0 0
ΠSA 0 ΠSS 0
ΠDA 0 0 ΠDD









whereΠAA is ann by n matrix that describes active participants,ΠAR,ΠAS andΠAD are column
vectors of sizen representing transitions to one of the quitting states,ΠRA,ΠSA andΠDA are row
vectors of sizen describing replacements in case of retirement, surrender and death, correspond-
ingly. We assumeΠRR, ΠSS andΠDD to be scalars, which are equal to each other and represent
the rates at which an individual who leaves the plan is being replaced.

We calculate all financial results once in a year, meaning a discrete evolution of plan partici-
pants:

Pt+1 = Pte
Π, 0 ≤ t < H,

wherePt is the distribution ofΦt at timet, P (i)
t = P [ Φt = i ], andH is a chosen time horizon.

Denote the number of years spent in the system at timet as an active participant asΨt. The
probability that a new participant starts his contract at timet in phasei is

M
(i)
t = P [ Ψt = 0 , Φt = i ] ,

i ∈ A, and it is determined asM (i)
t = P

(Q)
t

(

eΠ
)

Qi
. Let us denoteMt =

(

M
(i)
t , i ∈ A

)

.

Transition rates: aging and death
To find the death rates, we use an approach introduced by Lin and Liu (2007). According to this
approach, when active, participants follow a continuous time aging process, where time of death
follows a phase-type distribution (see Latouche and Ramaswami (1999)) with generator matrixL
and initial probability vectorα = [1 0 . . . 0]. Therefore, the aging process is a finite-state Markov
process where the states are defined as health indices called “physiological ages”. The probability
to stay alive at leastt years for a newborn individual (survival probability) is equal to

SA(t) = αeLt1.

The phase-type distribution may be fitted to actual mortality data and may also be adapted to
different assumptions.

Transition rates: retirement
In order to determine the retirement rates we assume that retirement happens at the statutory re-
tirement ageR. In order to find the retirement rates for every “physiological age”, we define a
model similar to the aging model described above, but with an additional absorbing state repre-
senting retirement. The probability to stay alive at leastt years for a newborn individual (survival
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probability) is denoted asSAR(t) and has a representation similar to the one for the aging model.
The generator matrixLR of this modified model is obtained from the generatorL by subtracting
retirement ratesr from the diagonal. Define the jump functionF = F (t) such that

{

F (t) = SA(t), t ∈ [0, R)
F (t) = 0, t ≥ R

In order to findr we need to find an approximation of the functionF (t) by a phase-type distri-
bution. Denote the expected “physiological age” at ageR asi∗. We assume the vectorr to be a
constant valuer1 for all phases less thani∗ and a constant valuer1 + r2 otherwise, and we apply
the least squares method as a fitting procedure.

Transition rates: surrender option
Surrender ratesw (wj, j ∈ A) for active employees should be chosen with caution and match the
actual data. From the data we can obtain the empirical distribution of the number of years spent
in the pension plan at the moment of stopping the contract. In our experience, the form of this
distribution is quite stable for all pension plans. Therefore, we can derive an empirical survival
probability Ŝt, which is the fraction of the plan participants who stay more thant years as active
participant.

In order to find a surrender rate for every physiological age we define a model similar to the
retirement model described above, but with an additional absorbing state representing surrenders.
The generator matrix becomesLS(w) = LR − diag(w). The main difference of this model with
respect to the previous two is that timet now has the meaning of the number of years spent in
the pension plan and no longer the age of a participant. To adjust the interpretation, we take
into account the initial distribution of physiological ages of the plan participants,P0. With this

adjustment the term
(

P0e
LSt
)

j
is the probability to survive at leastt units of time in the pension

plan as an active participant and to be in phasej at timet. In order to determinew, we need to find
an approximation of the empirical probabilitŷSt. As in the problem of finding retirement rates
we assume a fixed structure of the vectorw and apply the least squares method to the fitting of
P0e

LS(w)t
1 to Ŝt for all t.

A rather good approximation can be obtained assuming the vectorw to hold a similar structure
as for retirement rates. However, in this casei∗ has a different meaning. Denote the maximum
possible length of service in the pension plan obtained from the data asl∗. Theni∗ is the expected
phase of an individual who spentl∗ years in the system with retirements described above.

In order to compare all three models we need to construct a survival function for the model with
surrenders. We cannot obtain it in the same way as for the first two models due to the difference
in the interpretation of the time in the model. In the first two cases, at the start, all the people are
newborn and the time is connected to the age of an individual, whereas in the third case the time
starts at the moment of entering the pension program. In order to perform a proper comparison we
construct the survival function such that it takes into account the ages of the plan participants prior
to the moment of entering the plan:

SARS(t) = 1−
(

t
∑

x=0

(

1− αeLxeL
S(t−x)

)

P [ B = x ] +
(

1− αeLx1
)

100
∑

x=t

P [ B = x ]

)

,
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Figure 1: Survival probability.

whereP [ B = x ] is the initial distribution of real ages of the plan participants. All the survival
functionsSARS

t , SA
t andSAR

t are presented in Fig. 1 in different types of dots. The solid line
represents the jump at the retirement ageR = 65.

Transition rates: replacements
We need to make assumptions on a structure and a speed of the replacement. We assume the struc-
ture to be identical to the initial distribution of participants in the system and the same replacement
speed for surrendered, retired and dead participants.

2. CALCULATION OF TARIFFS

We use a traditional balance approach to calculate the tariffs for the chosen pension plan. We
assume that an individual in phasej at the momentt has the salaryΘ(j)

t , and calculate the tariff as
a percentage of this salary. We also assume the fund to have two types of expenditures per policy:
annual,c, and initial,I. In the balance equation we take into account two decrements: death and
surrender option. However, the model we chose to describe the evolution of the plan participants
poses some difficulties. Both of them are caused by the presence of “physiological ages” instead of
real ages. First of all, it makes the distance to the statutory retirement age undefined, which implies
an undefined horizon for calculations. Secondly, for an individual in phasej, the probability to
survive withint years is no longer a multiplication of successive one-year survival probabilities for
the phases fromj to (j + t− 1). To deal with these difficulties, we calculate tariffsµ = µ(x, j)
for every phasej and every agex:

µ(x, j)ä
[θ]
j:R−x = R−x|ä

[θ]
j + µ(x, j)A

[θ]
j:R−x + cµ(x, j)ä

[θ]
j:R−x + I,
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Figure 2: Tariffs for ages.

where

n|ä
[θ]
j =

∞
∑

k=0

vn+k
n,kp

[SD,D]
j , ä

[θ]
j:n =

∞
∑

k=0

vk k,0p
[SD,D]
j Θ

(j)
k ,

A
[θ]
j:n =

n
∑

k=1

vk k−1 (pq)
[SD]
j

k−1
∑

i=0

Θ
(j)
i .

In the equation above,n,kp
[SD,D]
j = α(j)eL

SDneLk1 is the probability to remain active in the plan
for n years with respect to death and surrender option and then remain alive fork years. The
quantity n (pq)

[SD]
j

= α(j)eL
SD(n−1)(1 − eL

SD

1) represents the probability to remain active forn

years and then become inactive due to one of the indicated reasons. Here,α
(j)
i = 0, if i 6= j and

α
(j)
i = 1, if i = j; LSD = L− diag(w).

We also consider another method of tariffs valuation. In the circumstances where one has two
separate sets of survival probabilities, one for death, one for surrender, it is a standard practice to
make the approximation that the two decrements are independent. In order to calculate tariffs with
this method it is sufficient to use the survival probabilities in the standard balance equation with
two independent causes of decrements. The method is not as precise as the previous one, however,
it gives similar results, we give an illustrative example in Fig. 2.
To obtain the tariff for the real agex we weightµ(x, j) with probabilities to be in the phasej
conditioned on the age beingx. Verification of the tariffs is based on the comparison with the
tariffs calculated with the corresponding mortality table and where the decrements are assumed to
be independent. The results are presented in Fig. 2.
In order to derive the tariffµ(j) for phasej we perform a weighted sum of tariffsµ(x, j) over all
x, multiplied by the probability to be in the agex, conditioned on the phase beingj.
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3. TIME TO STABILITY

Time to stabilityt∗ is the length of time after which all characteristics of the population become
stable. This time is useful to know when choosing the time horizon for the cash flows calculations.
In the stationary regime the matrixeΠt has all zero eigenvalues and one eigenvalue which is equal
to one. The matrixeΠ has one eigenvalue which is equal to one and others that are strictly less than
one. Taking these facts into account we findt∗ from the equationλt∗ = ε, whereλ is the second
maximal eigenvalue of the matrixeΠ in terms of modules andε is a required degree of precision,
so thateΠt is nearly constant fort > t∗.

4. CASH FLOWS AND PRESENT VALUES

To estimate the profitability of the fund with respect to the chosen pension plan, we need to obtain
its future cash flows. Clearly, at every moment of time, the total cash flow is equal to the sum of
the cash flows over all individuals. To properly calculate the cash flow coming from an individual
in phasej at time t, we need to know how long the individual has already been in the system
and which phase he was in at the moment of entering the program. Thus, for every individual
we need to find the distribution of years spent in the system (called the “seniority distribution”)
and the distribution of the entering phase (called the “reversal probability”). Denote the seniority

distribution vector at timet as r
Nt =

(

rN
(i)
t , i ∈ A

)

, whererN
(i)
t = P [ Ψt = r , Φt = i ] is

the probability that a participant at timet has physiological agei and seniorityr in the plan. As
suggested by Janssen and Manca (1994), we can solve the system of equations:

{

r
Nt+1 = (r−1

Nt) e
ΠAA

0
Nt−r+1 = Mt−r+1

, r ≤ t+ 1

For the cash flow calculation we need conditional probabilitiesS
rPi(t) = P [ Ψt = r | Φt = i ] for

active plan participants, which we find from the equation

S
rPi(t) =

rN
(i)
t /P [ Φt = i ] .

The reversal probability to enter the pension planr years ago in phasej given the phasei at timet
we define asRr Pji(t). This probability can be found from the equation

R
r Pji(t) = P [ Ψt−r = 0 , Φt−r = j , Ψt = r , Φt = i ] / rN

(i)
t

= P [ Ψt−r = 0 , Φt−r = j ]
(

eΠAAr
)

ji
/ rN

(i)
t ,

where
(

eΠAAr
)

ji
is the probability to stay among actives forr years starting from phasej and

being in phasei at the end of the period. In terms of the distribution of new plan participants,
R
r Pji(t) = M

(j)
t−r

(

eΠAAr
)

ji
/ rN

(i)
t .

We assume all the premiums to be paid at the beginning of each year and we denote the cash inflow
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coming at timet from the individuals in phasei, i ∈ A, asF+
t (i), where

F+
t (i) = N o

P[ Φt = i ]

[

S
0Pi(t) Θ

(i)
t µ(i) +

t
∑

r=1

S
rPi(t)

∑

j∈A

R
r Pji(t) Θ

(j)
t µ(j)

]

.

N o is the total number of plan participants. The total cash inflow in the yeart isF+
t =

∑

i∈A F+
t (i).

The cash outflow coming at timet from the individual in phasei, i ∈ A, consists of several terms:

F−
t (i) = N o

P[ Φt = i ]
(

eΠ
)

iR
+ cN o

P[ Φt = i ] +N o(c+ I)M
(i)
t +

+N o
P[ Φt = i ](

(

eΠ
)

iS
+
(

eΠ
)

iD
)

t
∑

r=0

S
rPi(t)

∑

j∈A
r R

r Pji(t) Θ
(j)
t µ(j).

Here the first term represents payments to newly retired participants; the second and the third term
are periodic expenditures for current active policies and periodic and initial expenditures for new
policies; the last term describes payments to surrendered and dead participants.
We derive the present value implementing the formulaPVT =

∑T

t=0

(

F+
t − F−

t

)

/(1+ v)t, where
v is a discount rate.

5. OPTIMAL MODIFICATIONS

A first question about the model is how the speed of finding new clients affects the cash flows. To
answer this question we solve the equation

̂F+(λ) = ̂F−(λ),

wherêF+, ̂F− are the values of the cash inflows and outflows in the long run and1/λ is the speed
of the replacement for surrendered, retired and dead plan participants. In order to calculatêF+,
̂F− we obtain stationary characteristics of the population of the plan participants. The logic of
its derivation as well as the derivation of̂F+, ̂F− remains the same as in the previous sections,
assuming the initial distribution to be the stationary distribution of the population.

We solve this balance equation numerically. The resulting difference in cash flows is presented
in Fig. 3. TheX-axis is the number of years representing the delay for the replacement. TheY -axis
is the difference between cash inflow and cash outflow. The starred part of the curve corresponds
to a positive future cash flow and the solid line – to its negative values. In this example all salaries
are fixed and equal to one. The behavior of the curve is quite logical – the faster the replacement,
the greater the money. In order to have a positive profit, the replacement should happen within
about 3.3 years.
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Optimality results in the reinsurance literature focus mainly on the cedent’s perspective. When
the reinsurer’s perspective is not part of the considerations often Stop-Loss contracts are identified
as optimal. Current papers (see e.g. Bernard and Tian (2009) and Cheung (2010)) study optimal
reinsurance contracts that minimize the VaR or TVaR of the cedent. It turns out that again the
“classical” reinsurance treaties, as Stop-Loss and Quota-Share lead to optimal results. Some re-
cent results on this subject lead to optimal reinsurance contracts, that do not have linear or constant
retention functions. See e.g. Kaluszka (2005), where it is shown, that the optimal retention func-
tion is of a logarithmic type, if Wang’s principle is applied for the calculation of the reinsurer’s
premium.
In practice, reinsurance companies will often avoid such Stop-Loss contracts or set upper limits,
partly to reduce the problem of careless claim settlements and potential moral hazard of the first-
line insurer.
The goal of this study is to take this problem into account more explicitly and to optimize the
situation for both parties, the cedent and the reinsurer, where the objective function is a linear
combination of expected utility of the cedent and the reinsurer, respectively. Some analytical and
numerical results are provided.

1. INTRODUCTION

We consider a general class of reinsurance treaties, where the cedent and the reinsurer share the
risk X according to the following rule:

C =

{

X, X ≤ x∗

min(X, h(X)), X > x∗ and R =

{

0, X ≤ x∗

max(X − h(X), 0), X > x∗ ,

wherex∗ is determined such thatx∗ = h(x∗). This restriction is introduced to assure continuity of
the reinsurance treaty.

1Supported by the Swiss National Science Foundation Project 200021-124635/1.
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We analyze the linear combination of the expected utilities of cedent and reinsurer, respectively
and study the form of the functionh(x) that maximizes the following problem:

max
h(x)

{

αE(uR(wR + PR − R)) + (1− α)E(uC(wC + P − PR − C))

}

,

whereuR anduC are utility functions of the cedent and reinsurer, respectively and withwR andwC

we denote the initial capital. Furthermore we denote byP andPR the original and the reinsurance
premium of the riskX. The riskX is distributed with some distribution functionF (x).

We first study the case where the reinsurance premium is calculated under the expected value
principle, i.e. the security loading is proportional to the expected value:

PR = (1 + ΘR)

∫ ∞

x∗

(x− h(x))f(x)dx

Secondly we analyze the situation under the variance principle, i.e. the security loading is propor-
tional to the variance.

PR =

∫ ∞

x∗

(x− h(x))f(x)dx+ΘR

(
∫ ∞

x∗

(x− h(x))2f(x)dx−
(
∫ ∞

x∗

(x− h(x))f(x)dx

)2 )

.

We restrict ourselves to the case wherePR is fixed. In this setting the cedent specifies the premium
level that he can afford to pay for the reinsurance. We optimize therefore over all contract forms
that lead to this premiumPR. The parameters ofh(x) can be determined through this assumption.

2. THE PERTURBATION APPROACH

Our aim is to find a reinsurance contract, more precisely a functionh(x), that maximizes

max
h(x)

{

α

(
∫ x∗

0

uR(wR + PR)f(x)dx+

∫ ∞

x∗

uR(wR + PR − x+ h(x))f(x)dx

)

+

+ (1− α)

(
∫ x∗

0

uC(wC + PC − x)f(x)dx+

∫ ∞

x∗

uC(wC + PC − h(x))f(x)dx

)}

.

We follow the considerations in Chan and Gerber (1985) and apply the following perturbation
approach:
We assumeh(x) to be optimal and set the perturbed versionh̃(x) to h̃(x) = h(x) + t g(x), where
g(x) is some arbitrary function. The functionm(t), with

m(t) = αE(uR(wR + PR − (X − h̃(X))+)) + (1− α)E(uC(wC + PC −min(X, h̃(X))X>x∗)),

obtains its maximum then att = 0. The expressions(X − h̃(X))+ andmin(X, h̃(X))X>x∗ denote
the cedent’s and the reinsurer’s part of the risk under the perturbed reinsurance treatyh̃(x).
We then calculate the derivative ofm(t) w.r.t. t and set the derivativem′(t) to 0, ast = 0. Due to
the structure ofm(t), the derivativem′(t) is again a function in terms of expected values. Inside
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the expectation we can rewrite all terms, such that we getE(g(x)(. . .)) = 0.
Since the integration domain of the expected value is the positive real half-axis andg(x) is an
arbitrary function, the expression inside the brackets(. . .) has to be 0.

We apply the above described approach now in the case, where the reinsurer’s premium is cal-
culated according to the expected value principle. The derivatives w.r.t.t of PR andPC = P − PR

can then be written as

∂

∂t
PR = (1 + ΘR)

∫ ∞

x∗

(−g(x))f(x)dx,
∂

∂t
PC = (1 + ΘR)

∫ ∞

x∗

g(x)f(x)dx.

This leads to an integral equation inh(x). Solving the integral equation, we obtain an implicit
equation forh(x):

H(x, h(x)) = u′
C(wC + PC − h(x))− (1 + ΘR)d

∗î∗ − α

1− α
u′
R(wR + PR − x+ h(x))

+ (1 + ΘR)d
∗ α

1− α
u′
R(wR + PR)F (x∗),

whered∗ and î∗ are constants depending on the initial capital and the security loading of the
reinsurer. Using the Theorem on implicit functions, the derivativeh′(x) can be obtained by

∂

∂x
h = −

∂
∂x
H

∂
∂h
H

=
α

1−α
u′′
R(wR + PR − x+ h(x))

u′′
C(wC + PC − h(x)) + α

1−α
u′′
R(wR + PR − x+ h(x))

.

With the constraintx∗ = h(x∗) we can determinex∗ by the following implicit equation that can be
solved numerically

x∗ = wC + PC − u∗
C

(

α

1− α
u′
R(wR + PR)(1− (1 + ΘR)d

∗F (x∗)) + (1 + ΘR)d
∗î∗

)

,

whereu∗
C is the inverse function ofu′

C .

3. NUMERICAL RESULTS

We study the form of the functionh(x) now in two different settings: First we analyze the case of
a risk-neutral utility functionuR. Secondly we derive the differential equation ofh(x) in the case
of a risk-averse utility function, when the variance principle is applied for the calculation of the
reinsurance premiumPR.

3.1. Risk-neutral uR and expected value principle

Given the utility functionsuC(x) = −e−βCx anduR(x) = x, the non-linear differential equation
for h(x) reduces to

eβCh(x)h′(x) = 0.
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The optimal reinsurance treaty is therefore a Stop-Loss contract, with

h(x) =
1

βC

ln

(

(1 + ΘR)i
∗ − c∗

F (x∗)−ΘR(1− F (x∗))

)

,

where the constantsi∗ andc∗ depend on the initial capital and the weightα in the linear combina-
tion. With the restrictionx∗ = h(x∗), one can determine the optimalx∗ explicitly.

We analyze the optimal deductiblex∗ now for various levels of initial capitalwC and compare
it with the classical Stop-Loss contract with retentionxSL (thick black line) that leads to the same
premium.
The other parameters are set towR = 120 andβC = 0.3. The initial capitalwC takes values in
the set{20, 30, . . . , 220}. The color gradient runs from dark gray forwC = 20 to light gray for
wC = 220.
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Figure 1: Cedent’s and reinsurer’s part part for different levels ofwC

Guerra and Centeno (2008) show that under the expected value principle a Stop-Loss contract
maximizes the cedent’s expected utility. The type of the optimal reinsurance contract does not
change when introducing a risk-neutral reinsurer to the optimization problem. But we clearly see
that the optimal retention increases for increasingwC , meaning that the cedent has to cover a higher
amount of claims than in the “cedent-only” case.

3.2. Risk-averse uR and the variance principle

We assume exponential utility functions for both parties, i.e.uC(x) = −e−βCx anduR(x) = −e−βRx

and furthermore we assume the variance principle for the calculation ofPR. Applying the pertur-
bation approach as described above leads to an integral equation, that can be solved in an iterative
way. In every iteration step we then solve the following non-linear differential equation

h′(x) + h(x)
βCe

βCh(x)

ĉβReβR(x−h(x)) − 2ΘR(d̂− λ)
= 1,

whereλ is determined in each iteration step and can be used to measure the accuracy of the ob-
tained solution. The constantŝc and d̂ depend again on the initial capital and the weightα in
the linear combination. For a deeper discussion on the solution of the integral equation, see e.g.
Polyanin and Manzhirov (1998).
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We analyze the optimal reinsurance treatyh(x) again for various levels of initial capitalwC

and compare it with a Stop-Loss with retentionxSL (thick black line) and a Quota-Share contract
with quotaxqs (dashed black line) that lead to the same premiumPR.
We fix the other parameters towR = 120, βC = 0.5 andβR = 0.47. The initial capitalwC takes
values in{10, 15, . . . , 110}. The color gradient varies between dark gray for smallwC to light gray
for higher values.
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Figure 2: Cedent’s and reinsurer’s part for different levels ofwC

The numerical solution in this setting leads to a reinsurance treaty that is a combination of linear
and constant parts, as one can in Figure 2(a), for small levels of initial capitalwC . Increasing the
amount ofwC leads to reinsurance contracts that tend toward the Quota-Share contract (dashed
black line).

4. CONCLUSION

We studied optimal reinsurance contracts that involve both the cedent’s and the reinsurer’s per-
spective. In a first step we analyzed the linear combination of the utility functions of the two
parties and derived a non-linear differential equation for the optimal retention functionh(x). We
further observed that a risk-neutral reinsurer does not change the type of treaty of the “cedent-
only” situation, if the expected value principle is applied, but the retention is changed. If both
parties have exponential utility functions and the variance principle is applied, the parameters have
a strong influence on the form of the optimal retention function. The optimal reinsurance contract
numerically then turns out to be a combination of constant and linear retention functions.

References

C. Bernard and W. Tian. Optimal reinsurance arrangements under tail risk measures.Journal of
Risk and Insurance, 76(3):709–725, 2009.



100 S. Haas

F. Chan and H. Gerber. The reinsurer’s monopoly and the Bowley solution. Astin Bulletin, 15(2),
1985.

K.C. Cheung. Optimal reinsurance revisited - a geometric approach.Astin Bulletin, 40:221–239,
2010.

M. Guerra and M. Centeno. Optimal reinsurance policy: The adjustment coefficient and the ex-
pected utility criteria.Insurance: Mathematics and Economics, 42:529–539, 2008.

M. Kaluszka. Optimal reinsurance under convex principles of premium calculation.Insurance:
Mathematics and Economics, 36:375–398, 2005.

A.D. Polyanin and A.V. Manzhirov.Handbook of Integral Equations. CRC Press, 1998.



CROSS-GENERATIONAL COMPARISON OF STOCHASTIC MORTALITY OF
COUPLED LIVES

Elisa Luciano†, Jaap Spreeuw§ and Elena Vigna ‡

† University of Torino, ICER and Collegio Carlo Alberto, Italy.
§ Faculty of Actuarial Science, Cass Business School, City University, London.
‡ University of Torino, CeRP and Collegio Carlo Alberto, Italy.
Email: luciano@econ.unito.it, j.spreeuw@city.ac.uk and

elena.vigna@econ.unito.it

1. INTRODUCTION

In modeling mortality of coupled lives, it is essential to allow for dependence between the two
remaining lifetimes. However, it is also vital to evaluate the change in mortality over time by
comparing generations, both in terms of the change in individual mortality, and the change in
dependence between the two lives. This should help life offices and pension schemes in their long-
term planning. In this paper, we perform the previous task with reference to three generations
whose males were born between 1900 and 1927 (1903 and 1930 forfemales). We proceed as
follows. We model marginal survival functions of males and females using the doubly stochastic
or Cox approach (with a stochastic mortality intensity). We incorporate dependence through an
Archimedean copula model. We apply the marginal and copula model to a dataset of couples
from a large North American insurer, widely used in the joint-life empirical literature (Frees et al.
(1996)). We use marginal calibrations obtained via MaximumLikelihood and estimate the copula
parameters through the Genest and Rivest method after havingisolated the subset of complete data
in the sample. As part of our derivation, we show that the censored-data methodology which one
should in principle use for datasets like the one at hand, is misleading in generation comparisons.
This is part of the theoretical contribution of the paper. Wealso show that not only the strength, as
measured by Kendall’s tau, but also the type of dependence (the copula) changes over generations.
Dependence between males and females decreases from 44% to 28%, copulas go from Frank to
Special. This complements the theoretical contribution ofthe paper. Last but not least, we study
the pricing implications for a whole-life, joint-life and survivor annuity. This is our empirical
contribution.
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2. MARGINAL SURVIVAL FUNCTIONS

We adopt the doubly stochastic approach, based on a countingprocess, the intensity of which
is a stochastic process (see for instance Cairns et al. (2006)). Under some technical conditions,
marginal survival functions can be written as:

Sj
i (t) = E[exp(−

∫ t

0

Λj
i (s)ds)]

wherei is the age of the life andj indicates the gender. The intensityΛ is assumed to evolve
according to an affine process, so that the survival functioncan be obtained in closed form. On top
of the affine assumption, we adopt an intensity belonging to the Feller family:

dΛj
i (s) = ajiΛ

j
i (s)ds+ σj

i

√

Λj
i (s)dW

j
i (s),

whereW j
i is a one-dimensional Wiener process,aji > 0, σj

i ≥ 0. The choice is justified by the
good fit of this intensity both in general – see Luciano and Vigna (2008) – and on the dataset to be
used later – see Luciano et al. (2008). This leads to the following survival functions:

Sj
i (t) = exp

[

1− exp(bji t)

cji + dji exp(b
j
i t)

Λj
i (0)

]

with


















bji = −
√

(

aji
)2

+ 2
(

σj
i

)2

cji =
bji + aji

2
dji = cji − aji

.

3. COPULA MODEL

As customary in actuarial applications, we consider the one-parameter Archimedean class , whose
expression is:

C(v, z) = φ−1 (φ(v) + φ(z))

whereφ is the so-called generator, endowed with the following properties:φ : [0, 1] → [0,+∞]
andφ(1) = 0. More specifically, in the calibration part we consider the following copulas:

• Clayton,

• Gumbel-Hougaard

• Frank

• 4.2.20 in Nelsen (2006), whose generator isφ(v) = exp(v−θ)− e

• Special, with generatorφ(v) = v−θ − vθ.
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4. FITTING THE MARGINS AND COPULAS TO DATA

We choose three generations to be compared:

• a so-called Old Generation (male born between 1900 and 1913;female born between 1903
and 1916);

• a Middle Generation (m.b. 1907-20; f.b. 1910-23);

• a Young Generation (m.b. 1914-27; f.b. 1917-30).

Since the observation window in the original dataset comprises only 5 years, the data are censored
from the right. Using all the (censored) data would mean to employ the method of Wang and
Wells (2000). We argue that this would lead to misleading conclusions about generation-related
dependence. Therefore, for copula fitting, we consider complete data only. The disadvantage is a
significant reduction in the size of the data. The advantagesare that

• we can use the familiar method of Genest and Rivest (1993) to estimate the copula parameter;

• this enables us to carry out a goodness-of-fit testing using the parametric bootstrap procedure
of Genest et al. (2006).

We obtain the following parameters for marginal survival functions:

OG Male OG Female MG Male MG Female YG Male YG Female
a 961.045 790.232 810.051 1249.792 528.581 619.733
σ 0.007 0.057 2.426 0.021 0.019 0.5

As a consequence, the conditions for the intensity to stay positive are respected.
The estimates of Kendall’s tau are: 0.4396 for the old generation, 0.3826 for the middle genera-
tion, 0.2792 for the young generation. So dependence decreases over generations, as one would
intuitively expect. The copula parameters are estimated through the inversion of Kendall’s tau
approach of Genest and Rivest. This means to compute the distance between the theoreticalK-
function and the empiricalK-function, according to three different norms: quadratic distance,
Cramer-Mises distance and Kolmogorov-Smirnov distance. Inall three cases, the best copula –
i.e. the one with highestp-value – is also the one which minimizes all the distances: itturns out
to be the Frank for the old generation, the Clayton for the middle, the Special for the young. The
non-persistence of the same best-fit copula over generations should not come as a surprise, since
all of them are Archimedean, but they differ in terms of uppertail dependence, and behaviour of
dependence as the members of the couple age. What the sample seems to tell us is that - over
generations - there is not only a decrease in dependence across members of the couple, but also
a change in the type of dependence: for the old generation it is best represented by the Frank (no
tail dependence, dependence decreasing while aging), for the middle by the Clayton (upper tail
dependence, dependence constant while aging), for the young by the Special (upper tail depen-
dence, dependence increasing while aging). However, whilethe decrease in dependence is strong
(Kendall’s tau going from almost 44% to 28%), the dominance of a given copula is less pronounced
(the distances andp-values are not so strongly different). Apart from the statistical difference in
dependence, we want to appreciate the impact on joint-life and survivor contracts.
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5. ACTUARIAL APPLICATION

Let us consider a whole-life joint-life-and-survivor annuity contract, for which a benefit of 1 p.a.
is payable in arrears while both lives are alive. The benefit reduces to0 ≤ R ≤ 1 on the first death,
and continues until the last survivor dies.
The tables below show the net single premiums for the calibrated copula models and compare them
to the ones obtained assuming independence of the two lives.They also give the ratio of the two
premiums. Interest is at 2% p.a.. As expected, the ratio is decreasing forR increasing. Note the
special cases ofR = 0, which corresponds to a joint life annuity ;R = 1, which is the last survivor
annuity ; andR = 0.5, for which dependence has no impact.

R Frank Independence Ratio

0 8.722 7.72 1.13

1
4

10.273 9.772 1.051

1
3

10.79 10.456 1.032

1
2

11.823 11.823 1

2
3

12.857 13.191 0.975

3
4

13.374 13.875 0.964

1 14.924 15.926 0.937

R Clayton Independence Ratio

0 12.326 11.261 1.095

1
4

13.754 13.222 1.04

1
3

14.23 13.875 1.026

1
2

15.183 15.183 1

2
3

16.135 16.49 0.978

3
4

16.611 17.143 0.969

1 18.039 19.104 0.944

R Special Independence Ratio

0 17.547 16.41 1.069

1
4

19.635 19.066 1.03

1
3

20.33 19.951 1.019

1
2

21.722 21.722 1

2
3

23.113 23.492 0.984

3
4

23.809 24.378 0.977

1 25.896 27.034 0.958
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The actuarial application to pricing of joint-life products and reversionary annuities shows then
that not only we should dismiss the simplifying independence assumption, but we should also
select different dependence parameters and copulas for different generations. Neglecting such
differences has a non-negligible impact on the fair prices of annuities (unlessR = 0.5).
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Deposit Guarantee Schemes (DGSs) are financial institutions whose main aim is to provide a safety
net for depositors so that, if a credit institution fails, they will be able to recover their bank deposits
up to a certain limit. The recent global financial crisis brought DGS at the centre of the political and
financial debate. In July, 2010, the European Commission adopted a legislative proposal for an in-
depth revision of the Directive on DGS, which aims at harmonizing and simplifying the schemes’
functioning. We propose to investigate some implications of the proposal, focusing in particular
on the DGS financing mechanisms, by simulating the DGS loss distribution using the Gaussian
one-factor model. The DGS is thus treated as a portfolio of banks whose default probabilities are
estimated from CDS spreads. The proposed approach is appliedto a sample of Italian banks.

1. INTRODUCTION

Deposit Guarantee Schemes are financial institutions whosemain aim is to reimburse depositors
whenever their bank goes into default. If a credit institution fails, DGS intervenes and pays back
the bank deposits up a certain amount. It is quite well-knownthat the existence of these institu-
tions leads to some benefits: from depositors’ point of view,DGS protects a part of their wealth
from bank failures and avoid bank runs; from banking stability perspective, DGS contributes to
strengthen the confidence in the financial sector, thus preventing bank runs, and to create a level
playing field, thus avoiding competitive distortions.

These schemes are in place in many countries all over the world, like in the US, Canada, Russia,
and Australia (Laeven (2002)). In this work we focus on schemes in place in Europe. In the
European Union, Directive 94/19/EC (European Parliament and Council (1994)) obliged Member
States to ensure the existence of at least one or more schemeson their territory, but required only
minimum harmonization of rules across DGS; the Directive left a large degree of discretion to
the schemes, especially in relation to the financing mechanisms (see Cariboni et al. (2008) and
Cariboni et al. (2010)).
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The 2008 global financial crisis brought DGS at the centre of the political and financial debate.
This crisis emphasized the necessity of an in-depth revision of the whole Directive on DGS. As a
result, in July 2010, the Commission adopted a legislative proposal on DGS (European Commis-
sion (2010)), which aims at simplifying and harmonizing many aspects of the DGS functioning
left to the discretion of DGS up to now. The aspects mentionedin the proposal which will be more
relevant for our work are the following.

• Simplification and harmonization of the scope of coverage. Only deposits by customers and
by non financial corporations should be eligible for protection in all DGS.

• Harmonization of the financing mechanisms of DGS. All DGS should move to an ex-ante
financing system, where financial resources are collected from member banks in advance on
a regular basis.

• Choice of the target level for DGS funds. The target level for DGS’ funds would be fixed
equal to2% of the amount of deposits eligible for protection. The transition period to let
DGS reach the target level would be equal to 10 years.

In this work we want to investigate the adequacy of the features previously mentioned, especially
focusing on the loss distribution of the DGS fund. Followinga well recognized approach (Bennett
(2002), Kuritzkes et al. (2002), and Sironi and Zazzara (2004)), DGS funds can be regarded of as
portfolios of counterparty risks. These portfolios consist of individual exposures to insured banks,
each of which has a small but non-zero probability of cause a loss to the fund. We simulate the
empirical loss distribution of the DGS and we use it to investigate whether the target size of the
fund fixed in the proposal is adequate to face potential banks’ failures. The approach is applied to
a sample of 52 Italian banks, accounting for around60% of the total amount of eligible deposits in
2006.

2. EMPIRICAL DGS LOSS DISTRIBUTION

In order to obtain the DGS loss distribution, we first estimate banks’ default probabilities and then
we simulate banks’ losses. Individual bank losses are aggregated to estimate the total loss hitting
the fund. Banks’ default probabilities are estimated from CDSand from risk indicators.
Credit Default Swaps are over the counter bilateral agreements where the protection buyer transfers
the credit risk of a reference entity to the protection seller for a determined amount of timeT (for
a detailed description refer to Duffie and Singleton (2003) and to Schoutens and Cariboni (2009)).
In this work we estimate banks default probabilities from the corresponding CDS spreads market
data. In fact the CDS premia are among the best measures of the market pricing of credit risk
currently available, due to standardized contract designsand the relatively high liquidity in the
market (Raunig and Scheicher (2009)). Unfortunately, CDS contracts are written only on a very
limited number of banks: in 2006, our reference year, CDS contracts were written on only around
40 European banks, and on only 4 Italian banks. In order to enlarge our sample, we make use
of the entire set of European banks underlying a CDS contract to investigate possible relations
between default probabilities and a set of financial indicators; this relation is then applied to the
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Figure 1: Procedure for default probabilities’ estimation

sample of Italian banks to get an estimate of the default probability also for those institutions which
do not have a CDS contract. In developing this approach, particular attention should be paid to
the differences between therisk-neutraland thehistorical default probabilities (labeledDPQ and
DP P , respectively). In our model, the default probabilities estimated from CDS spreads are risk-
neutral because they come from an underlying pricing model.However, the correct probability
measure to be associated to risk indicators is the historical probability, because it is backward
looking like the financial indicators, which are built from balance sheet data. We thus have to
find a proper map that allows us to move from one probability measure to the other. Figure 1
summarizes the procedure to estimate the default probabilities.

After DPQ have been estimated from CDS spreads (see Schoutens and Cariboni (2009)), we
build a mapf between risk-neutral and historical default probabilities; we achieve this goal by as-
sociating every Moody’s rating class with both an historical and a risk-neutral default probability1

and we calibrate the quadratic and convex function that bestfits the figures, according to the root
mean square error criterium (see Schoutens (2003)).

We then study linear modelsDP P = Xβ+ǫ, that link the historical default probabilities to risk
indicatorsX. In literature there exists a number of possible financial indicators (see, for example,
Chan-Lau (2006)); in this work we restricted our attention tothe risk indicators mentioned in the
proposal2. Among all possible choices of indicators, the set of indicators that best explains the
DP P is the one listed in Table 1. By applying the linear model abovestudied we get an estimate
of theDP P for the sample of Italian banks, even for those who are not underlying a CDS contract;
by applying the inverse of functionf to the estimatedDP P we finally get an estimate of the risk-
neutral default probabilities. We assume in our model that the default time of thei-th bankτi
is exponentially distributed with intensity parameterλi, thus the term structure of the cumulative
risk-neutral default probability up to timet for the i-th bank,pi(t), has the expression given by

1Data source: historical probabilities are estimated from default rates published by Emery et al. (2008), risk neutral
probabilities from CDS spreads downloaded by Bloomberg, accessed from Bocconi University, Milan,19th November
2010.

2In the proposal, financial indicators are the basis for the computation of risk-based contributions. Data source:
Bankscope, accessed from Bocconi University, Milan,19

th November 2010.
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ROAA
Exc. Capital

Total Assets
Liquid Assets

Customer & ST Funding

Exc. Capital

Risk-weighted Assets

Net Loans

Customer & ST Funding

Loan Loss Provisions

Net Interest Revenue

Cost to Income
Loan Loss Provisions

Operating Income

Table 1: Financial indicators

Equation (1):
pi(t) = 1− e−λit. (1)

From risk-neutral default probabilities the default intensity parametersλi can be estimated accord-
ingly.

We can now turn to the loss distribution. In order to build theempirical loss distribution of the
scheme’s fund, we must define what we mean by default. In the specific case of a DGS, a loss
occurs if an insured bank fails, thus triggering a fund’s payout. Following a common approach, a
single bank is assumed to default when its asset value falls below a certain threshold. Banks’ asset
valuesAi(t) are modeled by a Gaussian one-factor model, following Vasicek (2002) approach:

Ai(t) =
√
ρY +

√

1− ρXi, i = 1, · · · ,M. (2)

It can be easily shown that the default timeτi, corresponding to a drawAi of the asset value
process, satisfies Equation (3):

τi = p
(−1)
i (Φ(Ai)) = − ln(1− Φ(Ai))

λi

. (3)

In this study a banki is regarded of as defaulting if the corresponding default timeτi is lower than
the transition period, i.e. 10 years. The corresponding loss is equal to the amount of covered de-
posits held by the failed bank. The total loss hitting the fund is estimated by aggregating individual
banks’ losses.

Default probabilities are estimated by using 2006 daily CDS spreads of 40 European banks; the
sample of Italian banks representing the fund is made up of 52banks, accounting for around60%
of the total amount of eligible deposits in 2006. The empirical loss distribution is built running
100000 Monte Carlo iterations, assuming common correlation factorρi = 70% and recovery rates
Ri = 40%, equal for all banks. Table 2 reports the loss distribution of the whole sample of Italian
banks: the figures show that the probability that the sample do not suffer any loss, within 10 years,
is around77.5%.

Table 3 reports the empirical loss distribution of the DGS fund. At the end of 10 years, the
DGS is assumed to have set aside a fund equal to2% of the amount of eligible deposits, which
corresponds to around7.72 billion e ; by comparing this figure with the loss distribution reported
in Table 2 we can see that this amount can cover around90% of the banking system’s losses.
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Percentile 77.54 77.55 90 90.55 90.56 95 99 99.9 99.99 100

Loss (me ) 0 5 6, 864 7, 705 7, 728 25, 251 82, 972 150, 297 167, 510 167, 594

Table 2: Banking system’s loss distribution. Data source: Eurostat and survey distributed by
European Commission JRC among European DGS in 2009

Percentile 90 90.55 90.56 95 99 99.9 99.99 100

Loss (me ) 0 0 7 17, 530 75, 252 142, 577 159, 790 159, 874

Table 3: DGS fund’s loss distribution. Data source: Eurostat and survey distributed by European
Commission JRC among European DGS in 2009

We further investigate the “optimal” size of the fund in order to have losses covered by the
DGS in95% of the cases. According to Figure 2, if we want the fund to cover losses up to the95th

percentile of the distribution, the target size should be raised to around6% of eligible deposits.

0   5 10 15 20 25 30 35 40 45 50 
0.88

0.9

0.92

0.94

0.96

0.98

1

Target as a % of eligible deposits

1−
α

Target level of the Fund

90% 

95% 

99% 

99.9% 

Figure 2: Percentage of losses covered by the fund when the target size ranges from1% to 50% of
eligible deposits

3. CONCLUSIONS

At the light of the recent financial crisis, the European Commission has adopted a legislative pro-
posal for an in-depth revision of the Directive on Deposit Guarantee Schemes, with the aim of
harmonizing the schemes’ financing mechanisms and functioning. According to the proposal,
DGS would have to reach a target for their funds equal to2% of eligible deposits; the target would
need to be reached within a transition period equal to 10 years. Focusing on a sample of Italian
banks as of 2006, we have found out that such a designed fund can cover around90% of banks’
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defaults during the transition period; if we want the fund tocover losses up to95th percentile of the
distribution, the target size should be raised to around6% of the amount of eligible deposits.
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1. INTRODUCTION

The estimation of Outstanding Loss Liabilities (OLLs) is crucial to reserve risk evaluation in risk
management. Classical methods based on run-off triangles need a small amount of input data to be
used. This fact determined their fortune, making them immediate to use, requiring the knowledge
of the triangle of annual paid claims amount only. However, this fact constitutes also an important
shortcoming, since using a small sample of data to predict future outcomes may possibly lead to
inaccurate estimates. Anyway, their widespread use in professional practice encourages further
improvements to limit this problem.

Starting from the beginning of this century, bayesian methods in estimating run-off triangles
gained increasing attention as a tool to include expert judgement in stochastic models1 and enlarge
the information set on which reserves are computed. The use of Bayesian methods in loss reserv-
ing started decades ago, but it was the possibility of using Markov chain Monte Carlo (MCMC)
fast computer-running algorithms that gave high flexibility to the application of this methodology,
allowing for almost unrestricted distributional assumptions. De Alba (2002), De Alba and Nieto-
Barajas (2008) – who introduced correlation among differentaccident years – and Ntzoufras and
Dellaportas (2002) offer examples of how Bayesian methods can be implemented in the estimation
of outstanding claims for a line of business, introducing prior information on both future claim
amount (ultimate costs) and frequency. Simultaneously, some works tried to introduce the use of
copulas – which gained increasing popularity in the finance world in the last decade – also in loss
reserving2.

The question of how to cope with dependent risks such as the losses an insurance company has
to face in its different lines of business (LoBs) is surely of utmost importance. Current practice and
Solvency II standard formulas account for diversification by means of linear correlation matrices

1For a comprehensive treatment on the use of copulas to aggregate expert opinions, see for example the seminal
work Jouini and Clemen (1996).

2Copulas have been recently used in individual claim models (Zhao and Zhou (2010)).
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estimated on a market-wide basis. Obviously, these correlation matrices can fail to capture the
specificities insurance companies can present, due to geographical reasons or management choices.
A few papers studied the application of copulas to run-off triangles estimation. Tang and Valdez
(2005) used simulated loss ratios to aggregate losses from different LoBs. Li (2006) compared
aggregation through the use of different copula functions,given distributional assumptions on
the marginals. More recently, De Jong (2009) introduced a Gaussian copula model to describe
dependence between LoBs.

This paper aims at combining both these two important aspects: Bayesian methods and the
use of copulas. The Bayesian approach, introducing data coming from expert judgement, allows
to include additional reliable information when estimating reserves and to derive full predictive
distibutions. Copulas allow to obtain joint distributions in an easily tractable way, separating the
process of defining the marginals and the dependence structure. Hence, we introduce prior infor-
mation on the dependence structure, using Bayesian copulas in the aggregation of losses across
LoBs. Up to our knowledge, this paper is the first attempt in introducing Bayesian copulas in
stochastic claims reserving. Dalla Valle (2009) applied a similar technique to the problem of the
estimation of operational risks. We adapt their approach tothe aggregation of OLLs from different
LoBs.

Combining a Bayesian approach to derive the marginal distributions of OLLs for each single
LoB and the use of Bayesian copulas to aggregate them, it is possible to obtain a fully Bayesian
model that incorporates expert judgement on the ultimate costs and development pattern of each
LoB as well as on the dependence structure between them.

We apply this model to four lines of business of an Italian insurance company. We compare
results obtained from the Bayesian copula model with those obtained from a standard copula ap-
proach, providing then a multi-dimensional application ofthe use of copula functions.

2. OUTLINE OF THE PAPER

This section briefly reviews the content of the paper. For a full account of what follows please refer
to L. Regis, 2011, “A Bayesian copula model for stochastic claims reserving”, in “Three Essays in
Finance and Actuarial Sciences”, Ph.D. Thesis.

We first present a standard Bayesian method to compute reserves for a single line of business,
which we also use in the application to derive the marginal distributions. We consider an over-
dispersed Poission model (ODP), following Merz and Wuthrich (2008):

E

[

Xij

φi

| Θ
]

=
µiγj
φi

,

Var

[

Xij

φi

| Θ
]

=
µiγj
φi

,

with φi > 0, µi > 0 ∀ i = 1, . . . , I, (accident year)

with γj > 0 ∀ j = 1, . . . , J, (development year)

Θ = (µ1, . . . , µI , γ1, . . . , γJ , φ1, . . . , φI).

In the application, the model has independent gamma priors on bothµ’s and γ’s and it is re-
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normalized fixingµ1 = 1. The over-dispersion parameterφ is set constant across accident years
and it is derived from Pearson’s residuals. A standard Metropolis-Hastings MCMC algorithm
permits to find the predictive distribution of the OLLs for the considered line of business. The
combination of such a Bayesian model for the estimation of themargins and of the Bayesian copula
model we provide for the aggregation results in a fully Bayesian framework for the estimation of
the overall reserves of a multi-line insurance company.

Thereafter, we tackle the problem of how to capture the dependence between LoBs. Correctly
capturing the presence of dependence between the losses in different LoBs is intuitively a desirable
feature of a good model for claims reserving. In Table 1 and 2,we compare the correlation matrix
between the LoBs of an Italian insurance company, estimated from a time series of loss ratios, and
the one the CEIOPS mandated to use when calculating reserve risk with the standard formula in
the Quantitative Impact Studies (QIS)3.

LoB
MTPL MOC FP TPL

MTPL
1 0.4751 0.4598 0.5168

(0) (0.0463) (0.0549) (0.0281)

MOC
0.4751 1 0.8789 0.7331

(0.0463) (0) (0.000001) (0.0005)

FP
0.4598 0.8789 1 0.8748

(0.0549) (0.000001) (0) (0.000002)

TPL
0.5168 0.7331 0.8747 1

(0.0281) (0.0005) (0.000002) (0)

Table 1: Linear correlation between LoBs. The brackets report p-values.

LoB
MTPL MOC FP TPL

MTPL 1 0.25 0.25 0.5
MOC 0.25 1 0.5 0.25

FP 0.25 0.5 1 0.25
TPL 0.5 0.25 0.25 1

Table 2: Correlation matrix estimated by CEIOPS and imposed tothe participants to the Quantita-
tive Impact Studies (QIS) to use in the evaluation of reserves, see European Commission (2010),
p.203.

Table 1 and 2 clearly show that the industry-wide estimate proposed by CEIOPS and industry-
specific ones can differ. Results on the correlation of a time series of realized losses, which we use
in the application of our model further support this evidence.

Copula functions permit us - as we briefly review in the paper - to separate the process of esti-
mating the marginal distributionsF (L1), . . . , F (Ln) of the OLLs of each LoB from the estimation

3The abbreviations in Table 1 and 2 stand for Motor Third PartyLiability (MTPL), Motor Other Classes (MOC),
Fire and Property (FP) and Third Party Liability (TPL).
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of the dependence structure. Moreover, the latter can be modeled in a highly flexible way, since
many copula functions are available to describe it and capture its (also non-linear) properties.

We then outline a simple procedure to obtain a joint distribution of OLLs for ann-dimensional
non-life insurance company through the use of copulas:

1. derive the marginal distributions of the OLLsF (L1), . . . , F (Ln) for each LoB indepen-
dently. For this task, it is possible to resort to classical methods, simulation, as well as to the
Bayesian technique we outlined above;

2. estimate the dependence structure between theLi’s for i = 1, . . . , n;

3. choose a convenient copula function and evaluate its parameter(s). The copula will satisfy
the uniqueness properties stated in Sklar’s theorem (see e.g. Nelsen (2006)), depending on
the form of its marginals.

Sampling from anyn-dimensional copula obtained can be done exploiting the properties of con-
ditional distributions. Then, we can easily evaluate the quantities of interest – such as relevant
percentiles – on the simulated sample. Difficulties in the procedure lie mainly on the correct esti-
mation of the dependence structure, which is a complicated task given the low (annual) frequency
of the input data used in stochastic claims reserving modelsbased on run-off triangles. The same
observation applies to the choice of the most appropriate copula function. We compare the re-
sults of evaluating the OLLs of a multi-line insurer under different copula assumptions. Including

company-specific measures of dependence in reserves’ estimation together with industry-wide es-
timates as expert judgement could help in improving the quality of the predictions of future losses.
Hence, we present a Bayesian approach to the use of copulas, byadding uncertainty on the param-
eters of the copula function.

The procedure – in general – works as follows:

1. choose a convenient distributional assumption for the prior of the copula parameter(s)θ,
π(θ)

2. compute, using Bayes’ theorem, the posterior distribution of the parameter given the input
data:

f(θ | x) = f(x | θ)π(θ),
wherex denotes then× T matrix of observations (T is the number of observations).

A convenient choice of the prior distribution involves the choice of priors whose densities are con-
jugate to the one of the distribution of the estimation object – in our context, OLLs per accident
year. In the paper, we provide a detailed description of the procedure for a Bayesian Gaussian cop-
ula. In that case, we choose an Inverse Wishart prior distribution for the covariance matrix, which is
conjugate to the multivariate Gaussian. Hence, the posterior distribution for the covariance matrix
is again an Inverse Wishart with parameters that can be estimated from the data.

Finally, we apply the framework to an Italian insurance company. We first compare the distri-
butions of overall OLLs as obtained through standard copulas, under different copula type choices
(Gaussian, t and Archimedean copulas) when correlation is estimated through a time-series of loss
ratios and when the QIS 5 matrix of Table 2 is used. Then, we obtain the simulated distributions
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resulting from our Bayesian Gaussian copula model. Parameters of the prior distribution are set
conveniently to match its mean to the QIS 5 correlation matrix.

Further extensions involve the application of the Bayesian framework to a t-copula and the
introduction of an hierarchical model for the estimation ofparameters.
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1. INTRODUCTION

We study an application of copula modelling to insurance using count data of the automobile
line of business. We consider the following homogeneous risk groups: third party liability prop-
erty damages, third party liability bodily injury and material own damages. First, we model the
marginal behaviour of each group, then we estimate a tri-variate copula. Data suggests similar
correlations between groups. We did a continuous and a discrete approach. Due to the limitations
of a direct discrete approach we perform a continuous approximation. In the discrete case we fit
a negative binomial to each risk group and in the continuous one we try the gamma and normal
approximations.

As our application relies on the assumption of parametric univariate marginals we perform the
goodness-of-fit tests by proposing a parametric extension of the test presented by Genest et al.
(2009). The test is based on the empirical copula,

Ĉ(u) =
1

t+ 1

t∑
j=1

I{Zj1 ≤ u1, ..., Zjn ≤ un}

where u = (u1, ..., un) ∈ [0, 1]n and I is the indicator function. In the semiparametric approach
by Genest et al. (2009) the sample of the vector Zis given by

zj = (zj1, ..., zjn) =

(
Rank(xj1)
n+ 1

, ...,
Rank(xjn)
n+ 1

)
j = 1, ..., t

1The author thanks Seguros LOGO S.A. for financial support.
2The author gratefully acknowledges financial support from FCT-Fundação para a Ciência e a Tecnologia (Pro-

gramme FEDER/POCI 2010)
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where Rank(xj1) is the rank of xji amongst the sample of the claim counts (x1i, ..., xni). To
evaluate the goodness-of-fit of a parametric copula model we propose that the sample of the vector
Z is given by

zj = (zj1, ..., zjn) = (F1(xj1), ..., Fn(xjn)) j = 1, ..., t.

The test is based on a statistical test that compares Ĉ(z) with an estimated Cθ̂(z), of the theoretical
copula Cθ. This statistical test is given by,

T̂ = t

∫
[0,1]n

{
Ĉ(z)− Cθ̂(z)

}2

dĈ(z) =
t∑

j=1

{
Ĉ(zj)− Cθ̂(zj)

}2

. (1)

A bootstrap procedure is required to compute the p-value of the test (1). The steps of the bootstrap
technique are detailed in Berg (2009) and could be easily adapted to the parametric approach. For
the univariate distributions we do the standard goodness-of-fit tests.

We work with a sample of the automobile portfolio of an insurer operating in Portugal. It has
monthly observations of claim counts from 2000 to 2008. As expected, the estimated values of
the Kendall’s tau presented in Table 1 reveal dependence among the three groups. The descriptive
statistics presented in Table 2 show some negative skewness for the material own damages risk
group which maybe be due to the existence of a franchise and an upper capital limit (value of the
vehicle). For details, please see Santos (2010).

Risk group TPL property TPL bodily Material own
damages injury damages

TPL property damages 1 0.437 0.492
TPL bodily injury 1 0.299
Material own damages 1

Table 1: Kendall’s tau matrix of the claim counts

Risk group TPL property TPL bodily Material own
damages injury damages

Mean 4 028 337 1 198
Standard Deviation 568.93 54.07 121.46
Coefficient of Variation 14% 16% 10%
Skewness 0.13 0.38 −0.19
Kurtosis −1.05 0.06 −0.61

Table 2: Descriptive statistics of the data
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Figure 1: TPL property damages - Gamma and normal vs empirical distribution.

Figure 2: TPL bodily injury - Gamma and normal vs empirical distribution.

Figure 3: Material own damages - Gamma and normal vs empirical distribution.
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2. CONTINUOUS MODELLING

We consider gamma and normal distributions approximations to model the marginal behaviour for
the claim counts of each risk group. The former can be viewed as a continuous version of the
negative binomial distribution, when the random variables do not take zero values and do not have
a large number of repeated values. The latter is taken from the Central Limit Theorem.

Parameters estimation is carried out using the Inference For Margins method (IFM). It is a two-
step method that first estimates the marginal parameters and then calibrates the copulae parameters.
It does n separate optimizations of the univariate likelihoods, followed by an optimization of the
multivariate likelihood as a function of the dependence parameter vector. Table 3 shows the max-
imum likelihood parameter estimates (ML) for the gamma and normal approximations as well as
the p-values of the Kolmogorov-Smirnov tests for the three risk groups. Accordingly, Figures 1-3
show plots of the empirical and approximating distributions.

Gamma distribution Normal distribution
Risk group α β p-value µ σ p-value

TPL property damages 50.39 0.013 43.94% 4028 568.93 40.37%
TPL bodily injury 39.60 0.117 96.60% 337 54.07 76.34%
Motor own damages 95.91 0.080 59.61% 1198 121.46 65.06%

Table 3: ML estimates of gamma and normal fits and p-values

We tried five different trivariate copula families and estimated their parameters considering
both gamma and normal distributions. These results are shown in Table 4. We tried the t-copula
but the estimated degrees of freedom were high and thus the t-copula comes close to the Gaus-
sian copula. According to Embrechts et al. (2003) a robust estimator for the components of the
correlation matrix R of the Gaussian copula is given by Rij = sin(πτ̂ij/2).

Gamma distribution Normal distribution
Copulas θ1 θ2 p-value θ1 θ2 p-value

Gumbel 1.5437 1.6242 0% 1.5072 1.5781 1.50%
Nelsen 1.0474 1.0923 28.47% 1.0597 1.1043 6.89%
Cook-Johnson 0.9482 - 10.09% 1.0648 - 5.19%
Gaussian - - 41.36% - - 39.86%

Table 4: Copulae parameters estimates with gamma and normal distributions and p-values

According to the goodness-of-fit test, with a significance level greater than 10%, we came
out with the following models to fit the claim counts: Gaussian copula with normal marginal
distributions; Nelsen’s copula with gamma marginal distributions; Gaussian copula with gamma
marginal distributions; Cook-Johnson’s copula with gamma marginal distributions.

Cook-Johnson’s copula assumes an equal level of association for all pairs of random variables
which is a very restrictive property. For instance, according to the Kendall’s tau in Table 1 we
see that may not be true. Nelsen’s copula with gamma marginal distributions allows skewness in
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the data whereas the Gaussian copula leads to a radial symmetric distribution. Since our data has
some asymmetry, we conclude that Nelsen’s copula with gamma distribution marginals should be
preferred to model the joint claim counts of the three risk groups.

3. DISCRETE MODELLING

In the discrete modelling we consider a mixed Poisson distribution with a structure gamma distri-
bution for the marginals, leading to a negative binomial distribution. Table 5 shows the maximum
likelihood parameter estimates for the negative binomial distribution as well as the p-values of the
Chi-squared test. Figure 4 shows the negative binomial fit versus empirical distribution.

Negative binomial distribution
Risk group α p p-value

TPL property damages 50.77 0.012 14.91%
TPL bodily injury 43.92 0.115 24.81%
Motor own damages 105.96 0.081 78.11%

Table 5: ML parameter estimates of negative binomial distribution and p-values

Figure 4: Negative binomial vs empirical distribution

The discrete approach should be the natural method to fit the claim counts, however it has
limitations since the copula theory has serious restrictions when the marginals are discrete. Thus,
we can neither properly estimate the copula and its parameters nor fully test the fit. To overcome
these limitations we estimate copulae for the structure distributions. Since the parameters of the
copulae represent the dependence parameters we estimate them using the claim counts sample.
However, since the structure variables are not observable we cannot perform a goodness-of-fit test
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for the copulae. Tables 6 shows the estimates for the structure gamma distributions and Table 7
shows the parameters estimates for the copulae.

Structure gamma
Risk group α β = p/(1− p)

TPL property damages 50.77 0.0126
TPL bodily injury 43.92 0.1303
Motor own damages 105.96 0.0884

Table 6: Parameter estimates for the structure gamma distribution

Archimedean Structure gamma
Copulas θ1 θ2

Gumbel 1.5011 1.5829
Nelsen 1.0195 1.0704
Cook-Johnson 0.8485 -

Table 7: Archimedean copulas parameter estimates for the structure gamma for marginals

Comparing the estimates obtained in the discrete modelling with the ones obtained in the con-
tinuous case we see that they are similar in the cases of Gumbel, Nelsen and Cook-Johnson’s
copulas.

4. CONCLUSION

According to the automobile data illustration presented, as multivariate model to fit the claim
counts between TPL property damages, TPL bodily injury and material own damages risk groups,
Nelsen’s copula should be chosen with gamma marginals. The discrete approach presented seems
to confirm this conclusion, and it is an interesting line of research for the future. Moreover, the
results obtained for the degrees of freedom of the t-copula support the absence of a tail dependence
in the risk groups. This seems reasonable because extreme events are not covered by these groups.
See Santos (2010) for details.

We remark that this application has at least one limitation due to a possible existence of season-
ality in the data. This is not captured by the IFM method that assumes independent observations.
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We consider the problem of claims reserving and estimating in the setup of run-off triangles. This
problem is motivated by the need of monitoring the randomness of claim developments up to the
time when the ultimate claim is finally settled. This aspect of claims reserving relies, typically,
on a long-term point of view. This is in contrast with the short-term horizon inherent to models
describing the total risk for an insurance company, such as the one-year risk perspective used in
the Solvency II project. The challenge of bridging the gap between these two viewpoints gave rise
to some innovative research in the study of reserving processes. One of the first papers dealing
with the one-year reserve risk was the one of Merz and Wüthrich (2008). In the special case of
a pure Chain-ladder estimate, they provided analytic formulae for the mean squared error of the
predictions of the run-off result, referred to as theclaims development result(CDR). Their methods
rely on an extension of the well-known Mack (1993) model.
The present paper intends to provide a general methodology for measuring the uncertainty of CDR.
Our approach largely extends that of Merz and Wüthrich (2008). We will make an instrumental
use of the notation and methods of this paper and follow the arguments of the proof of their main
results.

1. INTRODUCTION

Merz and Ẅuthrich defined in Merz and Ẅuthrich (2008) theclaims development result(CDR) at
time I + 1 for accounting year(I, I + 1] as the difference between two successive predictions of
the total ultimate claim. The first prediction is done at timeI (with the available information up to
time I), and the second one is made one period later at timeI + 1 (with the updated information
available at timeI + 1). Merz and Ẅuthrich base their study of the prediction of CDR, and of the
possible fluctuations around this prediction (prediction uncertainty) on a distribution-free Chain
Ladder method.
In the present paper we extend their model to a more general class of models based on age-to-age
factors. The Chain Ladder Model of Merz and Wüthrich (2008) turns out to be a particular case
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of our general model. In the final section we apply our resultsto four methods (Chain Ladder
included) of claims reserving often used by practitioners.The proofs of the main results are given
in Sloma (2011).

2. NOTATION

• Ci,j - cumulative payments for accident yeari ∈ {0, . . . , I} until development yearj ∈
{0, . . . , J}

• Ci,j - random variables observable for calendar yearsi + j ≤ J and non-observable (to be
predicted) for calendar yearsi+ j > J + 1

• Ci,J - ultimate claim for accident yeari

• We assume thatI = J (dataset as run-off triangle, see Table 1)

• DI = {Ci,j : i+ j ≤ I; i ≤ I} - claims data available at timet = I

• DI+1 = {Ci,j : i+ j ≤ I + 1; i ≤ I} - claims data available at timet = I + 1

3. EXTENSION OF MACK’S MODEL FOR THE CHAIN LADDER METHOD

Define : Fi,k = Ci,k+1/Ci,k - individual development factors,γi,k - positive random variables
σ(Ci,k)-measurable andσ(Ci,k) - σ- field generated byCi,k.

3.1. Model Assumptions

(M.1) The accident years(Ci,0, . . . , Ci,J)0≤i≤I are independent.
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(M.2) (Ci,j)0≤j≤J
are Markov chains.

(M.3) There exist constantsfk > 0 andσ2
k > 0 such that for all0 ≤ i ≤ I and0 ≤ k ≤ J − 1 we

have

E(Fi,k | Ci,0, . . . , Ci,k) = E(Fi,k | Ci,k) = fk

Var(Fi,k | Ci,0, . . . , Ci,k) = Var(Fi,k | Ci,k) =
σ2
k

γi,k

.

3.2. Model Estimators

̂f I
k =

∑I−k−1
i=0 γi,kFi,k
∑I−k−1

i=0 γi,k
, and ̂f I+1

k =

∑I−k

i=0 γi,kFi,k
∑I−k

i=0 γi,k
, 0 ≤ k ≤ J − 1,

σ̂2
k =

1

I − k − 1

I−k−1
∑

i=0

γi,k(Fi,k − ̂fk)
2, for 0 ≤ k ≤ J − 2,

σ̂2
J−1 = min(σ̂4

J−2/σ̂
2
J−3,min(σ̂2

J−3, σ̂
2
J−2)).

4. CLAIMS DEVELOPMENT RESULT (CDR)

4.1. True CDR

• Single Accident Year

CDRi(I + 1) = E[Ci,J | DI ]− E[Ci,J | DI+1].

• Aggregation over Prior Accident Year

CDR(I + 1) =
I
∑

i=1

CDRi(I + 1).

4.2. Observable CDR

• Single Accident Year
ĈDRi(I + 1) = ̂CI

i,J − ̂CI+1
i,J ,

where

̂CI
i,J = Ci,I−i

J−1
∏

j=I−i

̂f I
j and ̂CI+1

i,J = Ci,I−i+1

J−1
∏

j=I−i+1

̂f I+1
j .
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• Aggregation over Prior Accident Year

ĈDR(I + 1) =
I
∑

i=1

ĈDRi(I + 1).

5. MEAN SQUARE ERROR OF PREDICTION (MSEP) OF CDR

The conditional MSEP considered here gives the prospectivesolvency point of view and quantifies
the prediction uncertainty in the budget value at0 for the observable CDR at the end of the account-
ing period. In the solvency margin we need to hold risk capital for possible negative deviations of
CDR from0.

msep̂
CDRi(I+1)|DI

(0) = E

[

(

ĈDRi(I + 1)− 0
)2

| DI

]

,

msep
∑

I

i=1
̂CDRi(I+1)|DI

(0) = E





(

I
∑

i=1

ĈDRi(I + 1)− 0

)2

| DI



 .

6. MAIN RESULTS

6.1. Single Accident Year

m̂sep̂
CDRi(I+1)|DI

(0) =
(

̂CI
i,J

)2

·
(

̂ΓI
i,J + ̂∆I

i,J

)

,

where

̂ΓI
i,J =

σ̂2
I−i/

(

̂f I
I−i

)2

γi,I−i

+
J−1
∑

j=I−i+1

σ̂2
j/
(

̂f I
j

)2

(

βI+1
j

)2 · γI−j,j,

̂∆I
i,J =

σ̂2
I−i/

(

̂f I
I−i

)2

βI
I−i

+
J−1
∑

j=I−i+1

σ̂2
j/
(

̂f I
j

)2

βI
j

·
(

γI−j,j

βI+1
j

)2

,

βI
j =

I−j−1
∑

i=0

γi,j and βI+1
j =

I−j
∑

i=0

γi,j .
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6.2. Aggregation over Prior Accident Year

m̂sep
∑

I

i=1
̂CDRi(I+1)|DI

(0) =
I
∑

i=1

m̂sep̂
CDRi(I+1)|DI

(0) + 2
∑

k>i>0

̂CI
i,J · ̂CI

k,J

(

̂ΥI
i,J + ̂ΛI

i,J

)

,

where

̂ΥI
i,J =

σ̂2
I−i/

(

̂f I
I−i

)2

βI+1
I−i

+
J−1
∑

j=I−i+1

σ̂2
j/
(

̂f I
j

)2

(

βI+1
j

)2 · γI−j,j,

̂ΛI
i,J =

σ̂2
I−i/

(

̂f I
I−i

)2

βI
I−i

·
(

γi,I−i

βI+1
I−i

)

+
J−1
∑

j=I−i+1

σ̂2
j/
(

̂f I
j

)2

βI
j

·
(

γI−j,j

βI+1
j

)2

.

7. NUMERICAL EXAMPLE

Following Mack (1999) we define, for0 ≤ i ≤ I end0 ≤ j ≤ I − i,

γi,j = wi,j · Cα
i,j ,

whereα ≥ 0 andwi,j ∈ (0, 1] are arbitrary weights which can be used by the actuary to down-
weight any outlyingFi,j.
We choose the parameterα and the weightswi,j to obtain the following four methods (A-D) often
used by practitioners

A. Chain Ladder Model (α = 1, wi,j = 1 for all i, j) (see Merz and Ẅuthrich (2008) and Mack
(1999)),

̂fk =

∑I−k−1
i=0 Ci,kFi,k
∑I−k−1

i=0 Ci,k

=

∑I−k−1
i=0 Ci,k+1
∑I−k−1

i=0 Ci,k

, for 0 ≤ k ≤ J − 1.

B. Mean Model The estimators offk are the straightforward averages of the observed individual
development factorsFi,j ( α = 0, wi,j = 1 for all i, j),

̂fk =
1

I − k

I−k−1
∑

i=0

Fi,k, for 0 ≤ k ≤ J − 1.

C. Linear Regression Model The estimators offk are the results of an ordinary regression of
{Ci,k+1}i∈{0,...,I−k−1} against{Ci,k}i∈{0,...,I−k} with intercept0 (α = 2, wi,j = 1 for all i, j),

̂fk =

∑I−k−1
i=0 C2

i,kFi,k
∑I−k−1

i=0 C2
i,k

=

∑I−k−1
i=0 Ci,kCi,k+1
∑I−k−1

i=0 C2
i,k

, for 0 ≤ k ≤ J − 1.
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D. Sample Median Model ( α = 0, wi,j ∈ {0; 1} for all i, j). The weightswi,j are chosen in the
way that the estimators offk are given by

̂fk ∼= median{Fi,k : i ∈ {0, . . . , I − k − 1}}, where

median{Xi : i ∈ {0, . . . , n}} =







X(n+1
2

) if n is odd
X(n

2
) +X(n

2
+1)

2
otherwise

X(k) denotes thekth order statistics of the sampleX1, . . . , Xn.

8. NUMERICAL RESULTS

9. CONCLUSIONS

The methodology developed in Merz and Wüthrich (2008) is applied in practice within the Sol-
vency II framework in the context of estimation of the one year volatility of reserves (see CEIOPS
(2010), methods 4-6, p. 64-67).
Our general model gives an alternate approach for such applications. Numerical results from Table
2 (except for model D, the results are close to each other) andTable 3 (divergent results) show that
the choice of model for reserving processes is still an open challenging problem and underlines the
importance of statistical inference methods to properly assess the model structure in each case.
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De Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten coördineert 
jaarlijks tot 25 wetenschappelijke bijeenkomsten, ook contactfora genoemd, in de domeinen 
van de natuurwetenschappen (inclusief de biomedische wetenschappen), menswetenschappen 
en kunsten. De contactfora hebben tot doel Vlaamse wetenschappers of kunstenaars te 
verenigen rond specifieke thema’s. 
 
De handelingen van deze contactfora vormen een aparte publicatiereeks van de Academie. 
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M. Vanmaele) 
 
 
 
 
 
 
 
Deze handelingen bevat een neerslag van bijdragen op de “Actuarial and Financial Mathematics 
Conference 2011”. Dit contactforum was dit jaar aan zijn 9de editie toe en heeft zijn plaats veroverd 
tussen de internationale conferenties die focussen op de wisselwerking tussen financieel en actuarieel 
wiskundige technieken. Gespreid over de twee dagen kwamen verschillende experten vertellen over 
nieuwe modellen en technieken voor onder andere het modelleren van verschillende soorten risico en 
het construeren van een optimale investeringsportefeuille. Ook jonge onderzoekers kregen de kans 
hun onderzoeksresultaten ofwel in een voordracht ofwel via een poster aan een ruim publiek voor te 
stellen bestaande uit academici uit binnen- en buitenland alsook collega's uit de bank- en 
verzekeringswereld. In deze publicatie vindt u een samenvatting van een deel van deze presentaties.  




