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PREFACE

The yearly meeting “Actuarial and Financial Mathe¢icse Conference” of academic
researchers and practitioners to discuss recemtia@@wents at the interplay between finance
and insurance took place on February 10 and 111 2681a contactforum in the buildings of
the Royal Flemish Academy of Belgium for Science @mts in Brussels. At this occasion
researchers in actuarial and financial mathemética Belgian universities and from abroad
on the one side, and professionals of the bankidgrasurance business on the other side took
the opportunity to get in touch with each othertorstrengthen the ties. The number of
conference partcipants is each year growing. F@AfiMathConf2011 about 130 participants
from 21 different countries were registered, iltahg the large interest in this event.

For this 2011 edition, eight internationally esteeinresearchers were invited to give an
overview talk on their recent research topic. Dgrihe first day, we welcomeBamir
Filipovic (Ecole Polytechnique Fédérale de Lausanaed Swiss Finance Institute,
Switzerland), Carole Bernard (University of WaterlcCanada), Rama Cont (CNRS, France
& Columbia University, USA) and Andreas Kypriandiniversity of Bath, UK)Their very
clear expositions gave the audience some insightguonadratic term structure model for the
variance swap rates, in the explicit constructibram optimal strategy when investors have
state-dependent constraints, in an approach to unegssystemic risk based on explicit
modeling of counterparty relations between finahitiatitutions as a weighted graph and in
some of the remarkable developments that have xtum the development of ruin theory
and de Finetti’s classical control problem in thstltwo or three years. The second day, the
attendants had the opportunity to listen to théovahg invited speakeraviario Wuthrich
(ETH Zurich, Switzerland), Pierre Devolder (Univiééscatholique de Louvain, Belgium),
Alexander McNeil (Heriot-Watt University, Scotlanaipd Giulia Di Nunno (University of
Oslo, Norway).The first three talks dealt with insurance issugshsas a novel stochastic
model for claims reserving that allows to combirainas payments and incurred losses
information, some various stochastic models in iooaus time in order to estimate solvency
capital for two important risks faced by pensionds: market risk and inflation risk and an
approach to multivariate stress testing for solyef@ptimal investment in assets subject to
risk of default for investors that rely on diffetdavels of information was the topic of the last
invited talk.

Next to the invited lectures, the scientific contest selected eight contributions which were
spread over the two days. These talks with topicnance and insurance were given by
Florence Guillaume (T.U.Eindhoven, The Netherlandlsikasz Delong (Warsaw School of



Economics, Poland), Eva Liutkebohmert (UniversityFodiburg, Germany), Kathrin Glau
(University of Vienna, Austria), Robert SalzmaniKEZurich, Switzerland), Elisa Luciano
(Universita degli Studi di Torino, Italy), CathednDonnelly (Heriot-Watt University,
Scotland) and Zorana Grbac, University of Evry, kea) In addition, twelve researchers
presented a poster during an appreciated posteiosesWe thank them all for their
enthusiasm and their nice presentations which rttegleonference a great success.

The present proceedings give an overview of theiaes at the conference. They contain one
article related to an invited talk, five papersresponding to contributed talks, and ten short
communications of posters presented during theepgsssions on both conference days.

We are much indebted to the members of the saertimmittee Hansjorg Albrecher (HEC
Lausanne, Switzerland)Freddy Delbaen (ETH Zurich, Switzerland), Michel nD#
(Université Catholique de Louvain, Belgium), Errsberlein (University of Freiburg,
Germany), Rob Kaas (University of Amsterdam, théhétkands), Ragnar Norberg (London
School of Economics, UKINoel Veraverbeke (Universiteit Hasselt, Belgiumgl @ime chair
Griselda Deelstra (Université Libre de Bruxelleselgdum), for the excellent scientific
support. We also thanWouter Dewolf (Ghent University, Belgiunipr the administrative
work.

We cannot forget our sponsors, who made it possibdeganise this event in a very enjoyable
and inspiring environment. We are very gratefuthte Royal Flemish Academy of Belgium

for Science and Arts, the Research FoundatioRlanders (FWO), the Scientific Research
Network (WOG) “Fundamental Methods and TechnigquedMiathematics”, le Fonds de la

Recherche Scientifique (FNRS), Dexia, ElectrabelFGBuez and the BNP Paribas Fortis
Chair in Banking at The Vrije Universiteit Brusseld Université Libre de Bruxelles.

The success of the meeting encourages us to gatlerthe organisation of this contactforum.
We are sure that continuing this event will provid®re opportunities to facilitate the
exchange of ideas and results in our fascinatisganeh field.

The editors:
Griselda Deelstra
Ann De Schepper
Jan Dhaene
Steven Vanduffel
Michéle Vanmaele
David Vyncke

The other members of the organising committee:
Jan Annaert

Michel Denuit

Pierre Patie

Wim Schoutens

Paul Van Goethem
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OPTIMAL INVESTMENT UNDER PROBABILITY CONSTRAINTS

Carole Bernard® and Steven Vanduffef!

TDepartment of Statistics and Actuarial Science, UnivgrsftWaterloo, Canada.

$Faculty of Economic, Political and Social Sciences and 8oBusiness School, Vrije Universiteit
Brussel, Belgium.

Email: c3ber nar @wat er| oo. ca, steven. vanduffel @ub. ac. be

Abstract

Bernard and Boyle (2010) derive the lowest cost strategy (also calbstiefficient” strategy)
that achieves a given wealth distribution. An optimal strategy for a predkieg investor with
law-invariant preferences is necessarily cost-efficient. In the speecifie of a Black-Scholes
market the optimal strategy is always path-independent and non-dexgesith the stock
price. Assuming now that investors still want to achieve a given distributiarfized horizon
but have a probability constraint, we propose an explicit constructionecbpiimal strategy.
In the case of the Black-Scholes market, we show that the optimal strategynecessarily
non-decreasing in the stock price any more.

1. INTRODUCTION

This note extends Bernard and Boyle (2010) by including aafusii probability constraints. An
investor with law-invariant preferences but with some @bty constraints has “state-dependent”
preferences. We show that the non-decreasing propertg afgtimal investment for law-invariant
preferences does not hold when preferences are stateddaeSection 2 gives our assumptions,
the framework and recalls what cost-efficiency is and itk With optimal investment. Section 3
provides some theoretical results on bounds on copulas ymdeability constraints and how to
use them to solve our optimization problem. We apply thecaktesults of Section 3 to some
optimal investment problems in Section 4.

!Both authors gratefully acknowledge the program “Brainek&a Brussels” that funded an extended research visit
of C. Bernard at VUB in Brussels during which this paper wasipteted. S. Vanduffel acknowledges the financial
support of the BNP Paribas Fortis Chair in Banking. C. Batraso acknowledges support from WatRISQ and the
Natural Sciences and Engineering Research Council of Ganad
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4 C. Bernard and S. Vanduffel

2. COST-EFFICIENCY & OPTIMAL INVESTMENT

In this section we first present the model assumptions anddtimg. We then give the general
form of the optimal investment problem we want to solve irsthaper. In particular we relate
the optimal investment choice to the concept of “cost-edficy” (originally defined by Dybvig
(1988a,b)).

2.1. Agent’s Preferences

Denote byU(-) the investor’s objective function he wants to maximize. Wakethe following
assumptions.

¢ All investors have a fixed investment horizéh> 0 and there is no intermediate consump-
tion.

e Investors prefer “more to less”, in other words their respebjective functions preserve
first order stochastic dominance relationships (denoted ly). Hence ifY;y <y,; X1 then
U(Xr) > U(Yr) andU(-) is non-decreasing.

¢ Investors have “state-independent preferences” or “lavafiant preferences”: ¥ has the
same distribution aXx'r thenU (Yr) = U(X7).

Such set of preferences is quite general and consistenawitide range of decision theories,
including the expected utility theory (von Neumann and Mumsgtern (1947)), Yaari’s dual theory
of choice (Yaari (1987)), the cumulative prospect theoryefEky and Kahneman (1992)) and the
rank dependent utility theory (Quiggin (1993)). For exaepph the particular case of expected
utility the preferences for a final wealfty; would be calculated a$(Xr) = E[u(X7)] whereu is
the investor’s utility function. Instead of maximizing abjective function, one may also minimize
any law-invariant risk measure that preserves first stachdsminance (for example the quantile
or a general distorted expectation).

2.2. Financial Market

The financial market contains a (risk-free) bond with pricecess{ B; = Bye™, t > 0}. Further,
there is also a risky asseét with price procesyS;, ¢t > 0}. We assume trading can be done
continuously, the market is frictionless and arbitrageefrand all investors agree on the pricing
kernel used to value derivatives in this market. The injiate ¢(Xr) of a given contract with
payoff X maturing at the fixed horizof' > 0 is given by

o(Xr) = E[{r X7]. (1)

Here the expectations are taken with respect to the physichhbility measur®, and{¢,;, t > 0}
is called the state-price process. We will also assumetthsicontinuously distributed. In partic-
ular it holds that

c(1) = Elgr] = 7. (2)
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It is also well-known that:(Xr) can be presented as the discounted expectation under khe ris
neutral measur@ defined througly; = e‘”(%)t. In the remainder of the paper all expectations
are taken under thE measure. We refer to Bjork (2004) for extensive theory ontabe-free
pricing.

Note that the above description is rather general and ieslutde Black-Scholes setting in
which case the proce§$r,t > 0} is known unambiguously. For the ease of exposition we ptesen
all the results in the one-dimensional Black-Scholes markiet this setting there is a bijection
between the state-price procgésand the risky asse;. Recall that the risky asset priée evolves

according to
dsS;
— = pdt + odW;, 3)
Sy

where{W,, t > 0} is a standard-Brownian motion and assume > r. The state price process

{&, t > 0} exists, is unique and is given by

S\
& —a (5—0) , (@)

wherea — e4(t=%)=(+%)t andg — E=C. Note that¢, is decreasing irb,. Denote byF; the cdf
of &7. Let My denote the mean abg (&), My = —%02T — rT. The variance ofog(¢é7) is equal

to 62T. Then,
log(z) — M)

TWT ©)

Rio) - Pler <) - (

2.3. Cost Efficiency & Investment

The concept of “cost-efficiency” was first introduced by Cox &eland (1982, 2000) and Dybvig
(1988a,b).

Definition 2.1 A strategy (or a payoff) is cost-efficient if any other stggtéhat generates the same
distribution costs at least as much.

It is clear that if investors prefer more to less (as per oguagtions in Section 2.1), then
in the absence of additional constraints optimal investnsérategies will necessarily be cost-
efficient. Given the cdf that the investor would like to asleiat a given maturity daté (possibly
a retirement date), the optimal strategy then solves thewoilg problem

min B [¢7.X7]

6
subjecttoVz € R, P(Xr < z) = F(x) ©

(P1)

The objective is to minimize the cost of a paydff- such thatX; has cdfF. Define F~! as
follows
F~'(y) = inf{z | F(z) > y}.

2]t would be possible to be more general and include the médsional case as studied by Bernard et al. (2011)
or the Levy market presented in Vanduffel et al. (2011).
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The inverse is left-continuous and non-decreasing. Tme@4@ characterizes the optimal invest-
ment strategy.

Theorem 2.1 Let F' be a cdf. The solution t®; given by(6) is equal to
Y7 =F"(1-F (), (7)
and it is the almost surely unique optimal solutiorn(®).

This theorem corresponds to the main result of Bernard andeB@@10). We will see that it can
be obtained as a special case of our approach.

Assume now that the investor is subject to additional cairds that are “state-dependent”.
The cost-efficient strategy (7) solution 1 may not satisfy these constraints and therefore the
optimal strategy may be strictly more expensive. We forteuthe problem as follows.

I%in E [&rX7]
) Ve e R, P(X; < x) = F(2) (8)
(Ci)iel

The optimal strategy is distributed with the ddbut in addition eacld; denotes an additional con-
straint and/ can be finite or infinite. Each constraifjtcontains information about the dependency
structure between the state-price process and the optiratdgy of the investor given by

P.
(P2) subject to {

]P)(fT < &;,XT < (L’Z) = b;.

In a Black-Scholes market, the state-price process is aiumof the risky asset. Then a natural
example is a simple probability constraint ensuring that itivestment strategy is greater than
some guaranteed level when the market itself is very low. cdmsstraint can then write as

]P)(ST < O./S(),XT > b) < g,

wherea < 1, see equation (4).

Adding such constraints is important because investors btate-dependent constraints. For
example an investor who invests in a put option, is not istexin cost-efficiency only (because
it is decreasing in the underlying stock) but wants positivecomes when the market goes down.

3. SOLUTIONS TO PROBLEMS (P;) AND (P,)

3.1. Formalization

ProblemsP; and P, presented above can be reformulated as “dependence” prsifla other
words as problems on copulas). Indeed Probf@nis clearly a minimization ofs[Xr&r| where
marginals ofX and&; are known but where no information about the dependencydestw -
andér is given. It can also be interpreted as the minimizatiofpf7¢(Sr)] where marginals of
Sr and X7 are known and wherg(y) = a(y/S,)° for someb > 0 because of (4). Problef; is
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similarly a minimization ofE[ X+&7] or E[Xpg(S7)] but with some information on the dependency
betweenX, and the markef ;.

Let (X,Y’) be a couple of random variables. It is well-known that thetjaistribution for
(X,Y) is fully determined upon knowledge of the marginal disttibns /'y and Fy- together with
the copula functior® := Cx y for (X, Y) (this result is known as Sklar’s theorem).

Let us define supermodular functions. Letdenote the-th ndimensional unit vector, and
let f : R* — R be some function. Fot = (z,---,z,) € R" we then defineAs f(z) =
fla+ee)— f(z)(E>0,1<i<n).

Definition 3.1 (Super modularity) A functionf : R” — R is said to be supermodular (or 2-
increasing) if forallx € R*, § > 0, > 0and1 < i < 5 < n it holds that

0 A€
AJAS f(z) = 0.

If f: R™ — Ris twice differentiable therf is supermodular if and only %%xjf (z) = 0 holds
foreveryzr e R"and1 <i < j <

See for example Marshall and Olkin (1979), p. 146. A functfors submodular whenr-f is
supermodular.

The problemP, given in (8) we want to solve amounts to studying integralghef form
E[f(X,Y)] wheref is submodular or supermodular. Theorem 3.1 below can baifoumankov
(2011) and provides, under suitable assumptions, an esiprefor the integralE[f(X,Y)] in
terms of the copuld@’, and the marginal distributionsy and Fy .

Theorem 3.1 (Bounds forE[f(X,Y)]) Assumeg : R7 — Ris supermodular and left-continuous
in each of the arguments. Assume also that

E[[f(X,0)[ + [0, X)| + [f (Y, 0)| + [£(0, V)] + [/(X, X)| + [f (Y, Y)]] < o0,
thenIl(C) = E[f(X,Y)] is given by
I(C) = —=£(0,0) + E[f(X,0)] + E[f(0,Y)] (9)
/ / pr(de x dy)(1 — Fx(x) — Fy(y) + C(Fx(z), Fy(y))

wherey; is the measure oR? induced by the supermodular functign
In addition, if the copula’ admits pointwise bounds and U

Vu € (0,1),Vv € (0,1) L(u,v) < C(u,v) < U(u,v).

Then
(L) < T(C) < I(U), (10)

where L and U are not necessarily copulas but could be more general fansti{such that the
double integral in(9) exists).
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Proof. The expression (9) is given in Proposition 2 of Tankov (2011) ]

It seems that the expression (9) did not appear yet elsewdre literature although it is not
the focus of Tankov (2011) As a first application of Theorem 3.1 let us consider the supdular
function f defined asf(z, y) = xy. In this caseu;(dz x dy) = dz x dy. Hence

E[XY] = /000 /000 P(X > z,Y > y)dzdy, (11)

which is well-known.

Another example of supermodular functionfiz, y) = —zg¢(y) whereg(y) = a - (y/S) "
This function appears in the case of a one dimensional Blatiol8s market as the bijection
between the risky asset (respectively the market porjfalna the state price process. In this case,
the objective to minimize in problenB; andP, corresponds to minimizin&[f (X, Sr)|. Note
tHhat% < 0 which means that it is a submodular function. In that cagéfz x dy) = ¢'(y)dzdy.

ence

B = [ [ RO Y > )/ t)dady (12)

Theorem 3.1 is very useful to actually compute bounddifigi( X, Y')] in case one knows the
marginal distributions o andY’, with limited information on the dependence betweémandY .
The main idea is to translate the information one has on tpert#ence to derive bounds on the
unknown copulaC x . Using Theorem 3.1 (precisely the inequality (10)), sajvoroblemsP,
andP, amounts to finding bounds on copulas. Problém) given in (6) and ProbleniP,) given
in (8) can then be formulated as special cases of the follpgeneral problem

min E [f(X,Y)]

subject to { X~FY ~G (13)
ViGI, ]P)(Y<£Z,X<£L'@):bz

where] is the set of constraints. Proble®) corresponds td = (). Each additional constraint
directly provides information on the dependence betw&eandY . In ProblemP; and?Ps, the
r.v. Y is the state-price process or a functionSgf its distributionGG is known and depends on the
financial market.

The rest of the paper focuses on deriving the boufidsd B such that the unknown copula
betweenX andY satisfies

Vu,v € (0,1), A(u,v) < Cixy)(u,v) < B(u,v) (14)

3It generalizes many existing formulas in the literature.r ERample consider the supermodular functifn
f(z,y) = (x +y — d)+. In this case we obtainis(dz x dy) = 0y—4—.dx x dy. Hence

E(X+Y —d)y] = E[(Xd)+}+1E[(Yd)+]+/dP(X>x,Y>dx)dx
0
= ]E[X]+IE[Y]d+/dIP(X<w,Y<dx))dx
0

which conforms with the expression f&{(X + Y — d)| that was derived in Dhaene and Goovaerts (1996). Their
result now appears as a special case of Theorem 3.1.
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In general the bound4 and B are not copulas but quasi-copulas. Firstrecall that a tiweedsional

copula is any supermodular functia@i : [0, 1] — [0, 1] such that for all uz (0,1) it holds that

C(0,u) = C(u,0) = 0 and also that(u, 1) = C(1,u). Itis well-known that this definition
implies thatC' is increasing in each argument and also ias Lipschitz continuous, i.e that
|C(uy,v1) — Clug,ve)| < |ug —ug| + |vy —wo| for all (ug,v1), (uz,ve) € [0,1]% These two

properties together with the boundary conditions definewbaker concept of quasi-copula:

Definition 3.2 (Quasi-copula) A two-dimensional quasi-copula is any functigh: [0,1]*> —
[0, 1] with the following properties:

(i) Boundary conditions: for all = (0, 1) it holds thatQ(0,u) = Q(u,0) = 0 and also that
Q(u,1) = Q(1, u);

(i) @ isincreasing in each argument and Lipschitz continuous.

Of course any copula is a quasi-copula but the opposite igmet for an insightful treatment
of copulas we refer to Nelsen (2006). For example a chaiiaatem of quasi-copulas is given in
Theorem 2.1 of Nelsen et al. (2002).

3.2. Solution toP;
In ProblemP;, the marginal distributiong’y and Fy- are known but no information is given.

Theorem 3.2 (Classical Fechet bounds) Consider a random coupléX,Y), it is well-known
that
Vu,v € (0,1), min(u,v) < C(u,v) < max(0,u+v — 1)

which respectively correspond to the comonotonic and asriianotonic copula. Lef be a su-
permodular function. Then,

E[f(Fx'(U), iy (1-0))] <E[f(X,Y)] <E[f(F'(U), I (U))].

Proof. This result is well-known and the proof is omitted. ]
Solving ProbleniP; is now straightforward and Theorem 2.1 can be seen as aydartzase
of Theorem 3.2 wherg(x, y) = xy. For everyX, with cdf F' it holds that

E[F~(1 = Fe, (67))] < El6rX7] < E[F " (Fg, (67))] (15)

Note that(U, 1 — U) is a legitimate copula so that the bounds are reached.

3.3. Solution toP, under probability constraints

We assume that the information on the dependence betWesY is such that the copula &y
is known on a compact subset of the unit square. Bounds weea @y Tankov (2011) and we
recall here his results
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Theorem 3.3 Let S be a compact subset @f, 1] and consider a quasi-copul@. Let us define
forallu,ve [0,1]

USQ(u,v) = min <u, v, (51;)128 {Q(a,b) + (u—a)" + (v — b)+}) :

L%9(u,v) = max (0, u+uv—1, (i%?gs {Q(a,b) — (a—u)" — (b— v)*}) (16)

Then for every quasi-copul@,. so thatQ.(a,b) = Q(a,b) for all (a,b) € S it holds that for all
u,v € [0,1]

L9 (u,v) < Qu(u,v) < USC(u,v). (17)
Furthermore for all(a, b) € S we have that
L59(a,b) = US?(a,b) = Q(a, b). (18)

MoreoverL>¢ andUS% are quasi-copulas. Finally, wheS is increasing and is a copula, we
have thatL5? is a copula whereas if is decreasing, we have that>-“ is a copula.

Proof. The proof can be found in Tankov (2011). [ ]

Note that Theorem 3.3 can be applied whenever the values opalacC' are known on a
compact subsef (C just plays the role of) in this case).

Special case where& ={a, b}.
Let C, a copula such that(a, b) = 9 with 9 such thainax(a + b — 1,0) < ¥ < min(a, b) holds.
Then for allu, v € [0, 1] the upper and lower bounds are now given by

U (u,v) = min (u,0,9+ (u—a)" + (v—>b)"),

L (u,v) = max (0,u+v—1,0—(a—u)*t — (b—v)") (19)
respectively. Both are copulas and satigf*?(a,b) = U**Y(a,b) = C.(a,b) = 9. These

copulas are called shuffles. In short, a shuffle copula hap@osuconstituted of line segments of
slope +1 and -1. More details on shuffles are presented imoBe&:2.3 of Nelsen (2006).

4. EXAMPLES IN BLACK SCHOLES

4.1. Optimization with a unique probability constraint C'(a,b) = ¢

We now describe the simulation of a couple of uniform randamables(U, V') with copula equal
to the lower or upper bound found in (19). Draw first a randommberw from the uniform (0,1)
distribution, thenl is fully determined. To obtain a couplé/, V') with the copulal®®?, v is
calculated as the following function af

v=1—u fo<u<a—17,
v=a+b—9Yv—u ifa—9<u<a, (20)
v=1+9Y—u fa<u<1l+9-—0,

v=1—u ifl14+9—-b<u<l.
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ForU**? itis similar and omitted here. Panel A of Figure 1 gives tinggort of the shuffle copula
La,b,ﬁ_

We now apply this to the construction of the “optimal” sotutito P, when the probability
constraint is given by
]P)(ST < CVSO, Xr > b) =¢ (21)

wherea > 0. This probability constraint ensures that the realizedoffag greater than some
guaranteed levél when the market itself is low (case wherx 1).
In the Black-Scholes mode$; = ¢(&7) whereg is non-increasing therefore

P(ST < OéSo,XT > b) = ]P(fT > g, Xr > b)
= P(G(&r) > G(0); F(Xr) > F(b))
1—-GW)— F(@)+C(G),F())

wherel? = ¢(Sy) and whereC' is the copula of ¢y, Xr). We are solving a special case of the
problem(P,) given in (8),

I_T)l(iTn E [0 X7]
Xp~F

subjectto ¢ In(Sy) ~ N (111(50) + (M — "72> T, O'2T>
P(Sr < aSy, X >b) =«

This can be rewritten in terms of the state-price processe Men thatP(¢ér < ¢, Xt < b) =
e — 1+ Fe,.(¢) + F(b). Therefore the problem can be restated as

min T [¢r X1]

Xp~F
subjectto ¢ In(¢ér) ~ N (Mp, V)
C(Fer (L), F(yo)) =V

wherey = e —1+Fg,(¢)+ F(b) andC is the copula betweefy and X . We will use Theorem 3.1
where the copuld’ that appears in the formula is replaced by the coputé the lower bound. We
construct explicitly the optimal strategy by simulatifig= F,. () and constructing” following
(20) to simulate a coupl@/, V) of uniform (0,1) such that the copula i57 )-F®)7 v/ js a
function of U, let h be such that” = h(U). Then the optimal solution t®, with the probability
constraint (21) given explicitly by

F (h(Fe(&r))-

4.2. Example whenF' is the cdf of a put option and there is one constraint.

Consider a put option with strik& and maturity7’, its payoff isX; = (K — Sr)*. The cost
efficient strategy was found in Bernard and Boyle (2010). Wae fesall their result and study
the effect of adding the probability constraint. Liétbe the cdf of the payoff of the put option.
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Bernard and Boyle (2010) show that the put option is the (arsque payoff that has the highest
possible cost with cdf'. This cdf, F, is

1 if v > K
_ _ (=m)r-los(i2) |
Flz)=P(Xr<z)=¢ P(Sr>K—-—x2)=9® T fo<z <K
0 if x <0

_ 2\ 7 1oe( X
It is straightforward to invert it. Definge = @ (<“ 2 )UT\/TI g(50>) and considey € (0,1),

2 1 +
P = (1 - il )T o)

Note that/"~*(1) = K andF'~*(0) is not well defined. The cost-efficient payoff that gives the
same distribution as a put option is

e\ M-log(er)\\ T K +
Yi=F'(1-F (&) = <K_ e (T ) TV T (M )) -5 (5 _ %) :

wherefFr is given by (5) (see Theorem 2.1) and where 5362(“_07)T. Y/ is the optimal solution
to (P) (cheapest strategy with cdf). We now want the cheapest stratejy with cdf /' and

]P(XT>b; ST<0.95SO):€

Panel A Panel B

“//
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1
1
o praee ] e s
/
1
1
1
1
8 15

b p------xc--

e

-~
-~
[=]

Figure 1: Panel A corresponds to the support of the coptéife’ given by (19). This is an extract
from Fig. 3.10 in Nelsen (2006). Panel B displays the chdagtestegy as a function o
under the probability constraint under study. Assumptiong?anel B are:S, = 100, K = 100,
p=0.050=027T=1r=0.03b= K/7ande = .15.

Panel B in Figure 1 illustrates the optimum.
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4.3. Example whenF' is the cdf of a put option and there is an infinite number of congraints

With several probability constraints, we can so(¥&) using the general result in Theorem 3.3.
Assume that for alla,b) € I, the copula betwee§, and X+ is comonotonic and therefore the
copula betweerX andSt is anti-comonotonic.

C(a,b) = min(a, )

where! is the segment with extremiti€s.7,0.7) and(1, 1). The constraint on the copula applies
for Sp < 92.8 andXr > 7.21 = F~1(0.7). We are looking for the cheapest strategy with cdf
F and X is anti-comonotonic with the stock market when the stockeois low.

The following figure gives the support of the copuland the optimal strategy.

Panel A Panel B

1 T T T T T T T T T 25

0.91
0.8 b 20
0.7
0.6 151

-

> 051 x

101

. . . . . . . . 0 f . .
00 01 02 03 04 05 06 07 08 09 1 80 90 100 110 120 130 140 150 160

u ST

0.4
0.31
0.2

0.1p

Figure 2: Panel A: Support of the lower bound of the copulaveeh S; and X;. Panel B:
Optimal Strategy under State-Dependent Constraint. Assang.S, = 100, K = 100, u = 0.05,
c=02,T=1,r=0.03.

Note that Panels B of Figure 1 and Figure 2 both display am@dtstrategy under probability
constraints that is not non-decreasing with respect to tidelying Sr.

5. CONCLUSIONS

This paper presents optimal investment strategies in tbgepce of state-dependent constraints.
Similarly as Bernard and Boyle (2010) the assumption is thatkmows the cdf of terminal wealth
and one wants to reach this objective cdf at the cheapesibs®st given some probability
constraints. Investors with law-invariant preferencel salely invest in strategies that are non-
decreasing in the underlying risky asset. In the presenpeobiability constraints, non-decreasing
strategies in the risky asset are not necessarily optimal.
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Abstract

We consider the pricing of a maturity guarantee, which is equivalent to the pricing of a Eu-
ropean put option, in a regime-switching market model. Regime-switching market models
have been empirically shown to fit long-term stockmarket data better than many other models.
However, since a regime-switching market is incomplete, there is no unique price for the ma-
turity guarantee. We extend the good-deal pricing bounds idea to the regime-switching market
model. This allows us to obtain a reasonable range of prices for the maturity guarantee, by
excluding those prices which imply a Sharpe Ratio which is too high. The range of prices can
be used as a plausibility check on the chosen price of a maturity guarantee.

1. INTRODUCTION

Maturity guarantees are a common addition to many life insurance policies. The policyholder is
given a guarantee by the life insurance company that the proceeds of the policy at the maturity
date is subject to a minimum value. Ensuring that the guarantee is properly valued is of concern
to the life insurance company, since it is a potential threat to the solvency of the company. When
investment market returns are depressed, the company'’s investments are reduced in value but this
is precisely the time when the guarantee is likely to bite. Thus the financial burden of the guarantee
on the company is exacerbated.

To begin to quantify the risks inherent in a maturity guarantee, we must value them appropri-
ately. The primary aim of this paper is to obtain a method for the reasonable valuation of maturity
guarantees within a model which is appropriate to the long-term nature of the guarantees. We
ignore mortality and focus on the financial market model.

It is well-known that maturity guarantees have the same payoff as a European put option.
To show this, denote the time to maturity of the insurance contrad layd suppose that the
guaranteed benefit is amoufitat timeT'. If the amount payable before the guarantee is applied
equalsS(T'), then the policyholder receivesax|[ K, S(T")] at timeT'. This means that the insurance

17



18 C. Donnelly

company is liable to pay an additional amount?of— S(7') to the policyholder if the guarantee
bites at the maturity date. We can write this mathematically as

max|[K — S(T),0].

The above cost to the insurer is recognised as the payoff of a European put option with strike price
K and time to maturity”". Thus valuing the maturity guarantee is equivalent to valuing a European
put option.

To value the maturity guarantee, we assume a model of the stockmarket called a regime-
switching market model. Regime-switching market models are a way of capturing discrete shifts in
market behavior. These shifts could be due to a variety of reasons, such as changes in market regu-
lations, government policies or investor sentiment. In particular, regime-switching market models
are effective at capturing the long-term behaviour of the stock market (for example, see Hardy
(2003, Chapter 3)). This is an extremely appealing feature if we are valuing maturity guarantees
since often the guarantees are applied after many years.

Due to the regime-switching, the market is incomplete and hence there are no unique prices for
derivatives. In fact, the range of possible prices for a particular derivative is too wide to be useful
in practice. Various suggestions have been made on either how to choose a single price or how to
obtain a more restricted, and therefore potentially more useful, range of prices. We focus in this
paper on the latter because it is the market which ultimately decides the price and so we should
take into account our uncertainty about what the market price will be. Therefore, we believe it is
better to find a range of prices that the market-determined price might reasonably be expected to
lie in, rather than determining a single price.

The idea that we build upon is that of tgeod-deal bound. This idea is due to Cochrane and
Saa Requejo (2000) and is based on the Sharpe Ratio, which is the excess return on an investment
per unit of risk. Their idea is to bound the Sharpe Ratios of all possible assets in the market
and thus exclude Sharpe Ratios which are considered to be too large. The method of applying
the good-deal bound gives a set of risk-neutral martingale measures which can be used to price
options. This results in anpper and lower good-deal pricing bourmh the prices of an option.

The idea was streamlined and extended to models with jumpsik Bnd Slinko (2006), and it is
their approach that we follow in this paper.

The good-deal pricing bounds can be used by a life insurance company in the pricing of ma-
turity guarantees in various ways. First, since ultimately a single price must be chosen so that an
appropriate premium can be charged for the insurance contract, the good-deal pricing bounds can
act as a plausibility check on the chosen single price. In this case, the life insurance company can
select the bound on the Sharpe Ratio in accordance with their own risk preferences. Second, if we
examine the change in the pricing bounds as the bound on the Sharpe Ratio changes, we see the
sensitivity of the price of the maturity guarantee to changes in the market’s price of risk. Third, the
upper pricing bound could itself be used as the single price for the maturity guarantee.

The aim of this paper is to apply the good-deal bound idea to the pricing of derivatives in
a regime-switching diffusion market. The paper is structured as follows. Section 2 details the
regime-switching market model. In Section 3 we identify the set of equivalent martingale measures
via the set of Girsanov kernel processes. In Section 4 the Sharpe Ratio of an arbitrary asset in the
market is defined and we state the extended Hansen-Jagannathan bound. The definitions of the
upper and lower good-deal bounds on the price of a derivative are in Section 5. The stochastic
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control approach that we use to find them is outlined in Se@ighnumerical example illustrating
the upper and lower good-deal pricing bounds on a 10-year maturity guarantee (i.e. a 10-year
European put option) is given in Section 7.

2. MARKET MODEL

We consider a regime-switching market model in which there is one traded asset and a risk-free
asset.

Description of the market model

We consider a continuous-time financial market model on a complete probability §pageP)
where all investment takes place over a finite time horigofi’], for a fixedT' € (0,00). The
probability space carries both a 1-dimensional standard Brownian midtiand a Markov chain
[0S

The information available to the investors in the market at tirisethe history of the Markov
chain and Brownian motion up to and including timeMathematically, this is represented by the
filtration

Fi = of{(a(s),W(s)),s € [0,t]} VN(P), Vtel0,T],

where N (P) denotes the collection of alt-null events in the probability spad€, 7, P). We
assume that = Fr.

The market is subject to regime-switching, as modelled by the continuous-time Markov chain
a which takes values in a finite state spdce {1,..., D}, for some integeD > 2. We assume
that the Markov chain starts in a fixed state= I, so thatw(0) = iy, a.s. The Markov chain has
a generatof7, which is aD x D matrixG = (gl-j)fj:1 with the propertiegy;; > 0, for all ¢ # j
andg; = — Z#i gi;- To avoid states where there are no transitions into or out of, we assume that
g < 0 for each state.

Associated with each pair of distinct statgs;) in the state space of the Markov chain is a
point process, or counting process,

Ny(t):= ) xla(s-) =i xla(s) = 4], vt €[0,T],

0<s<t

wherey denotes the zero-one indicator function. Define the intensity process
Nij(t) = gij x [a(t-) = 1]

If we compensatéV;;(t) by fot Aij(s)ds, then the resulting process

M;;(t) := Ny;(t) —/O Aij(s)ds

is a martingale (see Rogers and Williams (2006, Lemma I1V.21.12)). We refer to the set of martin-
gales{M,;;i,j € I, j # i} astheP-martingales ofv.
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For simplicity, we consider a financial market that is builbopne traded asset, which we

call the risky asset, and a risk-free asset. The risk-free rate of return in the market is denoted by
the scalar stochastic procesand the risk-free asset’s price proceis= {Sy(t),t € [0,7]} is
governed by

dSo(t)

So(t)
The mean rate of return of the risky asset is denoted by the scalar stochastic precesshe
volatility process of the risky asset is denoted by the scalar stochastic proCEss price process
S ={S(t),t € [0,7]} of the risky asset is then given by

dS(t)

=0 p(t)dt + o(t)dW (t), vt e [0,7], (2)

=r(t)dt, Vte[0,T], So(0)=1. 1)

with the initial valueS(0) being a fixed, strictly positive constanti

We assume that the market parameterg and o are sufficiently regular to allow for the
existence of a unique strong solution to (1) and (2). Furthermore, we assume that the volatility
processr of the risky asset is non-zero.

3. MARTINGALE MEASURES

In the regime-switching market model, while there is no arbitrage, the market is incomplete. This
means that while equivalent martingale measures (“EMMs”) exist, there is no unique one and
hence we obtain a range of prices, called the no-arbitrage bounds, rather than a unique price for
each derivative. The good-deal bound approach is a means of narrowing the no-arbitrage bounds,
which are too wide to be useful in practice. The essential idea is to exclude those EMMs which
imply a Sharpe Ratio that is too high. However, rather than dealing directly with the EMMs, we
use instead the Girsanov kernel processes which generate EMMs.

3.1. The martingale condition

Given a Girsanov kernel proce§s, 1), we can generate a corresponding meagui®y defining
the likelihood procesé as the process with dynamics

dL(t) b D
L)~ MOdW(n) + SN T nyt)dM(t), e (0,7,
s
and then construct the meas@édy
dQ
P L(t), onF,.

Let Q be the measure generated by the Girsanov kernel prokegs Consider an arbitrary asset
in the market, with price proced$ = {I1(¢);¢ € [0,7}. Note that this asset is not restricted to
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the traded asset or the risk-free asset, but it could be anyatiee or self-financing strategy based
on them and the Markov chain ThelP-dynamics of the asset’s price procékare of the form

%(_t)) = W ()dt + o (AW (1) + D Y v (H)dMs(1). ©)

i=1 j=I,
J#i
The processeg!!, o and(y{})j# are suitably integrable and measurable with the condition, in
order to avoid negative asset prices, tlv@é@t) > —1 for eachj # i.
Applying a Girsanov theorem, we obtain the price dynanhiasf the arbitrarily chosen asset
under the measurg:

A )+ 000" + X A0 000 |
() dW=(: +ZZ% DAM (1)

in which W@ is aQ-Brownian motion and\/[fj2 is aQQ-martingale of the Markov chain, for each
j#i.

Proposition 3.1 Martingale condition.The measuré) generated by the Girsanov kernel process
(h,m) is an equivalent martingale measure if and only if

ni;(t) > =1, Vj#1,

and for any asset in the market whose price prodésmsP-dynamics given by (3), we have

D D
r(t) = u(8) + R0 () + D> Oy (8) Ni(1), Ve [0,T]. (4)
i=1 j=1,
i
We refer to a Girsanov kernel proce§sn), withn = {n;;;i¢,5 € 1,5 # i}, for which the
generated measu€gis a martingale measure as aimissibleGirsanov kernel process.

Remark 3.1 From (4) we have the following economic interpretation of an admissible Girsanov
kernel processh,n): the process-# is the market price of diffusion risk andn;; is the market
price of regime change risk, for a jump in the Markov chain from stdtestate; (i.e. a change
from market regime to market regimeg).

Suppose we are given a Girsanov kernel pro¢ess) for which the generated measugeis an
equivalent martingale measure. The price dynamics ufiddrthe traded asset are as in (2). By
Proposition 3.1, we must have that

r(t) = p(t) + h(t)o(t), Vte[0,T].

This means that the market price of diffusion risk is determined by the price dynamics of the
traded asset.
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4. THE SHARPE RATIO AND GOOD-DEAL BOUND

We define a Sharpe Ratio process for an arbitrarily chosen assetPvdgimamics as in (3).
Broadly, the Sharpe Ratio is the excess return above the risk-free rate of the asset per unit of
risk. We make this definition precise in our model. Definehatility process for the asset as the
process which satisfies

D D
) = 0" @01+ DD 1 Ay (8).
i=1 j=1,
i
As 1! is the local mean rate of return of the asset under the meRswre define th&Sharpe Ratio
process S R) for the arbitrarily-chosen asset as

II
po(t) —r(t)
t) = ————=. 5

(SR)(1) e (5)
The Sharpe Ratio process depends on the chosen asset’s price process. However, we seek a
bound that applies to all assets’ Sharpe Ratio processes. To do this, we use the extended Hansen-
Jagannathan inequality, which is derived irdBj and Slinko (2006) and is an extended version of
the inequality introduced by Hansen and Jagannathan (1991).

Lemma 4.1 (An extended Hansen-Jagannathan Boundfor every admissible Girsanov kernel
process(h,n) and for any asset in the market whose price prodédsasP-dynamics given by
(3) and, consequently, whose Sharpe Ratio pro¢€sy is given by (5), the following inequality
holds:

D D
((SRYOP < [ROF + D> Img(OF Xij (). (6)
S
Proof. The proof follows that of Byrk and Slinko (2006, Theorem A.1) and is therefore omitted.

]
The key idea is that, in order to restrict the set of equivaheattingale measures by way of

the Sharpe Ratio, we use the Hansen-Jagannathan bound. Rather than bounding the Sharpe Ratios

directly, we bound the right-hand side of (6) by a constant. We call the congjantiadeal bound.

Definition 4.1 A good-deal bound is a constaBt> sup,, 71|2(t)]%, a.s.

Remark 4.1 A chosen good-deal bourig8l bounds the Sharpe Ratio procéssR) of any asset in
the market as follows:

D D
(SRYBOP < B2+ DD Inis (1) A (1) < B. )
i=1 j=1,
i

In other words|(SR)(t)| < v/B. The economic interpretation is that, under the good-deal bound
approach,v/B and —/B are the highest and lowest achievable instantaneous Sharpe Ratio in the
market, respectively. However, in the regime-switching diffusion market, we see from (7) that the
good-deal bound is really a bound on the pricen;; of market price of regime change risk, since
the price—h of diffusion risk is determined by the traded asset.
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5. THE GENERAL PROBLEM

We consider the valuation of a general contingent cldif the form
Z = ®(5(T), a(T)),

for a deterministic, measurable functidn We consider the problem of finding the upper and
lower good-deal bounds on the range of possible prices of the contingent£laim

Definition 5.1 Suppose we are given a good-deal bounh@nd a positive constant <« 1. The
upper good-deal price proceBsPPe' for the boundB is the optimal value process for the control
problem

sup 9 (eI R(S(1), (1) ' 7). ®)
(hsm)

where the predictable process@sn) are subject to the constraints

h(t) = —o =1 (t) (u(t) —r(t)), (9)

ni;(t) > =1+, fori,j=1,...,D, j+#1i, (20)
and
D D
P+ D> Iy (07 A (1) < B, (11)
=3
forall ¢ € [0, 7.

Definition 5.2 Thelower good-deal price proce$g®"®' is defined as in Definition 5.1 except that
“sup”in (8) is replaced by “inf”.

Remark 5.1 The risk-neutral valuation formula in (8) implies that the local rate of return of the
price process corresponding to the contingent cladm= ®(S(7), «(7T")) equals the risk-free rate

r under the measur@®. The equality constraint (9) ensures thiats consistent with the market
price of diffusion risk. Together with the constraint (10), these ensure that the méagereerated

by (h,n) is an equivalent martingale measure, as in Proposition 3.1.

Remark 5.2 The only unknown in the constraints (9)-(11) is the market price of regime change
risk —n;;(t). If we obtain wide good-deal pricing bounds for a derivative then this tells us that
the choice of the market price of regime change fisk; (¢) has a large impact on the derivative’s
price. Thus wide good-deal pricing bounds are a signal that we should explore additional ways of
further restricting the possible values of the market price of regime change-fiskt). This point

is also made in Cochrane and &&equejo (2000).

The goal is to calculate the upper and lower good-deal price processes and we do this using a
stochastic control approach.
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6. STOCHASTIC CONTROL APPROACH

To ensure that the Markovian structure is preserved under the martingale m@asweereed the
condition that the maximum in (8) is taken over Girsanov kernel procéssgg of the form

h(t> - h(tv S(t)a a(t—)) and Th‘j(t) = nij(tﬂ S(t>7 Oé(t_)), Vj 7é i. (12)

Under this condition, the optimal expected value in (8) can be writtdn“&&"(¢, S(t), «a(t-))
where the deterministic mappidg"*e": [0,7] x R, x I — R, is known as theptimal value
function. From general dynamic programming theory (for example, s&& BJ009, Chapter 19)),
the optimal value function satisfies the following Hamilton-Jacobi-Bellman equation

(;t/ + sup {A(h" V} rV =0 (13)

V(T,z,i) = ®(z,1),

where the supremum in (13) is subject to the constraints (9) - (11). An applicatidrisofdtmula
(for example, see Protter (2005, Theorem V.18, page 278)) shows that the infinitesimal operator
Al s given by

2

1
A(hﬂ?)‘/(t’x,i) = r(taxvl)xa_v(t T Z) + _02(t Z Z)x2a_v(t’m’l)

ox 7" 2 B Or2
D
. . (14)
+ 3 gi(1+ 0y (t,2)) (V(E, 2, 5) — V(t,2,9))
Jj=1,
J#i

forall (¢t,z,i) € [0,T] x Ry x I.

Definition 6.1 Given a good-deal boun® and a positive constant < 1, theupper good-deal
functionfor the boundB is the solution to the following boundary value problem

aa—‘t/(t, x,1) + sup {A(h"’)V(t, x,i)} —r(t,z,))V(t,z,i) =0 (15)
(h.m)

V(T,x,i) = ®(x,1),

whereA"" is given by (14) and the supremum is taken over all functiang) of the form (12)
and satisfying

h(t,z,i) = —o Y (t,2,7) (u(t,z, i) —r(t, 2,4)), (16)
ni;(t, ) > —1+¢, forj=1,....D, j#i, a7
and
D
At 2, D)+ giglmis (8, 2)]* < B, (18)
i

forall (¢,z,7) € [0,T] x Ry x 1.
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Definition 6.2 Thelower good-deal functiors the solution to (15) but with the supremum replaced
by an infimum.

Rather than attempting to solve the partial integro-differential equation of (15) directly, we reduce
it to two deterministic problems which we solve for each fixed trifgler, i) € [0,7] x R, X

1. Moreover, ash is completely determined by (16), we need to solve only for the optimal
Therefore, giverk satisfying (16), we do the following:

1. Solve the static optimization problem of finding the optimabhich attains the supremum
of AWMV (¢, z,7) subject to the constraints (17) and (18).

2. Using the optimak found above, numerically find the solutidhto

N Ay v =g

ot
V(T,x,1) = ®(x,1).

Examining (14), we see that the static optimization problem reduces to a problem of maximizing a
linear function ofy;; (¢, z) (that is, maximizing the last term on the right-hand side of (14)), subject
to a linear inequality constraint (17) and a quadratic inequality constraint (18). This can be solved
using the Kuhn-Tucker method; a further discussion of the solution can be found in Donnelly
(2011).

7. NUMERICAL EXAMPLE

Having applied the good-deal bound idea in a regime-switching diffusion market, we examine their
usefulness by calculating the upper and lower good-deal pricing boundslfeyear European

put option in a market where there are two regimes. This corresponds to calculating the pricing
bounds on a 10-year maturity guarantee.

7.1. Market model

Suppose there are only two market regimes and time is measured in years. Assume the values of
the market parameters given in Table 1 and take the generator of the Markov chain to be

(911 912) (—0.15 0.15)

G = = ,

921 G922 2 -2

These figures are based loosely on the estimated parameters found in Hardy (2003, page 226) for a
2-state regime-switching model fitted to monthly return data from 1956 to 2001 from the FTSE-AIl
Share Index, which covers over 98% of the U.K. stockmarket weighted by market capitalization.
From the table, we see that regime 1 is a low volatility regime and regime 2 a high volatility
regime. From the generat6f, we see that the average time spent in regime 1 is nearly 7 years

and the average time spent in regime 2 is 6 months. Thus the market is most of the time in the low
volatility regime and only occasionally in the high volatility regime.
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Regimei | r(i) | p(i) | o(i)
1 |0.06] 0.15/0.12
2 | 0.06]-022|0.26

Table 1: Market parameters for the numerical example

7.2. Results

We fix the good-deal boun = 0.3, which corresponds to the instantaneous Sharpe Ratio in the
market being confined to the ran@e0.55, 0.55], and, considering all resulting bounds as open
bounds, set = 0. The upper and lower pricing bounds corresponding te 0.3 were calculated

for a range of initial stock prices. The results are plotted as solid lines in Figure 1. The absolute
prices are shown in Figure 1(a), with the dashed line corresponding to the price derived from the
minimal martingale measure (the minimal martingale measure is determined by setting the market
price of regime change riskn;;(t) to be zero). Figure 1(b) shows the ratio of the bounds to the
minimal martingale measure price. The latter figure demonstrates the impact of any assumption
on the market price of the regime change risk; it shows the large variation of the pricing bounds,
which allow for a non-zero price being assigned to the market price of regime change risk, from
the minimal measure price, which assigns zero price to the market price of regime change risk.

0.8 1
061 1
0.4r 1

0.2r

Option price
Ratio
=

. 0 .
50 100 150 50 100 150
Initial stock price Initial stock price

(a) Absolute prices. (b) Relative prices.

Figure 1: The upper and lower good-deal pricing bounds for a 10-year European put option plotted
against the initial stock price for a fixed good-deal bound= 0.3. The strike pricek’ = 100

and the initial market regime is regime 1. The upper solid line on each plot corresponds to the
upper good-deal pricing bound, the lower solid line corresponds to the lower good-deal pricing

bound and the dashed line corresponds to the minimal martingale measure price. The left plot
shows the absolute prices and the right plot shows the bounds relative to the minimal martingale
measure price. For example, the upper solid line in the right plot is obtained by dividing the upper

good-deal bound price by the minimal martingale measure price.

Next we examine exactly how the pricing bounds change as we vary the good-deal®ound
We fix the initial stock price5(0) = 100 ande = 0 (again, the interpretation of the resulting pricing
bounds is that they are open bounds), and calculate the pricing bounds for various choices of the
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good-deal bound. These results are shown in Figure 2, with Figure 2(a) and 2(b) corresponding

to the market starting in regime 1 and 2, respectively. Again, the minimal martingale measure
prices are the dashed lines in the middle of each plot. As the good-deal bbigndcreased, the
permitted range of the instantaneous Sharpe Ratio in the market increases, and thus the pricing
bounds increase. This demonstrates the sensitivity of the pricing bounds to the choice of the good-
deal boundB. Notice that the lower bound in Figure 2(a) is constantfoe> 0.4 because the
inequality constraint (17) is binding at these values. Thusgor 0.4 and starting in regime 1,

the lower pricing bound is constant since it is calculated with a constant market price of regime
change risk-7;;(t,z) =1 —e=1.

i
o
=
o

Option price
Option price

o k. N W & O o N ® ©
T T T T T T T T

. . . . . . . . . . . . . . . .
0.4 0.6 0.8 1 1.2 14 16 1.8 2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2
Good-deal bound Good-deal bound

(a) Starting in regime 1. (b) Starting in regime 2.

Figure 2: The upper and lower good-deal pricing bounds fo@-gear European put option with
strike priceK = 100 plotted against the good-deal bound. The initial stock pricg(i§ = 100.

The left plot assumes that the market is in regime 1 at time 0 and the right plot assumes that the
market is in regime 2 at time 0. On both plots, the minimal martingale measure price is the dashed
line.
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Abstract

Feynman—Kac formulas establish a fundamental link between conditioredttions and
deterministic partial integro differential equations (PIDES). In the cormikmption pricing in
Lévy models, this relation has recently led to the development of various nateéthods
to calculate prices via solving PIDEs. We give the precise link betweenircedaditional
expectations and weak solutions of the corresponding PIDEs in Solsitihedeckii spaces.
We apply the main result to price barrier options in (time-inhomogenea&s) models and
illustrate this by numerical results using a wavelet-Galerkin method.

We look at the characterization of option prices via solutions of PIDEs freorsides. In
view of efficient numerical solutions, we concentrate on the formulatiomesbplic equations
in Sobolev—Slobodeckii spaces. Interpreting these equations asopdifiedential equations
provides an appropriate access, when starting fr@wyLmodels. A classification of évy
processes according to their Fourier transforms is obtained.

The article provides a short description of parts of the results obtained in(&04.0).

1. INTRODUCTION

The Feynman—Kac formula provides a link between conditiexpectations and solutions of
PDEs. In the context of évy processes, conditional expectations are linked tdisokiof Partial
Integro Differential Equations (PIDES). In the last yednis has lead to a remarkable development
of algorithms to price options inévy models by solving PIDEs based on finite elements. In Mat-
ache et al. (2004), Matache et al. (2005b), Matache et ab5&)) wavelet-Galerkin methods for
pricing European and American options have been developed.methods have been extended
to multivariate models, see Reich et al. (2010), Winter (2Q0® the references therein. Also

29
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standard finite element methods are efficiently used foimgibasket options in high dimensional
models using dimension reduction techniques, see Hepp@@#0).

To study weak solutions of the PIDEs related vl processes in terms of properties of the
processes, in Glau (2010) and Glau (2011), the Sobolev irsdé&fined and discussed in detail.
While PIDEs are classified via their operators, due to tixiKhintchine formula, Evy processes
are completely described by their characteristic fungtioviarious classes ofédvy processes, as
e.g. CGMY processes, are actually defined by specifying ttteracteristic function. On the
other side the theory of weak solutions of partial differ@néquations relies on properties of the
bilinear form which is associated with the operator of thaeaopn. In the classical result about
existence and uniqueness of weak solutions of evolutioblpnas, both properties are related to
the so-called @rding and continuity inequalities for the bilinear formhél'same relation is true
for elliptic equations.

Within the framework of a time-inhomogeneouéJy model for stock prices in Glau (2010)
European, barrier, and lookback options are evaluated.

A Feynman—Kac representation for weak solutions of lineagabpolic equations in Sobolev—
Slobodeckii spaces is deduced. To adapt the result to thiegof European options, we work with
exponentially weighted Sobolev—Slobodeckii spaces. dieioto characterize prices of barrier op-
tions by solutions of parabolic boundary value problemsusea method known asé&palisation
du domaine*.

The result is applied to price barrier and lookback optionmerically for a CGMY-model
using a wavelet-Galerkin method.

2. THE MODEL AND BASIC NOTATION

We choose an exponential time-inhomogeneo@syLmodel to describe stock prices. Time-
inhomogeneous évy processes have proved to be useful for modeling finadeiaatives, es-
pecially in the case of interest rate derivatives, see fang{e Eberlein et al. (2005), Eberlein
andOzkan (2005), Eberlein and Kluge (2006), Eberlein and K(@06) and Eberlein and Liinev
(2007).

In Glau (2010), a multivariate stock price model is consder For the sake of brevity, we
restrict ourselves in this article to the univariate case.

Let the stock prices = (.S;)o<:<7 be given as

S, = Spelt, 0<t<T (1)

with a time-inhomogeneousdvy process. = (L;)o<:<r WhereL, = 0 and the local characteris-
tics with respect to the truncation functibrare(b;, o, F}).cjo,77. Furthermore we model a riskless
savings account® via

SO—clrsds o<t <T 2)

with deterministic interest rate= (r;)o<;<7. We additionally assume

/ / Fy(dz)ds < o0, 3
{a:>1}
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which is equivalent t&Z'S; < oo for ¢ € [0, 7.
We model under a risk-neutral measure. In view of assumpBrthis is the case iff the
following drift condition is given
1 2

thTt—gat—A(em—l—h<w))ﬂ(dw), 0<t<T. (4)

The infinitesimal generat@ of the time-inhomogeneouslty procesd. is given by
Gif(x) = Tf"(@)+bf (@) (5)
+ [ () = @) = b @) Py

for f € CZ(R).
We define the operatod = —G . It turns out thatd is a pseudo differential operator (PDO)

with symbol A i.e.

L / eI A(€)a(€) de

21 JRr
for all Schwartz-functions. The symbol of the proceds satisfies

Au(z) =

Ae) = 2 + ibk - / e 1 ih(y)€) Fu(dy) = —0,(—¢) ©)

with
I eisLt e fo (=€) ds

for0<t<T.

3. PRELIMINARIES

Let us consider a European option with payoff

9(51) = g(L)

at maturityT” wherex — ¢ g(z) is in L*(R) i.e. g € L7(R). For example, for a call option the
payoffisg(x) := Sy(e* —K/Sp)* and we have e’ € L?(R) for everyn < —1.
Moreover we study barrier options with payoff

9(Lr)lir<rsy

at maturity?’, whereD is an open set ifR andry denotes the first exit time of the procdsérom
the closureD of D, B
5 =inf{s > 0|Ls ¢ D }.

We characterize fair prices of those options by weak satstaf PIDESs in Sobolev—Slobodeckii
spaces.
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A function u belongs to the Sobolev—Slobodeckii spd€¢&R) for a certains € R iff u €

L} .(R) andu has a Fourier transfordf (u) in the weak sense and

loc

JasigpriFu©P i < .

Furthermore we define the weighted Sobolev—Slobodeckdesyd; (R) for s > 0 andn € R as
the spaces of functions € L?(R), wherez — u(z) ¢”" belongs toH*(R). Moreover fors € R
the dual space off;(RR) is isomorphic toH, *(R).

We consider the following additional assumptions whichevetroduced in Glau (2010), p.
154. Leta € [1,2] andn € R. By U_, we denote the strig/_,, := R — isgn(n)[0, |n|) in the
complex plane for, # 0, andU, := R.

T
/ / e ™ Fy(dr)ds < o0
0 {]z|>1}

(A2) There exists a constafif > 0 with

(A1) Assume

‘At(z)‘ < Cl(l + \z|)a
forall z € U_, and forallt € [0, T].

(A3) There exist constants, > 0 andC'3 > 0, such that for a certai < g < «
R(Ai(2) > Co(1+[2))" = C5(1+|2])”
forall z € U_, and for allt € [0,T].

(A4) The mapping — R(A;(¢—in)) is continuous and piecewise continuously differentiabli wit
0R(A(E—im))| < Ca(1+¢])"
for everyt € (0,7'), wheret — A,(- —in) is differentiable.

The symbol of a Evy process does not depend on time and hence condition $Adglevant
for Lévy processes. Conditions (Al1)—(A3) are for example satigtie CGMY-processes with
parameters’, G, M > 0andY € [1,2) witha =Y andp € (-G, M).

For Lévy processes with Brownian part, conditions (A2) and (A3) ba verified fora = 2
and thosey € R that satisfy assumption (Al). In particular the Brownian imot(with drift)
itself satisfies the assumptions for every R. See Glau (2011) and Glau (2010) for a detailed
discussion of examples.

Condition (A1) about the existence of exponential momentsgisivalent toF e "1t < oo
for every0 < ¢t < T andn’ with || < |n| andsgn(n’) = sgn(n). SymbolsA that satisfy this

assumption have a continuous extensiofytq that is analytic in the interiot/ _,, of U_,,.
Under assumptions (A2) and (A3) the bilinear fosirgiven by

a(t; p, ) = (AtSO) ()
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for all continuous functionsy, ) with compact support, is continuous and satisfiesaaditig
inequality with respect to the norfn ||, /2, of the Hilbert spacé{,‘;‘/z(R). This means the bilinear
form a has a unique extension [, 7] x H:/*(R) x H:/*(R) which is continuous in the sense

|a(t;u,v)‘ < Cl”“HH;‘”HUHH;/? (u, v E HS“/Q(IR))
for everyt € [0, T] with a constant; > 0 and satisfies the &ding inequality
R(a(t;u,u)) > C2||u||i1;"/2 — 03Hu||2L% (u, v e Hf;‘ﬂ(R))

with constantsg, > 0 andcz > 0. See (Glau 2010, Theorem 11.7 and 11.9).

Let us emphasize that both conditions, the continuity aed3rding condition, are required
uniformly in time.

In this case the PIDEs of the form

u(0) =g,

with f in the dual space of the Sobolev—-Slobodeckii spH§é2(R) and with initial condition
g € L2(R) possess a unique solutiane W' (0, T Hﬁ‘/g(R);L%(R)). We then have that €
L2(0,T; Hy*(R)) with a derivative: with respect to time in the weak sense that satisfies
L2(0,T; Hy, " (R)).

The spaceV*(0,T; Hﬁ‘/Q(]R),LEI(R)) consists of those functions ¢ L?(0,T; Hy'*(R))
that have a derivative with respect to timen a distributional sense that belongs to the space
L?(0,T; (H;“/Q(R))*). For a Hilbert spacéi, the spacd.?(0,T; H) denotes the space of func-
tionsu : [0, 7] — H, that are weakly measurable and that satfﬁy]u(t)nfq dt < oo. For the defi-

nition of weak measurability and for a detailed introduntd the spacél’* (0, T'; HYP(R), LX(R))
that relies on the Bochner integral, we refer to the book of \WI{#087).

4. SOBOLEV INDEX OF A LEVY PROCESS

Let us briefly discuss the definition of a Sobolev index féri, processes. The index is discussed
in detail in Glau (2011).

Definition 4.1 Let.4 be a PDO with symbal. If there exists a real number € (0, 2] such that
forall ¢ € R

A < &y (1+ [¢]2)*/? (continuity condition), and
R(AE)) > Cole]*—Cs(1+¢)**  (Garding condition)
with 0 < s < a and constantg’;, C5 > 0 andC5 > 0, then we calkx the Sobolev indexof the

symbolA. If L is a Lévy process with symbdl with Sobolev index, we calla the Sobolev index
of the Lévy procesq..
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Not every Leévy process has a Sobolev index, but for a wide rangeéof/lprocesses there is a
Sobolev index, and if the index is smaller than 2, it is eqoahe Blumenthal-Getoor index. The
Sobolev index exists e.g. for CGMY and generalized hypech@iH) processes and forely
processes with advy measure which has a Lebesgue density.

The following relationship to parabolic equations is dedv

Theorem 4.1 Let. A be a PDO whose symbdl has a Sobolev index for somex > 0. Then the
parabolic equation

Ou+ Au=f
u(0) =g,

for f € L*(0,T; H-*/*(R)) and initial conditiong € L*(R) has a unique weak solutianin the
spaceV!(0,T; H*/*(R), L*(R)).

(7)

5. PIDE TO PRICE EUROPEAN OPTIONS

Let II{ denote the fair price of a European option with payg(ff.;-) at maturity7. Using the
Markov property of the procedswe derive

1Y = E(g(Lr) e ™% |F) = B(g(Lr)e 5 =% |L,) = u(T —t,L,).

The following theorem is deduced in (Glau 2010, Theorem \$2¢ also (Glau 2010, Satz 11.13
and Theorem I1V.9).

Theorem 5.1 Let us assume (A1)—(A4) for anc [1,2] and ann € R with g € L2 (R). The fair
price I1{ of the option at time € [0, T is given by

w(T—t, L) = E(g(Lr)e b 7% |L,)

where the function. € W' (0, T; H*(R): L%(R)) is the unique solution of the parabolic equa-
tion
@u + .Atu + ru = 0
u(0)=g.

Furthermoreu € C*(0,T; H"(R)) for everym € IN and the following holds:
.7"( e u) (t) =g(- —in)e” Jo As(-—in) ds e~ S rsds . ®)

Equation (8) coincides with the so-called convolution fatenderived in Raible (2000), and in
Carr and Madan (1999) for the case of a call option.

To summarize: the prices of European options are given ma@f weak solutions of PIDEs.
The interpretation as pseudo differential equation cpoeds to the convolution method, where
the option price is written as a convolution and is represgmta Fourier transforms.
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6. PIDE TO PRICE BARRIER OPTIONS

We price barrier options with payoff
9(Lr)Lirarsy

wherers denotes the first exit time of the procesérom D.
We derive a stochastic representation of the parabolicteguef the form

u+ Ayu = f inD CR
u(0) =g,
u = 0in D°. The precise mathematical formulation of the equation leea®d by introducing

the (weighted) Sobolev—-Slobodeckii spa%%/2(D) which is the subspace of those functians

H??(R) that are vanishing ob°, the complement ab.
We obtain the Feynman—Kac formula using a method calledapisation du domaine’, that is
outlined in (Glau 2010, Kapitel 111), see also (Glau 2010edhem V.4 and Theorem 1V.9).

Theorem 6.1 Let the assumptions (Al)—(A4) be satisfied forcar [1,2] and ann € R with
g € L(R). The fair price of the barrier option at timec [0, T is given byil, = u(T—t, L)1,
where .
u(T—t, L) = E(Q(LT>]1{T<T@} e i rads | F2)

with 7, 5 = inf{s > t[L, ¢ D}. The functionu is the unique weak solution in the spacec
w(0,T; Hy*(D); L3(D)) of

ou+ Ayu +ru =0

u(0) =g.

For a digital up-and-out barrier option with barrir = S, e® for example, the initial function is
chosen ag(z) = 1(_, ) (x). The price of the digital barrier option is

H;ﬁgi,B _ udigi,B(T_t’ Lt)]l{t<7(7

oo,B)} ’

whereudie5 is the unique solutiom € Wl(O,T;f[,?/Q(—oo,B);Lg(—qu)) of the parabolic
boundary value problem

ou+ Au+ru=0

9
u(0) = L(—o0,B) » ©)

compare (Glau 2010, Korollar V.5).

7. PRICING LOOKBACK OPTIONS VIA PIDES

Let the proces$ be a Lévy process and let the assumptions (A1)—(A4) be satisfreahfo < [1, 2]
and a certaim > 0. In this case, the price of the digital barrier option at tilie 0 corresponds to



36 K. Glau and E. Eberlein

the distribution function"" of the supremuniL; = SUpg<;<r L, 1.€.
F'r(z) = P(Ly < z) = u¥(T, —z) .

The fair price
T +
Vo = Vo(So) = e & B sup S, K)

0<t<T
of the lookback option at time is then given by

(e o]

Vo(So) = Spe™ Jo 7o ds (/ (1 — YE0(T, —x)) e’dr+ (1 — K/SO)+> , (20)
k—log(So)

where the function:¥%' is the unique solution of the parabolic boundary value mob(9) for
B = 0. This is the basis for deriving a PIDE to price the lookbackapin (Glau 2010, Kapitel
VI.2.2). More precisely, a PIDE for the integrand in equat{@0) is derived and solved numeri-
cally using a wavelet-Galerkin scheme, see (Glau 2010, p-1B9).

8. NUMERICAL EVALUATION

For the numerical evaluation we choose &y model with a CGMY process as driving process.
We calculate the option prices using a wavelet-Galerkirnwet The main part of the method was
developed by Schwab et al., see e.g. von Petersdorff ande®c{®003), Matache et al. (2004),

Matache et al. (2005b). They also provided a large part ofdldle. For a description of the specific
algorithm see (Glau 2010, Kapitel VI.1).

option price

0 1000
initial stock price S0

Figure 1:Price of a digital barrier option with Barrier 4600 and maturity 1 year in a CGMY model.
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Figure 2:The figure shows the price of the lookback option and the payoff fun¢figr- )™ at maturity
1 year with strikel300.
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Abstract

This paper extends the VG model (Semeraro 2008) by relaxing the constraints on the Gamma
subordinator parameters, leading to marginal characteristic functions of the asset log-returns
which become a function of the whole parameter set. Hence, the calibration of this generalized
model does not require anymore any correlation fit, which might turn out to be a significant
advantage in practice since the risk-neutral calibration of the correlation requires the existence
of a liquid market for multivariate derivatives which is nowadays pretty rare. Moreover, the
volatility of the log-returns depends on both the common and idiosyncratic subordinator set-
tings, and not only on the idiosyncratic one as under the original model, which makes the
generalized model more in line with the empirical evidence of the presence of both an idiosyn-
cratic and a common component in the business time.

1. INTRODUCTION

The use of a time-changed Brownian motion in finance was first proposed by Clark to model cotton
future prices (Clark 1973). His pioneer work was motivated by the fact that the information flow
directly affects the evolution of the price through time. More precisely, when the amount of avail-
able information is low, the trading is slow and the price process evolves slowly and the other way
around. Since then the concept of business clock has been widely considered in the financial liter-
ature, first to model univariate stock price processes (Ané and Geman (2000), Carr et al. (2003),
Madan and Senata (1990)), before being extended to the multivariate setting. Madan and Senata
(1990) first proposed to subordinate a multivariate Brownian motion by an univariate Gamma time
change. However, the uniqueness of the business clock makes impossible to capture independency
of the stock log-returns. Hence, Semeraro (2008) proposed the so-called VG model which rests
on a multivariate subordinator process composed of the weighted sum of two independent Gamma
processes: an idiosyncratic and a common component. Later, Luciano and Semeraro (2010) ex-
tended the VG model to other Lévy distributions by considering other subordinators. This class
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of multivariate models was motivated by the empirical work of Lo and Wang (2000) which gives
evidence for the presence of a significant common component in the trading volume and by the
study of Harris (1986) which shows that the distribution of the information flow is not identical
for all securities. In the original setting, Luciano and Semeraro imposed some restrictions on the
subordinator parameters such that the subordinator follows the same distribution as its two com-
ponents, leading to marginal log-return processes of a particular Lévy type. Under this restricted
setting, the marginal characteristic functions become independent of the common subordinator
setting which affects only the dependence structure of the asset log-returns. This might lead to
two undesired features in practice. First, the risk-neutral calibration of the common subordinator
parameters requires liquid multivariate derivative quotes which are often unavailable. Secondly,
the variance and therefore the volatility of the asset log-returns turn out to be independent of the
common subordinator setting. Since the volatility level is directly related to the trading activity, the
conditions imposed on the time change parameters imply that the trading activity does not depend
on the common component of the business clock, but only on the idiosyncratic one.

If the marginal class is not a desired feature, the model can be extended by relaxing the constraints
imposed on the subordinator parameters. The such obtained generalized VG model belongs to
the class of exponential Lévy model, although the particular underlying Lévy distribution is not
known anymore. We will show that the marginal characteristic functions and consequently also
the volatility of the asset log-returns then depend on both the idiosyncratic and common subordi-
nator settings and more specifically on the whole set of parameters. Hence the calibration of the
generalized VG model does not require the existence of actively traded multivariate derivatives
anymore.

2. THE oVG MODEL

Under the VG model, the N-dimensional stock price process satisfies:

Sél) exp((rfq1)t+1/;<l))

S SoY exp ((r— qu +wi)t + ¥ @) E[e(}(pm(l))] @)
(2) [ r— o+ wo)t + Y, So " exp((r=a)i+Y,
S A T N e =G0
. : :
S S exp ((7“ —qn +wn)t+ Yt(N)> S5 exp((r—am)t+¥ ™)

SETC)

where Séi) is the spot price of the ¢th underlying, r is the risk-free interest rate, ¢; denotes the
dividend yield of the ith stock and w = (wy,ws,...,wy)? is the mean correcting vector making
the model risk-neutral. The process Y = {Y;,¢ > 0} is a N-dimensional time-changed Brownian
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motion:
Y, 0.6y + Ulwc(;()m
}/;(2) 62G§2) + O'2W<2()2>
Y, = = a : (1)
.N :
}/t( ) QNGgN) + UNWé](V]\),)
where W® §=1,... N are independent standard Brownian motions and where the subordinators

Ggl) ’s are the weighted sum of two Gamma processes, one idiosyncratic and one common process:

ar) X+ anz,
2 2
G = G%) = Xt()%.—OQZt )
av XM+ anz,

where o; > 0, Z; ~ Gamma(cy,cs),c1,co > 0 and X{i) ~ Gamma(a;, b;), a;,b; > 0 are
independent random variables and are independent on the W (#)s,

e The Gamma process

The characteristic function of the Gamma distribution Gamma(a, b) with parameters a > 0,
b > 0 1is given by:

gbGamma(u; a, b) - (1 - 1%) .
The Gamma process X = {X;,t > 0} is a Lévy process such that X follows a Gamma(at, )
distribution. The Gamma distribution satisfies the following scaling property: if X ~
Gamma(a,b) then ¢cX ~ Gamma(a,b/c),c > 0. Moreover, the sum of independent

Gamma random variables with the same parameter b is also Gamma distributed: if X; ~
N

Gamma(a;,b), i = 1,..., N are N independent random variables then »_ X; ~ Gamma
i=1

N
(> a;,b). The first four moments of the Gamma distribution are given in Table 1.
i=1

Gamma(a, b)
mean 7
variance e
skewness \/%
Kkurtosis 3(1+2)

Table 1: Characteristics of the Gamma distribution.
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e The Variance Gamma process

The characteristic function of the Variance Gamma distribution VG(o, v, §) with parameters
o >0,v>0and 6 € Ris given by:

UZO'QI/

;]_
ove(u;o,v,0) = (1—iu91/+ ) ", ueR.
The Variance Gamma process X = {X;,¢t > 0} is a Lévy process such that X, follows a
VG (1o, “,0t) distribution. The VG distribution satisfies the following scaling property: if

X ~ VG(o,v,0) then, for ¢ > 0, cX ~ VG(co,v,cf). The first four moments of the VG
distribution are given in Table 2.

VG(o,v,0)
mean 0
variance o? + vh?
skewness M
()’
kurtosis 3<1 +2v — %)

Table 2: Characteristics of the Variance Gamma distribution.

A VG(o,v,0) process can be seen as a Gamma time-changed Brownian motion with drift:

XtVG = 9Gt+OWGt

where G = {G;,t > 0} is a Gamma process with parameters a = b = ll/ and W
{W;,t > 0} is a standard Brownian motion.

3. The GENERALIZED VG MODEL

The characteristic function of the process Y; (see Equation (1)) is given by:

N N
1 1
QbY(ll7 t) = HQSXY') (uﬂ, + 1§afuf,t) gbZl ( E a; (Ulel +1§O'Z2’LL12) ,t) . (2)
i=1

=1

Indeed, we have

N
oy (u,t) = Efexp(iu'Y;)] = E |E | ][ exp(ivy,)|G,i =1, ... N” .

i=1
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G( LN Normal(6; Gt , 05 G ) are independent, we have

Hexp <i (uﬂi + iﬁafu?) (Xt(z) + aiZt>)

=1

Moreover, since QiGEi) + oW i
t

N

HE [exp(luZ )|G Z)}

=1

¢Y(u7 t) =K =E

Given the independence of the Xt(i)’s, t=1,...,N and Z,;, we finally obtain Equation (2).

The marginal characteristic functions are directly obtained from (2):

- 0; +izo7u? i 1 !
Oy (u,t) =E [exp(iu}/;(l))} (1 — w) (1 % (u9 + 1203u2)> :

b; C2
| (3)
From the marginal characteristic function (3), it is clear that each process Y} = {Yt(z), t>0}i=
1,..., NisaLévy process (although not necessarily VG) since the marginal characteristic function
can be rewritten as ¢y (u, t) = (¢y (u,1))".
The linear correlation between the processes Y(i) and Y(j ) is time independent:

Cov (Y 0y >>

\/ Var [Yt(i)] Var [Yt(‘j )}
where

3 c ‘ “

The parameter set of the generalized «VG model is {0;; 0;; ;a5 b;,i = 1,..., N; ¢y, co} lead-
ing to a number of parameters amounting to 5N 4 2. However, we can scale the parameter c; to 1
since multiplying ¢, by a constant c is equivalent to dividing the parameters «;’s by c. Moreover,

for the sake of coherence, we will impose that the business time Ggi) increases on average as the

pij = ; “)

real time ¢, i.e. we impose that £ [Gf)] = (% + ozig—;) = t which is equivalent to

a; 8]

“~=1—— 5
bz‘ @ Co ( )
Hence the number of independent parameters is reduced to 4AN+1: {0;; 0;; ;0,0 = 1,... , N;eq ).
We note that Equation (5) implies the following constraints on the model parameters
bi(l—aiﬁ>>0, i=1,...,N (6)
Ca

to ensure the positivity of the parameters a;’s. If we do not impose any other restrictions, the
marginal characteristic functions (3) depend on all the model parameters which makes impossible
the decoupling of the univariate implied volatility surface calibration and the correlation calibra-
tion. Indeed, once the calibration of the option surfaces is performed, there is no parameter left
to calibrate the dependence structure. Hence, we can either use only univariate derivatives in the
calibration procedure or take into account a penalty in the option surface calibration which mea-
sures the correlation goodness of fit. However, some additional conditions can be imposed to make
the marginal characteristic functions independent on the model parameter c¢;. This will lead to the
original VG model proposed by Semeraro (2008).
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4. THE ORIGINAL VG MODEL

The VG model proposed by Luciano and Semeraro (Luciano and Semeraro (2010), Semeraro
(2008)) is obtained by imposing the equality
Co

bj=—= Vi=1,...,N (7

Q;

such that the Gamma subordinator G¥ is Gamma distributed: Ggi) ~ Gammal(a; + ¢, 2).
The condition (5) then becomes a; = > — ¢; and the marginal characteristic functions become

independent on c;:
_c2y

i 1 v
¢Y(i)(U7 t) = (1 — 104_ (uQZ + I—O'I»QUZ)) .
Cy 2

The unitary time change associated to the ith underlying stock, G(*), is then Gamma(cy /a;, c2/ ;)
distributed and the ith asset log-return follows a VG(o;, ; /co, 0;) process. The number of free pa-
rameters amounts then to 3N + 1 ({0;; 04,0 = 1,..., N;¢1}).

Under the reduced setting, the linear correlation between the asset-log returns can be rewritten

as:
Qiejaiozj

P = —— p
JEr) ()

Cc1 X Cq. (8)

5. CALIBRATION PROCEDURE

For the calibration of the original VG model, we follow the same procedure as in Leoni and
Schoutens (2008) and Luciano and Semeraro (2010) since we can then dissociate the calibration
of the univariate option surfaces and the calibration of the correlations. On the other hand, the
generalized VG model can not be calibrated by following this methodology since the marginal
characteristic functions depend on the whole parameter set. Hence, we can either perform the cali-
bration of the option surfaces and the correlations simultaneously or calibrate the whole parameter
set on univariate derivatives only.

5.1. The decoupling calibration

The decoupling calibration procedure proposed by Leoni and Schoutens (2008) might be applied
for any multivariate model as long as the marginal characteristic functions are independent on at
least one model parameter since the methodology consists of dissociating the univariate option
surface calibration from the correlation calibration. Hence the calibration might be performed in
two successive steps:

1. calibration of the univariate option surfaces
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We first perform a simultaneous calibration of each option surface by using fast Fourier
transform techniques such as the Carr-Madan formula (Carr and Madan (1998)). For a par-
ticular choice of the common parameters p€ (i.e. the parameters which are included in more
than one marginal characteristic function), we calibrate the idiosyncratic parameters p' (i.e.
the parameters which only appear in one marginal characteristic function). We then repeat
the procedure for a wide range of the common parameters. The optimal marginal parameter
set p™ = {pc, pi} (i.e. the set of both the common and idiosyncratic parameters) is the
parameter set which leads to the best fit of all the univariate option surfaces.

For the calibration of the marginal distributions, we consider a straightforward multidimen-
sional extension of the widely used one dimensional root mean square error (RMSE) objec-
tive function by taking the mean of the marginal RMSE functionals:

M@ . N 2
5 (P - £
RMSE =N !
MRMSE =

ZN

i=1

M(,L) ) (9)

where N is the number of underlying stocks, M is the number of quoted options for
the ith stock and P and P denote the jth market and model option prices of the ith
stock, respectively. The multlvarlate weighted RMSE objective function, MRMSE allows
to calibrate separately each option surface. Indeed, we can minimize separately RMSE® =
RMSE® (pi|p®), where p! = {6;,0:, a;} denotes the idiosyncratic parameter set of the ith
underlying. Hence opting for the MRMSE objective function might turn out to significantly
reduce the calibration time, especially for a large number of underlyings. In the particular
case of the original VG model we consider, the MRMSE actually reduces to N univari-
ate VG calibrations since the marginal characteristic functions do not share any common
parameter p€.

2. calibration of the dependence structure

We fix the marginal parameters p™ to their optimal value according to the first step and
we calibrate the correlation parameters p9 (i.e. the parameters which do not influence any
marginal characteristic function, in the present case, p¢ = c;) on the market implied corre-
lations by minimizing a root mean squared objective function:

1 .
RMSE’ = || Z (pij — ,Oij)2 (10)
2 i

where p;; and p;; denote the market implied and the model correlations between the 7th and
Jth asset log-returns, respectively. The model correlation p;; is directly inferred by Equation

4).

5.2. The joint calibration

If no reliable estimate of the dependence structure can be inferred from liquid market quotes,
we can then calibrate the whole parameter set of the generalized model on the univariate option
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surfaces only by following the procedure described in the option surface calibration phase of the
decoupling calibration procedure. In other words, we can successively minimize MRMSE|c¢; =

N .
3 RMSE® (8;,04,1,b:]c1)

=7 and repeat the procedure for different values of the common parameter c; .

i=1

On the other hand, a joint calibration procedure of the univariate option surfaces and the corre-
lations is required when the marginal characteristic functions depend on the whole model parame-
ter set if the correlation matching is a desired feature. It requires an adequate specification of the
penalty function to take into account the correlation matching in the calibration procedure of the

option surfaces. We propose to minimize the following objective function:

N ; N
RMSE® L1 .
MRMSEJ = ) == + a’MRMSE", | 5o »_ (o — t)". (1D

where pj;, and p;;, denote the market implied and the model correlations between the jth and kth
log-returns, respectively and where MRMSE” is the optimal value of the multivariate root mean
square error obtained by fitting the option surfaces only. The scaling of the correlation goodness
of fit by this factor ensures that both terms of Equation (11) are of the same magnitude order. The
parameter o’ > 0 allows the user to specify the relative importance of the correlation matching; a
parameter o equal to O indicating that the correlation calibration is not a desired feature and that
the model is calibrated on the univariate option surfaces only.

6. CALIBRATION PERFORMANCE

The calibration of the original and generalized VG models is performed for a time period rang-
ing from the 2nd of June 2008 until the 30th of October 2009 with weekly quotes and therefore
including the recent credit crunch. We consider a basket composed of four major stocks included
in the S&P500 index, namely Apple, Exxon, Microsoft and Intl. Moreover, we infer the depen-
dence structure of the asset log-returns from the CBOE S&P 500 implied correlation index which
measures the expected average correlation between the index components (CBOE (2009)). The
original model is calibrated by performing the decoupling calibration procedure described in Sec-
tion 5.1 whereas the generalized model is calibrated on the univariate option surfaces only or by
including a penalty term which assesses the correlation goodness of fit (referred to as step 2) (see
Section 5.2).

6.1. The option surface goodness of fit

The MRMSE (9) which assesses the univariate option surfaces goodness of fit as well as the VIX
volatility index which measures the future expected market volatility over the next 30 calendar days
are shown on Figure 1. We observe that the Lévy models lead to a better fit of the univariate option
surfaces than the Black-Scholes model except during the panic wave period which is characterized
by a high value of the VIX and which occurred in the aftermaths of the bankruptcy of Lehman
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Brothers, namely from October 2008 until December 2008. When calibrated on univariate option
surfaces only, the generalized model is characterized by a slightly lower MRMSE than the original
model. Moreover, taking into account the correlation goodness of fit in the calibration of the
generalized model leads to an option surface fit of roughly the same quality as the original and the
generalized model when this is calibrated on option surfaces only.

Option surface calibration performance (@ = 1)

1.5 T T T
‘ multivariate BS
i. ©+ 0 original aVG
u 1 8 m -l @ generalized aVG
s a @ @ generalized aVG (step2)
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= 05 = " Ny

s g e ot
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Figure 1: Evolution of the global option surface calibration performance (upper) and evolution of
the VIX volatility index (lower) through time.

6.2. The correlation goodness of fit

Figure 2 shows the correlation RMSE (10) under the original and generalized VG models. We
clearly see that although the original VG model has a free parameter to calibrate the linear depen-
dence between the underlying stocks, i.e. ¢y, it is usually not able to fit accurately the correlation
structure. This gives some evidence against the use of the decoupling procedure to calibrate the
original model and might be explained by two reasons: first there exists only one single param-
eter to fit the & 2; N linear correlations between the N underlyings and secondly, imposing the
constraint (5) that on average the business clock grows as the real time, implies some additional
constraints on the subordinator parameters. Indeed, to ensure the positivity of the idiosyncratic

subordinator parameters a;’s, we have to impose the conditions ¢; < ai Vi = 1,..., N; which
7
1

’ max o

is equivalent to impose an upper bound for ¢;: ¢; € (0 ). Hence the range of admissible
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values of c¢; might be really small since the parameters «;’s are calibrated during the option surface
calibration phase and can not be adjusted during the correlation calibration phase. Since under the
original setting the correlation is proportional to ¢; (see Equation (8)), this might in turn severely
restrict the range of attainable correlations. As it can be seen from Figure 3, the common subor-
dinator parameter c; is usually set at the upper bound —-—, which explained the poor fit of the
dependence structure under the original «VG model.

max o’

Implied correlation calibration performance (o = 1)
1 T T T T
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Figure 2: Evolution of the correlation calibration performance of the original and generalized
models through time.
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Figure 3: Evolution of the common subordinator parameter c; of the original and generalized
models through time.

6.3. Influence of o

Figure 4 shows the influence of the parameter o on the option surfaces and the correlations good-
ness of fit for the trading day which leads to the highest value of RMSE? under the generalized
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aVG model for o = 1. We observe that it might be judicious to allocate more weight to the
correlation goodness of fit in order to improve the correlation fit when the option surfaces RMSE
is pretty low.

MRMSE(a®) - generalized aVVG model RMSEP(aP) - generalized aVG model
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Figure 4: Influence of o for the generalized VG model.

7. CONCLUSION

This paper features an extension of the «VG model, where the constraints on the Gamma sub-
ordinator parameters are relaxed. The such obtained generalized VG model leads to marginal
characteristic functions which remain of Lévy type but become dependent on the whole parame-
ter set, which might be of a particular interest for practitioners as regards two criteria. First, the
market-implied calibration does not require anymore the existence of a liquid market for multi-
variate derivatives which is nowadays pretty rare and secondly, the volatility, and hence the trading
activity becomes a function of both the idiosyncratic and common subordinator settings, which is
in line with the empirical evidence of the presence of both an individual and common business
clock. The calibration of the two models has emphasized the fact that the correlation goodness of
fit is significantly improved by performing a second calibration of the generalized model which
takes into account a penalty term assessing the correlation goodness of fit into the option surface
calibration optimizer. This paper also points out the shortfall of the decoupling calibration pro-
cedure in the case of the original VG model. Indeed, imposing the condition that the business
time grows on average as the calendar time implies an upper bound on the common parameter c;
which is a function of the «;’s. By first calibrating the marginal parameters (including the «;’s) on
the univariate option surfaces, we then limit severely the admissible value range of the parameter
c1 and consequently the value range of attainable correlations. In particular, the numerical study
clearly shows that ¢, is usually set at its upper bound, giving some evidence against the use of the
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decoupling calibration procedure.
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Abstract

We present a static bank-run model for liquidity risk where a financial ingtitdfinances its
risky assets by a mixture of short- and long-term debt. Insolvency cppemaat any time
until maturity. Short-term creditors have the possibility not to renew theirifndt a fixed
rollover date. We compute both insolvency and illiquidity default probabilitiesdordginuous
time asset value model. Our implications show, in particular, that illiquidity risk iseamsing
in volatility and in the outside option ratio.

1. INTRODUCTION

Insolvency risk is defined as the risk that some obligors nmefauwdt on their obligations or the
risk of a deterioration in the credit quality of some investits resulting in unexpected losses.
The credit crisis of 2007-2008 has dramatically shown thedlit risk cannot only be reduced to
insolvency risk but is also intertwined with liquidity aspe. The failures of Bear Stearns and
Lehman Brothers are just two examples of bankruptcies dueun by short-term creditors. Both
institutions had capital cushions well above the Basel llimai capital requirements, but had fi-
nanced their long duration risky assets mostly throughtgleom debt. Thereby, they were heavily
exposed to liquidity risk. It is now understood that shontadion financing, for example through
commercial papers and repo transactions, increases tlosumepto panic runs which was one of
the main causes of the credit crisis of 2007-2008. Theradyrexists extensive theoretical lit-
erature on potential causes for bank runs due to illiquidgk. The models of Bryant (1980),
Diamond and Dybvig (1983) and Rochet and Vives (2004), fonexta, provide evidence for the
fact that runs can occur due to self-fulfillment of depostexpectations concerning the behavior
of other depositors. Thus bank runs are a result of cooridimgiroblems among short duration
depositors’ roll-over decisions. He and Xiong (2009) egtémese models of static coordination
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problems to a dynamic one where the firm’s debt expiratiohevica Poisson distribution with in-
finite time horizon. Thus, the decision of a short-term ddivhether to roll-over his debt or not
after expiration depends also on his expectation aboutll®er decisions of creditors maturing
at different times.

Using a global game model Morris and Shin (2009) succeed ¢ordposing a financial in-
stitution’s total credit risk in an insolvency risk and aliqilidity risk component. They propose
a two-period model where short-term creditors face only mtlever decision at an interim time
point. In particular, the authors analyze the policy imalions on the balance sheet induced by
the increase in total credit risk which arises from the adddl illiquidity risk component. More-
over and in contrast to the aforementioned literature, thegctly model the influence of future
insolvency risk on the roll-over decision of short-termditers and thus on illiquidity risk.

Inspired by Morris and Shin (2009) we construct in this pagpepntinuous time model with
a mixture of short-term and long-term debt. More specificalle consider a financial institution
financing its risky assets using short- and long-term debartSerm debt earns lower return, but
short-term creditors have the choice not to renew theirifugdt a fixed rollover daté*. When
rolling over their funding at dat&, short-term creditors earn a return rate-gfat final maturity?’
from the financial institution. When choosing not to renewrthending at date*, they can earn
a return rate of* on the market. The decision of a short-term creditor whetihhveoll over or not
at datet* surely depends on the outside return rateln case several short-term creditors choose
not to roll over their funding, the financial institution nhigdefault due to illiquidity caused by
a run of short-term creditors. We define illiquidity risk deetrisk of a default due to a run by
short-term creditors when the firm would otherwise have lsadrent. The default probability due
to illiquidity will then be specified by an illiquidity barer such that when the asset value at the
rollover date falls below this barrier a successful run wiktur. We implement our model in a
binomial tree framework. Our results show that illiquiditgk is increasing in volatilityy and in
the ratio of the outside return over the return for shomatelebt. These results are in accordance
with previously derived implications by Morris and Shin (&) for the situation of a discrete asset
value model with a single rollover date. Moreover, we carlieily quantify the increase in total
default probability that is due to illiquidity risk.

2. FINANCING STRUCTURE

Suppose a financial institution finances a risky asset bytshod long-term debt. We model the
value process$V;):>, of the risky asset by a geometric Brownian motion

d
ﬁ = /Jdt + Uth
Vi

with constant driff, and volatilityoc > 0 wherelV is a standard Brownian motion.
Long-term debt with principle value of, and maturity7" is issued at timg, = 0. The
promised (continuously compounded) rate of return for {rgn debt isr;, per annum. So if
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there is no default, the value of long-term debt at matufiig
Ly = e L.

At initiation time ¢, = 0 short-term debt with principle valug and maturityt* is issued. Assume
that at timet* short-term creditors can decide whether they want to rehew funding or not. If
some short-term creditors decide not to renew their fundimg financial institution will sell the
corresponding short-term bonds to new creditors, if it dasslefault due to illiquidity at that time
point! Note that by this assumption the face value of short term aetinal maturityZ” is known
in advance. If short-term debt is rolled over at timei.e. if the face values,- is invested anew
until time 7" and if the (continuously compounded) rate of return earmedhmrt-term debt isg
per annum which is assumed to be constant in time, then tieevisloe at timél” of short-term
debtis

Sp = e™sTS,.

The decision at time* of short-term creditors to roll-over or not depends on tharrethey can
earn on the outside market as well as on the default probabiiithe financial institution in the
time period¢*, T|. We assume the (continuously compounded) outside ratéuwfir® be constant
and equal to* for all time periods. It can be set to equal the risk-free,ratsvever, it can also be
the return from a risky project with a different financialtifistion. Then it should also incorporate
the default probability of that project. It is a variable walassume to be known and given in the
market.

We assume that the financial institution also holds a casluatdd on the asset side which will
be continuously compounded at the risk-free rate

3. DEFAULT PROBABILITIES

The current financial crisis has shown that many financidltuiens have gone bankrupt even
though their asset value was still greater than their deloevdn the above framework we calcu-
late the default probability D;,,s caused by insolvency of the financial institution and thexdkf
probability PD;; due to illiquidity at any timet € [0, 7. The decomposition of total credit risk
into these two components will allow us to hedge every riskjgonent more effectively. More-
over, it will provide a method to determine an optimal compos of the liabilities side of the
balance sheet to reduce illiquidity risk and thereby totatlt risk of the financial institution. The
key to calculate the default probability and its decompassits to derive the default barriers due
to insolvency and illiquidity.

In the computation of the default barriers due to insolvearoy due to illiquidity of the financial
Institution we are motivated by the idea in Morris and ShidQ®). At the rollover daté* the short-
term creditors face a binary decision problem. They havestod#® whether they rollover the debt
or not depending on the corresponding returns from botlsaBts.

Unlike in Morris and Shin (2009) our model can accommodaterdicuous time asset value
model where insolvency can happen at any time until final ntgtuMoreover, in Morris and

Lif not all short-term creditors decide to run away, the firiahiostitution should always be able to find some new
creditors in the market.
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Shin (2009) it is assumed that, when short-term creditoo®sé not to roll over their debt, they
can always get the face value of their debt back and go to m&okearn the returm*. This,
however, is only true when the financial institution is hieakind has enough cash to pay back the
creditors. This assumption increases the incentive oftibetderm creditors to run their debt. In
our paper we model the return from not rolling over the debbaaing to the financial institution’s
condition. If it is healthy, the creditors will get the facalve of their debt back; if it is in distress
(with significant hair-cut of the asset value), then the itoed may get almost nothing.

Assume that the firm defaults due to insolvency at the firssage time

=inf{t > 0:V; < o},
where thensolvency barrieky; is similar to Black and Cox (1976)
= (Soerst + Loe™t — ]\/[e’"t) p

with p € [0, 1] being a safety covenant that determines how much of the fitoeva available
to compensate creditors and equity holders according te-@gscribed seniority when the firm
bankrupts. The default probability due to insolvency ctindal on the information available at
any timet; is then

PDins(t") = E[l{p<r<ry|Vi]

= IP( inf (V, — ) <0

t+<s<T

) @

Besides the insolvency risk the firm might fail because ofuildity. To compute the corre-
sponding illiquidity barrier we need to fix some assumptions

Assumption 1 (a) A run can only happen at the decision titieand short-term debt can only
be rolled over until final maturity".

(b) Assume that each short-term creditor believes that the Wiill survive a bank run with a
probability

rt
A Vi) = mm{ th—g—eM}
"

wherey is the haircut rate.

(c) The short-term return rates is strictly larger than the outside return raie.

Assumption 1 (a) specifies our bank-run setting. Assumiti¢) describes the survival prob-
ability from a bank-run. Here the haircut takes values betweand 1. Intuitively, the ratio

between the raised funds and the principle of short-term @%b— represents the likelihood
that the short-term creditors get back their face value efctdabt Because the creditors at most
get their debt back, the above ratio is cut offlatThe higher\(V;-) is, the more funds the firm
can raise, the more likely the short-creditors get theit th@lok. Assumption 1 (c) is necessary as
short-term creditors would otherwise directly choose thk-free outside option which would be
more attractive.
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To compute the illiquidity probability we first compute ahquidity barrier and then analyze
the event when the asset value at the rollover datalls below this barrier. Denote the expected
outside return rate the short-term creditor earns by inwgsh the market if he decides not to
rollover debt at time* by R*(V;+) . Recall the market rate is denotedBy The real market return
Is given by the market return times the survival probabilipm a bank run

i) (T=4) _ (=) (1) (2)

as the short-term debt is payed back in full only if the firmvargs from a bank-run otherwise
only a ratio of the face value will be payed back to short-temeditors. On the other hand, the
short-term creditor earns; if he rolls over the debt provided that the firm does not defdué to

a bank-run at time* or due to insolvency in the final time peridd, 7). The expected return rate
Rs(V;+) is given by the short-term debt return times the survivabphility from insolvency for
time [¢*, T| multiplied by the survival probability from a bank-run ai ¢*

Rs (Vi) (Tt%) _ rs(@—4) ( inf (V. — ay) >0
t*<s<T

Vi) AV ©)

A run at timet* occurs if the expected return raig; (V;-) is smaller than the expected outside
return rateR*(V;.). This provides ariliquidity barrier ;- at timet¢* for the asset returii. given

as the solution of the following equation

e (T=t") _ ors(T—t") | p ( inf (V,—a,)>0

t*<s<T

vt*) @

Note that the survival probability from a bank-run at timelrops out of the equation for the illig-
uidity barrier. This is due to the fact that in case of a run bgrsterm creditors at timé* they
will get their debt back with the same probabilityV;- ) whether they roll over or not. Hence the
decision of each short-term creditor whether to roll ovenor actually does not depend on his
believes about the behavior of other short-term credittirs only influenced by the insolvency
probability of the financial institution.

For the computation of thex antedefault probability due to illiquidity, suppose we have al-
ready computed the default barrigr for the rollover date*. The financial institution can default

because of a run at the rollover dateand because of insolvency at maturity At time 0 the
survival probability that the financial institution willasg alive from0 to 7" is

E {ﬂ{vﬂzﬁt*} A ggéT{Vs—as}ZO}}
From this, we can easily calculate tee antedefault probability for the period frofito 7" as
PDiotai(to) =1 — E {ﬂ{vtoﬁt*} : 11{0<1151£T{v5a5}>0}} (5)
which accounts for all bankruptcy scenarios such as thaitteft* because of a run by short-term

creditors and also for the default because of insolvendg,ifi] although the financial institution
survives the rollover date.
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We can then derive the default probability due to illiquydis the difference between the total
PD and the insolvency PD, i.e.

PDin(to) = PDtotai(to) — PDins(t0) (6)

wherePD;,s(t0) is computed using equation (1).

4. STATIC ANALYSIS OF DEFAULT PROBABILITIES

We have implemented our model in a binomial tree setting.rdfbee, we assume the roll-over
time to be at the midpoirit’/2 to final maturity. To increase accuracy of the approximatibthe
continuous time asset value process in the tree, we intemblsome interim time steps between
times 0 and* and between* andT'. We choose the time steps of the binomial tree to be equidis-
tantly distributed with step sizA¢ such thatn At = 7'/2 for some natural numben > 0, i.e. the
binomial tree is of siz€m.

As mentioned before, the asset value process is assumebte fogeometric Brownian motion

1
Vi = Vo exp ((u - 502) t+ aWt> . (7)

A time discrete version of this process can be representadinomial tree if we set = VA
andd = % (see e.g. Hull (2010)). At each node in the binomial tree gse=fvalue goes up with a
probability

eHAt _ g,

PETTT

and down withl — p.

For the numerical results we chose the following set of patars. The initial asset value
Vo = 100 and final maturity is set td" = 1 year. Drift and volatility of the risky asset equal
1w = 6% ando = 15% resp.. The risk-free rate is setto= 1%. We assume a haircut value of
Y = 70% and a safety covenant of = 70%. Moreover, we assume a face-value of short-term
debt of S = 40 and for long-term debL. = 60. For simplicity we assume the cash amount to
be M = 0. Assume that the outside returti equals the risk-free rate of 1% while the promised
return for short-term debt iss = 4%. The difference between outside retutnand return rateg
corresponds approximately to the spread one currentlyirabtar an A-rating compared to risk-
free. We assume a return rate for long-term debt;of 6%. Our numerical results are based on
a binomial tree implementation witlh, = 1000 interim dates to increase accuracy of our calcula-
tions.

Figure 1 shows the decomposition of the total default proiamto its insolvency and illig-
uidity components for increasing initial asset valigeFor very lowV the financial institution will
almost surely default due to insolvency, ilD;,s = 1. In these cases the reason for a default is
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Figure 1: Influence of initial asset value on default probgbi

clearly insolvency and not any liquidity problems. THB;; = 0 in these situations. For higher
initial asset values a default due to insolvency become® maond more unlikely while the proba-
bility that the financial institution will default due to amiby short-term creditors increases up to
a critical point. When the initial asset value is higher thams critical value, the illiquidity de-
fault probability decreases again as a run by short-terulitors becomes more and more unlikely.
This is due to the fact that the probability that the assateval the roll-over date is less than the
illiquidity barrier becomes smaller and smaller. The figehews that, when taking liquidity risk
into account, the total default probability of the finangratitution increases.

Moreover, in analogy to the results in Morris and Shin (2088)obtain that illiquidity risk is
increasing in volatilityr as is illustrated in Figure 2. This is also intuitive as highaatility leads
to higher fluctuations in the asset value and thus increasfasilti risk in general. Thus all com-
ponents of the total default probability, i.e. insolvenagaliquidity risk, increase with volatility.

Figure 3 illustrates the dependence of the illiquidity bitity on the outside option return
rater* and on the short-term debt return rate Similarly to the result of Morris and Shin (2009),
we obtain that illiquidity risk is increasing in the outsidgtion return rate* and correspond-
ingly decreasing in the short-term debt ratesince the risk-free outside investment opportunity
becomes more attractive.
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5. CONCLUSION AND DISCUSSION

In this paper we presented a model for the quantificatiorgoidiity risk in a continuous time asset
value framework where a financial institution finances gg&yiassets by both short- and long-term
debt. Insolvency risk can occur at any time until maturityrathe Black and Cox (1976) frame-
work. Short-term creditors have the possibility not to mker their funding at a fixed decision
time t*. We succeeded in splitting total default probability intoiasolvency and an illiquidity
component and we studied their dependencies on the individadel parameters. Our implica-
tions show, in particular, that illiquidity risk is incraag in volatility o and in the outside option
return rate-* and decreasing in the short-term return rateThese results are in accordance with
previously derived implications by Morris and Shin (2008) the discrete asset value situation.

The extension to a multi-period setting where short-tereditors can decide whether to roll
over their funding or not at a finite number of roll over datesurrent work in progress. In such
a setting the illiquidity barrier at early decision pointdlvdepend not only on the insolvency
probability of the financial institution but also on the siwal probability from a bank-run at later
decision points. Thereby we obtain a dynamic coordinatimilem among short-term creditors
rollover decisions. Studying the optimal debt structurthvaind without liquidity risk under some
additional constraints in such a dynamic model settingge alirrent work in progress.

An interesting extension would be to consider the contisugank-run case, i.e. where cred-
itors can decide at any time to run the bank. We will inveséga future work the optimal time
point 7 for short-term creditors to run the bank. Short-term ceditcan earn the return rate
until they decide to run the bank (as long as the bank is siMet). After running the bank they
earn the outside return raté until maturity if there is no bank run at time Note that on the event
7 = T there is no real bank run, so the creditor will receive thegpal value of his debt if the
insolvency does not occur. The creditor will choose an oglttistopping timer to maximize his
expected return.

Since the outside return raté is not equal to the short-term return raig we obtain a time in-
consistent optimization problem, meaning that the cresliforeferences are changed over time.
Recall, that e.g. for American options, the investors alwegsh the risk-free interest rateno
matter whether they continue or exercise their optionss Thone of the key differences between
our model and American option framework. Solving this timeansistent optimization problem
IS current work in progress.
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1. INTRODUCTION

This paper is based on Luciano et al. (2011) and studies thgitige problem of life insurance
policies, when the mortality rate is stochastic. In recesdrg, the literature has focused on the
stochastic modeling of mortality rates, in order to deahwihexpected changes in the longevity of
the sample of policyholders of insurance companies. Timd &f risk, due to the stochastic nature
of death intensities, is referred to as systematic moytabk. In the present paper we deal with
this, as well as with two other sources of risk life policies aubject to: financial risk and non-
systematic mortality risk. The former originates from theckastic nature of interest rates. The
latter is connected to the randomness in the occurrenceah de the sample of insured people
and disappears in well diversified portfolios.

The problem of hedging life insurance liabilities in theg@ace of systematic mortality risk has at-
tracted much attention in recent years. It has been addregiber via risk-minimizing and mean-
variance indifference hedging strategies, or through teatmn of mortality-linked derivatives and
securitization. The first approach has been taken by DahMaitEr (2006) and Barbarin (2008).
The second approach was discussed by Dahl (2004) and Camhg2006b) and has witnessed
a lively debate and a number of recent improvements, seBléke et al. (2010) and references
therein.

We study Delta and Gamma hedging. This requires choosingafigpchange of measure, but has
two main advantages with respect to risk-minimizing and meeriance indifference strategies.
On the one side it represents systematic mortality risk iarg intuitive way, namely as the differ-
ence between the actual mortality intensity in the futurigs“forecast” today. On the other side,
Delta and Gamma hedging can easily be implemented and adapgelf-financing constraints. It
indeed ends up in solving a linear system of equations. Thgadson with securitization works

61
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as follows. The Delta and Gamma hedging complements theiseation approach strongly sup-
ported by most academics and industry leaders in two se@sethe one hand, as is known, the
change of measure issue on which hedging relies will not loh am issue any more once the
insurance market, thanks to securitization and derivatibecomes liquid. On the other hand,
securitization aims at one-to-one hedging or replicatvam)e we push hedging one step further,
through local, but less costly, coverage.

The paper proceeds as follows: first we present the genarakfvork for representing stochastic
mortality through Cox processes, then we focus on two pdati@ffine processes and we show
they satisfy an HIM-condition for no arbitrage after an appiate change of measure. Then we
describe Delta and Gamma hedging of pure endowments andowiel@ian example calibrated on
the UK market.

We refer the reader to Luciano et al. (2011) for details, fgs@md a more comprehensive account
of the technique we present here and its application to a Uikreted example.

2. THE MODEL FOR MORTALITY AND FINANCIAL RISK

Following a well established stream of actuarial literaiuwve adopt the setting of risk-neutral
interest rate modelling to represent stochastic mortatitgnce, we represent death arrival as the
first jump time of a doubly stochastic process. To enhanclyt@eel tractability, we assume a pure
diffusion of the affine type for the spot mortality intensitfyamely, the process has linear affine
drift and instantaneous variance-covariance matrix limethe intensity itself.

In particular, we consider a probability spage, F,[P) and restrict our attention to two affine
processes, belonging to the Ornstein-Uhlenbeck and theretss, for mortality intensity:

e Ornstein-Uhlenbeck (OU) process without mean reversion:

do(t) = ado(t)dt + odW,(t)

e Feller Process (FEL) without mean reversion:

A (t) = adr (B)dt + o/ A (£)dW,.(t)
with @ > 0, ¢ > 0, andW¥,, a univariate Brownian motion und&r

These processes turn out to be appropriate choices for Hueipgon of human mortality, as
already pointed out by Luciano and Vigna (2008) and havedirdeen used in the modelling of
dependent lives (see Luciano et al. (2008)).

We then recall the definition of forward mortality intensityhich we define ag,.(¢, 7). We point
out that the risk factor against which one could be intecegidnedge its positions is the difference
between the (stochastic) future realization of the madytalitensity at a future time and the
forward intensity, which can be interpreted as its “bestfaist” today. We show that in the affine
case forward intensities can be easily computed as affireifuns of the solutions andg of the
Riccati ODEs associated to the intensity process:

fot,T) ==/ (T' = t) = B(T = 1)As(t) = —o/(T — 1) = B/(T — 1) fu(L, 1)



Delta and Gamma hedging of mortality and interest rate risk 63

For what concerns interest-rates, we model the instantesfeoward rate directly as
dF(t,T) = A(t,T)dt + X(t, T)dWg(t) Q)

where the real functiond(¢,7) and>(¢,T)) satisfy the usual assumptions for the existence of a
strong solution to (1), and/x is a univariate Brownian motion und@rindependent ofV/,, for all
x.

3. CHANGE OF MEASURE AND HIJM RESTRICTION ON FORWARD DEATH INTEN-
SITIES

After having defined both markets, we tackle the issue of figdin appropriate change of mea-
sure. Following Dahl and Mgller (2006) among the possiblengfes, we select the minimal one,
the one which permits to remain in the Ornstein-UhlenbeckFeeiller class. We follow a common
assumption and set the premium on non-systematic montalkyo zero, which is equivalent to as-
suming that the portfolio of insured people is well diveesifi We further parametrize the measure
by assuming that the premium for systematic mortality rsskonstant and that the interest-rate
market is complete. Hence, under these assumptions, thpr&anium and the reserves of life
insurance policies can be computed as expected values thedereasur€) equivalent tdP.

We are interested in pure endowment contracts startingnatazero and paying one unit of account
if the headx is alive at timeT". The fair premium or price of such an insurance poliey), '),
given the independence between the financial and the aaltuak, is:

P(0,T) = S,(T)B(0,T) = XM+ ) {— exp ( /0 Tr(u)du)} ,

whereS,(T') is the survival probability of the headfrom time 0 toT", B(0,T") is the price at zero
of a zero-coupon bond with maturily andr(¢) denotes the short rate at timeThe value of the
same policy at any future dates:

P(t,T) = S.(t,7)B(t,T)

= Ey {exp (— /tT Am(S)dS) | Qt] Eq [— exp (/tTT(u)du> | Ht} :

whereg; is the sigma-algebra containing all the information on @ldst and?; contains all the
information on the financial market up to tim¢see Luciano et al. (2011) for details).

Hence, we can define a “term structure of pure endowmentacstt The last expression, net
price of the initial premium, is also the timeeserve for the policy, which the insurance company
will be interested in hedging. Notice that we did not impos®aarbitrage condition on the market
for these instruments. Once the change of measure has bdempel, we can writé?(¢,7’) in
terms of the instantaneous forward intensity and inteadst(f and F' respectively):

P(t.T) = exp (_ /t () + () du) |
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In this setting, Cairns et al. (2006a) point out that the HIJMartmtrage condition typical for
the financial market can be translated into an equivalent Hilki&icondition for forward death
intensities. Usually, the aspect of the HIM condition onitiseirance market is imposed a priori.
In our paper we show that, for the two non-mean revertinggsses for the mortality intensity we
consider, namely OU and FEL, there exists an infinity of philig measures — equivalent to the
historical one — in which forward death intensities satiafiyHJM condition. No-arbitrage holds
under any of these measures, characterized by a constapteium on mortality, even though
it is not imposed a priori.

4. DELTA AND GAMMA HEDGING

After having selected the appropriate change of measureaweavoid using risk minimizing or
mean-variance indifference strategies. We can insteatsfog Delta and Gamma hedging.

For the sake of simplicity we assume that the market of istenae bonds is not only arbitrage-
free but also complete. First, we consider a pure endowneagénin the presence of systematic
mortality risk only. Then, under independence of mortadityd financial risks, we provide an
extension of the hedging strategy to both these risks. We st our technique simply involves
the solution of linear systems of equations.

We show that when the mortality intensity follows the OU msg, the reserve of the longevity
bond P(¢,T) (i.e. the survival probability when the interest rate isedetinistic and null) can be
written as an easily tractable exponential affine functibthe risk factor. Moreover, its change
dP — through Ito’s lemma — can be simply written as a functiontsffirst and second order
sensitivities to the risk factor, which — in the financiatliature — are usually referred to as Delta
and Gamma.

We then describe the Delta and Gamma coverage techniquerldepdowments, using as hedging
tools either pure endowments or zero-coupon survival bémdshortality risk and zero-coupon-
bonds for interest rate risk. Since all these assets can derstood as Arrow-Debreu securities
— or building blocks — in the insurance and fixed income marttet Delta and Gamma hedge
could be extended to more complex and realistic insuranddiaance contracts.

5. APPLICATION

Finally, we provide a calibrated example. We use UK mostaléites for the male generation
born in 1945 and we calibrate the Hull-White model for inténeges on the UK government
bonds market. We compute the Delta and Gamma factors fardift maturities and we provide
the computation of the Delta and Gamma hedged strategiesforsurer who has issued a pure
endowment on a certain head with maturity 15 or 30 years. \0 sltrategies which involve both
the use of longevity bonds/pure endowments only or also skeofiinterest-rate bonds and which
can be self-financing or not.

Our application shows that:
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1. the unhedged effect of a sudden change on mortality ratsmarkable, especially for long
time horizons;

2. the corresponding Deltas and Gammas are quite diffefrentitakes into consideration or
ignores the stochastic nature of the death intensity;

3. the hedging strategies are easy to implement and custamself-financing constraints;
4. Delta and Gamma are bigger for mortality than for financsk.

In particular, we find that the effects of comparable charigebe interest-rate and in the
mortality rate lead to comparable effects on the prices @ities. This is a clear indication that
hedging systematic mortality risk could be very importamtd life-insurer.
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Asset backed securities (ABSs) are structured finance pt®tacked by pools of assets and cre-
ated through a securitization process. The ratings of dssi#ted securities are partly based on
guantitative models for the defaults and prepayments o&fisets in the pool. This quantitative

assessment is based on assumptions and estimations gparputeters that are affected by uncer-
tainty. The uncertainty in these variables propagatesutiiraghe model and produces uncertainty
in the ratings. We propose to work with global sensitivitylsis techniques to investigate ABS

ratings sensitivity to the input parameters and we intredaicovel structured financial rating to

take into account uncertainty in assessment.

1. INTRODUCTION

The rating and valuation of securitization transactiongehzeen in focus the last years due to the
enormous losses anticipated by investors and the huge armbdowngrades among structured
finance products. A rating is an assessment of the differgkd mherent in a structure and how
well these risks are mitigated. The rating process is baedubth a quantitative assessment and
a qualitative analysis, which assess the originator’'s Aedservicer’s operations and legal issues
concerning the transfer of the assets from the originatdhéoissuer. For the quantitative as-
sessment, models with one or more parameters are used t@tgedefaults and prepayments in
the asset pool. Typically the input parameters are unknowinestimated from historical data or
given by expert opinions. In any way, the values used for trameters are uncertain and these
uncertainties are propagated through the model and genanaertainty in the rating output (see
Jonsson and Schoutens (2009)ndson and Schoutens (2010), addskon et al. (2009)).

The views expressed are the author’s and do not necessapilysent the views of BNP Paribas Fortis Bank and
BNP Paribas Group.

69



70 F. Campolongo et al.

There have been an increased attention to the rating oflaasietd securities due to the credit
crisis of 2007 - 2008 (see Moody’s Investor Service (200@) Mioody’s Investor Service (2009)).
The objectives of this paper are twofold. Firstly, we adedae use of global sensitivity analy-
sis (SA) techniques to enhance the understanding of the soairtes of output uncertainties.We
quantify the percentage of output variance that each ingetof is accounting for and we also
detect how interactions among input parameters affectatiey variability.

Secondly, we propose a novel rating approach callebal rating, that takes this uncertainty
in the output into account when assigning ratings to traschie global ratings should therefore
become more stable and reduce the risk of cliff effects,ith#hat a small change in one or several
of the input assumptions generates a dramatic change ddtihg.r The global rating methodology
proposed gives one answer of a way forward for the ratingrattire finance products.

2. ASSET BACKED SECURITIES

Asset backed securities (ABSs) are securities createdghragecuritization process whose value
and income payments are backed by a specific pool of undgrageets (see Fabozzi and Kothari
(2008)). llliquid assets cannot be sold individually soythee pooled together and transferred to a
shell entity specially created to be bankruptcy remote ¢iBp&urpose Vehicle or SPV) which in
turn issues notes (liabilities) to investors with distinisk return profiles and different maturities:
senior, mezzanine and junior notes.

The assessment of the ABS is related with the risks inherethigistructure. The ratings are
indicators of the credit risk embedded in these instruméris assessment of a final rating for as-
set backed securities relies on modelling of the cashfloagdymed by the assets, the collections of
these cashflows and the distribution of the cashflows to #dilies according to a payment prior-
ity. The modelling of the cashflows from the asset pool is basedefault and prepayment models
of different level of sophistication. We focus just on thdaddt models and the prepayments are
not included in the analysis for simplicity.

By using Monte Carlo simulations, different default sceraace generated by first sampling
a cumulative portfolio default rate from a default disttibn and then distributing this default
rate over time using a default curve. The default distributf the pool is assumed to follow a
Normal Inverse distribution in accordance with Moody’s haetology for granular portfolios and
the default curve is modelled by the Logistic model. In thguss, we will calculate th&xpected
LossandExpected Average Lifeof the notes. Having estimated these two quantitative dsifpu
we can map them into a qualitative Moody'’s rating using Mdsdiyealised Cumulative Expected
Loss Table.

3. SENSITIVITY ANALYSIS

We fill the need of investigating the rating sensitivity withspect to input assumptions by us-
ing sophisticated methods. We have already seen that teesmsent of this financial product is
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based on a quantitative model containing some input paesethose values are affected by un-
certainty. This uncertainty propagates through the modeélgenerates uncertainty in the rating
output. By using a sensitivity analysis, we want to invegégan this uncertainty. Different sensi-
tivity analysis techniques can be followed to test the siityiof a model, ranging from the global
variance method (see Saltelli (2002), Saltelli et al. (2G0&1 Saltelli et al. (2004)), which decom-
poses quantitatively the total output variance into contions of each input, to the simplest class
of the screening tests which provides a qualitative infdiromaby varying one factor at a time.
The start point for both of them is to run the model differemtds in order to take into account
that each input can assume a different value: from each gdearsetting of the input factor, we
evaluate the model. The first class requires a high numberodefhrevaluations and an extreme
computational cost but we take advantage of using it becaasget the contribution of each input
factor to the variance of the output taking into account titeractions among factor. Within the
screening methods, the elementary effects method (EE hetthentifies important factors with
few simulations.

Because of the ABS structure’s complexity, our model is comupartally expensive and the
EE method is very well suited to screen the input space intasfep. All the non-influential factors
will be determined and their values will be fixed without afiag the output variance of interest.
Following, the variance based method will be applied to ¢iiaand distribute the uncertainty of
our model among the parameters identified to be influentigheyelementary effect.

4. UNCERTAINTY AND SENSITIVITY ANALYSIS RESULTS

The sensitivity analysis is performed on a structure whiseecbllateral pool’s characteristics, the
structural characteristics and the waterfall have beeud fiXéthout loss of generality, the investor
Is assumed to be informed about them, so that these featonestaffect the output variance of

interest. Assuming the default distribution of the pooldtddw a Normal Inverse distribution and

the default curve to be modelled by the Logistic model, theeatain input factors in the sensitivity

analysis are related to the parameters of both distribsitéomd also to the default timing and the
recoveries. Each one of these inputs can assume a discrateenof values within a range of

variation that have to be fixed at the beginning.

The fundamental qualitative output in our study is the gabhthe ABSs, addressing the loss a
note investor might suffer. Having a look at the empiricatdbution of these ratings on each note,
we obtain information on the uncertainty in the model. Thalgsis points out that the problem
of providing a credible rating gets more difficult for the manine tranche; the uncertainty is too
wide and the possibility of failure in the rating determioatis too high and must be reduced.
The senior tranche instead looks to provide good and relisggults. The reasons of this good
or bad performance are not explicit to us. It would be intémgsto find out which uncertainties
are driving these results. Under these circumstances itss t@ investigate through sensitivity
analysis techniques which variable drives most of this ttaggy. We know that each rating has
been derived from mapping tliexpected Average Lifeand theExpected Lossof the notes, thus
these two values are the quantitative outputs the semgitimialysis should investigate in order to
assess the influence of the unknown inputs in the ABS ratings.
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The exploration of the input space by using the EE method l{gse@lots ofy.* in Figure 1)
leads to the conclusion that among all seven input factatsfige of them (.4, Coeff. Variation,
RR, to, andc) play a major role in determining the uncertainty in the atitating. This leads to
the need of including them in a more sophisticated analysis.
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Figure 1: Bar plots of the* values.

We therefore proceed to perform a quantitative sensitaitglysis in order to assess the im-
portance of each factor by computing its contribution towagability of the output. By using the
variance based method we calculate the exact percentalge ofitput variance removed by learn-
ing the true value of an input factor taking into account tigividual effect and the interactions in
which each factor is involved (see Figure 2).
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Figure 2: First Order and Second Order Sensitivity Index

The variance based method provides an encouraging ingighimean cumulative default in
the ABSs modeling is the main contributor to the uncertaintye output. As this is a controllable
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factor we are encouraged to carry out further analysis begg¢or the optimal value for this factor
thus reducing uncertainty in the analysis outcome. The areme tranche that has been detected
to be unreliable due to the uncertainty, can be controll@kitry to better assess the value for the
mean cumulative default. If this would not be the case we d/balve accepted the fact that most of
the uncertainty in the mezzanine tranche is due to an intrpreblem and therefore unavoidable.

5. GLOBAL RATING

We have already seen that the uncertainty in the input paeaspropagates through the model
and generates uncertainty in the outputs. We propose to ussvestrategy which takes into
account this uncertainty when rating ABSs. We call this nepragch aglobal rating. The global
approach derives the rating of a note from the empiricaftiigion of ratings generated from the
global scenarios. This new scale is superimposed on a ratialg used by a rating agency or
by a financial institution and it is based on a percentile nmappf the underlying rating scale,
that is, to assign a global rating to a tranche if a predetsthiraction of the ratings generated
using the global scenarios is better than or equal to a givelenlying rating. In order to take
into account the uncertainty, rather than using a singlagdhat is very accurate but may easily
change when changing one input value, we would prefer to wgelml rating that incorporates
several underlying ratings resulting to be more stable.

As can be seen in Table 1 the idea is to let the global ratingatedl range of possible credit
risks. Hence, to set up the global rating scale we first hade¢ale on the ranges of the credit risk
and of the underlying rating scale. Secondly, we have to eatize fraction of rating outcomes that
should be laying in the credit risk range. As first attempt,hage defined the scale with respect
to the 80th percentile of the local rating scale (in this ddsedy’s ratings) and we find the global
rating to be A, D, and E for the senior, mezzanine and junamdhe respectively.

Global Rating| Credit Risk Range Moody’s

A Low A3-Aaa

B Low to Medium | Baa3-Aaa
C Low to High Ba3—-Aaa

D Low to Higher B3-Aaa

E Low to Highest N.R.—Aaa

Table 1: The global rating scale and the corresponding mammgeredit risk and in Moody’s rating
scale

6. CONCLUSION

The valuation of different types of asset backed secuif&Ss) have been in focus the last years
due to the enormous losses anticipated by investors anduthes damount of downgrades among
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structured finance products. The assessment of the riskeinhi@ an ABS structure and how well
these risks are mitigated is detected by the ratings.

By the uncertainty analysis, we figure out that the mezzamareche seems to be unreliable
due to the uncertainty that is too wide so that the posgiilitfailure in the rating determination
Is too high. The senior tranche instead seems to provide gaddreliable results. By using
sensitivity analysis techniques we detect the main souwtescertainty in the ratings of asset
backed securities (ABSs) and we quantify the uncertaintyemtodel due to each different sources
of uncertainty in the assessment. In particular, the mearutative default rate plays a major role
in determining a rating in the senior, mezzanine and jumemmahe. As our second research line,
we introduce a methodology to evaluate the asset backedtsesbased on percentiles, that takes
into account the uncertainty and produces more stablegsatikiVe propose to work with a new
rating concept called global rating, where a new ratingesalsed indicating the range of the
credit risk of an asset backed security.
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| present a novel non-parametric bootstrap method for esimg claims reserves for claims
triangles, which | call théocal chain ladder bootstrap technique. The method is simple and can
readily be implemented in a spreadsheet. The behavioueash#thod is illustrated on a simulated
claims triangle, in which the distribution of reserves iokm. It appears that the distributional
shape of the reserves is estimated quite well, however thexdocation bias. If this bias could
estimated and be corrected for, then the method might wedf beerest to practitioners.

1. INTRODUCTION

For many years the chain-ladder technique for estimatiagnd reserves has been widely used
(Taylor 2000). Two reasons can be put forward for this: (ihaio-ladder analysis is simple for
practitioners to implement; (ii) the results from a chaadder analysis usually accord reasonably
well with the expectations of experienced practitionerse@estriction of the basic chain-ladder
technique is that it only provides a point estimate of themness. In recent years there have been a
number of proposals to overcome this limitation in order twded the distribution of reserves (for
a good overview see Whrich and Merz (2008)). Several of these proposals ushagbic models
that either are based upon the chain-ladder technique,eocarstructed in order to reproduce
the chain-ladder estimates in expectation. Interest isghmodels has grown among academic
actuaries because of the realization that the variabilithé reserves can be more informative than
only a simple point estimate. These concerns have also geahnerest from practising actuaries,
however the use of such models in practise appears limited.réasons could be put forward for
why this is. Firstly, such models can be quite complex matterally, and so be difficult to
implement. Secondly, there is no agreement on which of tbehsistic models is best to use.
Even a single stochastic model may have several variaritaglisshed, for example, by choice of
distributions (gamma, over-dispersed Poisson, normgdntlarmal, etc.). In addition, some models
based upon positive distributions might not be applicabléata in which incremental claims are
negative in one or more development years.
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This variety of stochastic models, and the lack of conseaswshich model is appropriate for
particular data (eg: why use a gamma distribution instead@g-normal distribution?), means that
a practising actuary could have difficulty in justifying thee of a particular model to a regulator.
One approach would be to estimate the distribution of resensing several models, and see if
they approximately agree in their predictions: the one jpliog the most conservative estimates
might then used. This would not be a problem if the models wenple to implement. However,
as already mentioned earlier, some models are quite comatekso such a strategy could be
beyond the resources available to many practising actiarie

Here | present a new method of estimating reserves based iompée dootstrap simulation
method. The result of the simulation is a sample from whiehdistribution of reserves may be
constructed and analysed numerically. The method is noempetric in nature — no distributional
assumptions, for example, about individual claim sizedeirthumber are made. The model can
cope with negative incremental claims.

The plan of this paper is as follows. The next section intoegusome notation and summarises
the standard chain-ladder technique. | then present theboetstrap method, which | call the
local chain ladder bootstrap model. Three variants of the method are presented and dpplie
simulated triangle whose distribution of true completians known.

2. THE CHAIN LADDER TECHNIQUE

It is assumed that the reader is familiar with the standaaihcladder technique: expositions may
be found in Taylor (2000) and Whrich and Merz (2008). | shall work with claims triangles,
in which rows label the period of origin of the claim. The aolus represent the development
year. The data in the upper triangle represents the amoushiop& on claims. Inflation etc. is
not modelled. Following (England and Verrall 2002), | dse to represent the incremental claim
amount in origin year (row) and development year (colump)With this notation, the claims are
laid out as in Table 1.

Development year

Origin year 1 2 J oo on—1 n
1 C'1,1 0172 te Cl,j Tt Cl,n—l Cl,n
2 C'2,1 02,2 tet CQ,j Tt CQ,nfl
i Oi,l Ci,2

n—1 C(n—l,l C(n—1,2
n le

Table 1: Incremental claims-triangle format
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Summing a row year up to a certain development period leadstal ative claims,

J
Di; = Z Cir,
k=1

The chain ladder technique consists of using the value®idélelopment triangle to construct
so-calleddevel opment factors \;, for each development year= 2, ... n,

n—j+1 o

)\‘ — Zi:l D717.7
J Zn—j—i—l D, . :
i=1 4,j—1

These are used as multiplicative factors to fill-in the lowelf of the cumulative claims triangle,
in a recursive manner according to the formula:

Di,j—l—l = AjDi’ﬁ forj >n—1—1
where we define the diagonal entries:
Di,n7i+1 = Di,n7i+1 fori = 2, oy

The values in the final column of the completed square giveeitienates of the total claims
for each year — also known as thkimate claims. Subtracting from the ultimate of each row the
corresponding diagonal entry in the triangle yields thawese of the reserves required for each
year to meet the expected claim. Adding up the expectedwesérr each gives the total estimate
of reserves required to meet the claims.

There is a variant of the chain ladder technique in which iplidative factors are constructed
row-wise for the accident years instead of the column-wsetbpment years. It turns out that
reserves estimated by his methods are the same as thoseedbiging the development factors.
A simple mathematical proof may be found in Cowell (2009).

3. THE NEW BOOTSTRAP METHOD

In the standard chain ladder technique, development e formed by taking the ratios of
column sums in the cumulative claims triangle. For the latein ladder bootstrap method we
form just the ratios of neighbouring values in the cumukatilaims distribution table. That is, we
calculate the ratios

)\i,j+1 = Di,j+1/Di,j7
for each pair of neighbouring values in the cumulative ckadistribution table. This stage is only

performed once.
The second step is to construct a bootstrap sample, in gnddbe chain ladder technique:

A

Di,j+1 = Az’,jﬂDi,j, forj>n—i—1,
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whereA; ;11 € {A1 41, X241, -+, Ajj+1} is arandomly chosen value from the set of local ratios
calculated for column + 1 of the claims triangle, and where we define the diagonalenas for
the standard chain ladder technique.:

Di,n7i+1 = Di,n7i+1 fori = 2, e, .

Having filled the cumulative claims distribution table ugthe randomly sampled local devel-
opment factors, the ultimate claims for each row can be foanle same manner as for the chain
ladder technique.

By repeatedly carrying out the second step on the lower delgam obtain as big a bootstrap
sample as desired, from which the distribution of the resefar individual years and the distribu-
tion of total reserves may be empirically estimated, togettith summary statistics such as mean
and variance of reserves.

In analogy with the chain ladder technique there is a vaianthich the local factors are
found from row-wise ratios instead of column-wise ratiog] &éhe table is completed stochastically
using these row-wise factors. However, unlike the chaidéadechnique, this procedure leads to
a different distribution of reserves. A third variant whiokes either a randomly chosen row
or column factor when filling in an entry is also possible. 3&ehree variants will be called
respectivelyacross, down andboth methods. Further details may be found in (Cowell 2009).

4. A SSIMPLE SIMULATION STUDY

| carried out a simple simulation study in which a claimsrgke was simulated from a model
described by Schiegl (2004). This meant that the true tigion of reserves was known. The pre-
dictions of the bootstrap method were compared to this tistelslition, and also against those of
Mack’s method (Mack 1993) and an over-dispersed PoissorehoddEngland and Verrall (1999).
The simulation steps were as follows:

1. Use the model to simulate an upper claims triangle.

2. Use the model to simulate 1000 completions of the lowangie (to give a sample from the
true distribution of the reserves).

3. Use the local chain ladder bootstrap method (all threiants), the over-dispersed Poisson
method, and Mack’s method, to estimate the distributionsesérves, using as input the
upper triangle of Step 1 (by creating 1000 samples from eaumieih

4. Compare the true and estimated reserve distributiong gsiantile-quantile plots and box-
plots.

The results of the simulation are summarized in the plotsgiié 1 showing the distribution of
total outstanding reserves. The QQ-plot in the top left islenmom splitting the data generated on
Step 2 above to show that the simulated values are behavopgy, with the points lying close to
the line of slope 1. The middle top QQ-plot shows the distidruestimated using Mack’s method,



A novel bootstrap technique for estimating the distriboitid outstanding claims reserves 79

and to the right of this the estimated using the over-diggePoisson model. Below these are the
three bootstrap variants, from left to right the across, mland both methods. Also shown are
comparative box-plots of the true distribution (left) ahe tvarious modelling estimates. What is
apparent is that the variability of the non parametric bimapsmethod is much smaller than Mack’s
method and the over-dispersed Poisson model, and much miime with the true variability. All
methods underestimate the true median or median by a siam@unt. Other simulations (not
presented here due to lack of space) have shown similar imeimawith sometimes the median
under-estimated and sometimes over-estimated (in the daswion by all methods), with usu-
ally but not always the “down” bootstrap variant produciragiability estimates closer to the true
variability.
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Figure 1. Results from a simulated triangle. The local chaadér bootstrap appears to have
variability closer to the true distribution, with the “assd and “both” variants performing better.
All methods underestimate the mean.

5. SUMMARY

| have presented a simple and novel non-parametric boptstethod, in three variant forms, for
estimating the distribution of reserves given data in thenfof a claims triangle

A simple simulation study showed that the local chain ladu®otstrap method tend to be
biased in location of the distribution (median), but in arpradictable way. Curiously the local
chain ladder bootstrap method appears to be biased in the daettion and about the same
amount as the over-dispersed Poisson method and Mack’sdhetleach simulation

This suggests that if it could be understood when and by hoshrthe bias is happening, and
could be corrected for by a simple estimable translatioa Jdkcal chain ladder bootstrap method
could provide a practising actuary with reasonable simpld mbust method for estimating the
distribution of claims reserves.

More details of results from other simulations, and also garative estimates for some histor-
ical data, may be found in Cowell (2009).
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Finally, a simple program (running under Microsoft WindQvier carrying out the analysis of
the bootstrap method using either supplied data, or forlsitimg triangles using Scheigel’s model,
may be downloaded from the software page of the author's wedgep at
http://ww. staff.city.ac. uk/ ~rgc, which is free for research and non-commercial
use only.

Acknowledgements

The financial support of The Actuarial Profession for thigject is gratefully acknowledged, with-
out it this work may never have been realised.

References

Robert G. Cowell. Exploration of a novel bootstrap techniqueelstimating the distribution of
outstanding claims reserves in general insurance. Aetuddsearch Paper No. 192, City Uni-
versity London, 2009.

Peter D. England and Richard J. Verrall. Analytic and boafstrstimates of prediction errors in
claims reservinglnsurance: Mathematics and Economics, 25:281-293, 1999.

Peter D. England and Richard J. Verrall. Stochastic clairesrieng in general insuranc@ritish
Actuarial Journal, 8(37):443-544, 2002.

T. Mack. Distribution-free calculation of the standardoerof chain-ladder reserve estimates.
ASTIN Bulletin, 23:213-225, 1993.

Magda Schiegl. Simulation. IHandbuch der Schadenreservierung, pages 199-208. Verlag Ver-
sicherungswirtschaft, Karlsruhe, 2004.

Greg Taylor.Lossreserving: An actuarial perspective. Kluwer Academic Publishers, 2000.

Mario V. Withrich and Michael MerzSochastic claims reserving methods in insurance. Wiley,
2008. ISBN 978-0-470-72346.



A FRAMEWORK FOR PRICING A MORTALITY DERIVATIVE:
THE ¢-FORWARD CONTRACT

Valeria D' Amato', Gabriella Piscopo® and Maria Russolillo

"Department of Economics and Statistics, University of Salerno, Campus Fisciano 84084, Italy
SDepartment of Mathematics for Decision, University of Florence, Via Lombroso 6/17, 50134
Firenze, Italy

Email: vdamat o@ni sa.it, gabriella.piscopo@mnifi.it, nrussolillo@mnisa.it

1. INTRODUCTION

Traditionally the capital markets limited their role in imance to provide capital in the form of
shares and bonds to insurance and reinsurance companiesvétoin recent years a whole new
range of insurance linked products has become availablidnwork we focus on an insurance-
linked derivative which is a derivative whose value is lidke an insurance index (or company
specific losses) rather than a stock price. Longevity andatityrderivatives are financial contracts
that allow market participants to either take exposure, estgle exposure, to the longevity and
mortality experience of a given population of individuals.

In the past century remarkable improvements in human lifeeetancy have been observed.
However, future demographic patterns are uncertain afidwtfto be predicted accurately. The
uncertainty affecting such trends is referred to as lortgeisk. Longevity risk derives from sys-
tematic deviations of the number of death from its expectddey it is a macro risk, or systematic
risk, which cannot be reduced by diversification. A good ustnding of mortality rate patterns
over time is needed, so that the underlying changes can beadely modelled and projected into
the future. A failure to allow appropriately for longevitisk would mean that the premiums and
reserves for annuity and pension products would be undedstaith potentially disastrous con-
sequences for governments and financial institutions wexbl Recently, on the one hand there is
an increasing emphasis on the market value of longevityimiskregulatory context (Solvency II,
IFRS), where authorities are focusing on capital adequaégd® the adverse impact of the risk
and pension and annuities providers need to hedge theiserpto longevity. To have an idea of
the impact of longevity risk, in 2007 the UK pension regufagstimated that the present value of
UK'’s pension fund liabilities increases by 3% per additioyear of life expectancy. On the other
hand, there is an increasing appetite from investors fotatty linked securities. To satisfy both

81



82 V. D’Amato et al.

hedgers and investors, several investment banks areryilde technology for trading longevity
risk. In particular, according to the OECD report (2010), ploéential size of the longevity market
is valued of the order of $ 25 trillion. In other words, longgwecomes a new asset class for
different stakeholders like Insurance Companies, Pensigo@luFunds, Hedge Funds and so on.
For such institutional investors, longevity representstaptially attractive investment opportunity
primarily because it is not correlated to non-life, creditianarket risks. Investors see longevity as
a new asset class providing good diversification due to lametation with other assets and posi-
tive risk premium. In this perspective, capital markets transfer longevity exposure and start to
promote the development of a liquid traded market in longevsk transfer. Blake and Burrows
(2001) were the first to advocate the use of mortality-linkedurities to transfer longevity risk to
the capital markets. Their proposal has generated comdildeattention in the last few years, and
major investment banks and reinsurers are now activelyating in this space (see Blake et al.
(2008), for an overview). To break down the barriers to miagkewth, capital markets support the
development of consistent standards, methodologies amchbwarks, for building a liquid trad-
ing market, particularly in UK through the Life & Longevity dkets Association (LLMA). The
standardisation process involves a default methodologgrims of full and detailed disclosure of
data sources, algorithms, rules, degree of discretion amdrgance procedures, and provides a
template that market participants can use to develop desdibust customised longevity indices
that facilitate longevity transactions. Derivatives onrtatity index can be developed to transfer
longevity risk. In order to price this kind of products, mdagtors have to be kept into account:
the structure of the product, including pension amountppayt frequency, details on guaranteed
payments; data on the reference lives and base mortalgg,rétie starting point for analyzing
the possible evolution of future cash flows; the expectedtatity improvement, important for
estimating the possible evolution of the future cash flowdthe risk premium.

In this extended abstract, we focus on derivatives invgltite exchange of the realized mortal-

ity rate of a population at some future date, in return for adirortality rate agreed at inception:
the ¢-forwards. We present the stochastic Lee Carter model fgegiing mortality and finding
the best estimates of the mortality probabilities necgssadefine the fixed leg of the-forward.
In D’Amato et al. (2011) we deepen the analysis and discusgdissible uses of financial tools
for pricing and managing, mortality-dependent contratitsparticular, we make use of the sim-
ilarities between mortality and financial setting to showvhee can model mortality risks and
price mortality-related instruments using adaptationshef pricing frameworks that have been
developed for financial derivatives.

2. THE MODEL

The ¢-forward contract is the simplest instrument for transferiongevity risk. Ag-forward is
an agreement between two counterparties to exchange atire flate an amount equal to the
realized mortality rate of a given population (the floatieg)l at that future date, in return for a
fixed mortality rate (the fixed leg) agreed upon at the in@eptf the contract. The floating leg
of the instrument references the uncertain future moytadite of the population, as reflected by
an appropriate index. A counterparty hedging longevitk visll receive fixed and pay floating
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mortality. A ¢-forward can be stipulated between a pension fund or anpudyider (protection
buyer) and a life insurer provider (protection seller).tildly the value of the contract is zero as
the present values (PV) of floating and fixed legs are equdhelirealized mortality is less than
expected the protection buyer receives a net payment.

LLMA provides a simple framework to price this kind of cordta starting from the base
mortality table, they consider mortality improvementsanns of a given percentage of the his-
torical mortality rates. D’Amato et al. (2011) show the impaf longevity risk on the pricing
of ¢-derivatives projecting the mortality improvements in arenaccurate way. To this aim, we
consider a stochastic model for mortality projections. Ayéanumber of projection models are
available to generate future mortality rates from hist@irideath. Such models include the Lee-
Carter (LC) model (1992), widely considered because it preddairly realistic life expectancy
forecasts, which are used as reference values for othelodethn recent years, there have been
several extensions of the standard LC method; Renshaw aretidab (2003) have shown an im-
provement in the fitting using a Poisson iterative versiothefLee-Carter. Our main contribution
is to exploit this mortality projection model in the pricig ¢-forward, improving the algorithm
used to define the fixed leg of the contract.

The model can be summarized as in the following:

E[D%t] = dm,t = POiSSOI(]Emth%t)

whereD, , is the number of deaths at ageand timet, £, ; is the exposure at risk and, ; is the
death rate, where

Hzt = eXp<Oém + ﬂx"it)'

The parameters of the model are estimated by maximising ¢ieséh likelihood function. In
order to fit the Poisson log-bilinear model, we resort to thetive fitting method as described in
Renshaw and Haberman (2003). According to this method, bssiple to optimise the Poisson
likelihood by monitoring the associated deviance:

da:,t

CZth) - (dx,t - dz,t)}a

D(dr,ta dz,t) - Z dev(dr,ta CZz,t) - Z 2{dz,t 108;(
x,t

x,t

wherecixyt = B, exp(dy, + Bxl%t).

3. NUMERICAL APPPLICATION

We have produced an application to the Italian populatioe.have considered @forward with
notional amount equal to 10000 euro, with trade date 31 Dbeer®2006 and maturity date 31
December 2017. The population data considered are thoeeteal in the Italian mortality table
from 1974 to 2007 downloaded from the Human Mortality Datsbdl he reference population is
represented by Italian males aged between 70 and 74 in 2003aggregate mortality rate for the
portfolio is an average of the mortality rates for each ofititividual ages, see Table 1.
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Age  ¢(2007)
70 2.02195%
71 2.29090%
72 2.56166%
73 2.84514%
74 3.19871%
mean 2.58367%

Table 1: Base mortality rate for the reference population

Letgrg(2007 : 2017) be the fixed forward mortality rate and tg2017) the floating rate, given
by the mortality rate in 2017. In order to determine the fixaglirpent of thej-contract, we have
to consider that the longevity market is net short; thusstmes require compensation to take on
longevity risk. For this reason, forward mortality ratesglal be lower than expected mortality to
provide a risk premium. For illustrative purpose, LLMA gastthe fixed mortality rates in terms
of the best estimate mortality rate according the followfioignula:

qrE(2007 : 2017) = qpg(2017)(1 — 1)

whereggy is the best estimate mortality rate ants a given risk premium.
In our application we have calculated the best estimate atityrtrate projecting the mortality
through the iterative Poisson Lee Carter model. Table 2 sliosveesults.

70 1.81760%
71 2.02330%
72 2.24682%
73 2.50887%
74 2.78085%
mean 2.27549%

Table 2: Best Estimate mortality rate

If there were no risk premium for transferring longevitykrishen the best estimate mortality
rate would correspond to the fixed rate in thiforward transaction. However, the longevity market
Is net short; thus investors require compensation to takeragevity risk. For this reason, forward
mortality rates should be lower than expected mortalityffebent approaches can be used to
include the risk premium in the pricing. For illustrativerpase, LLMA quotes the risk premium
in terms of a given decrease in the level of the best estimai¢aiity rate. In D’Amato et al.
(2011) a different way of defining the risk premium is present



A framework for pricing a mortality derivative: theforward contract 85

References

D. Blake and W. Burrows. Survivor bonds: Helping to hedge niityteisk. Journal of Risk and
Insurance, 68:339-348, 2001.

D. Blake, R. Mcminn, and J. Wang. Longevity risk and capital kets: The 2007-2008 update.
Technical Report 28, Pension Institute, London, Novemb8&820

A.J.G. Cairns. A family of term-structure models for longrterisk management and derivative
pricing. Mathematical Finance, 14:415-444, 2004.

G. Coughlan, D. Epstein, A. Sinha, and P. Honig. Lifemetrisoolkit for measuring and man-
aging longevity and mortality risks. technical documenecHnical report, JPMorgan, March
2007.

V. D’Amato, G. Piscopo, and M. Russolillo. The mortality png of the ¢g-forward contracts.
Working paper, 2011.

Human Mortality Database. University of California, Berke([®@SA), and Max Planck Institute
for Demographic Research (Germany). URLt p: / / wwww. humannortal i ty. de.

R.D. Lee and L.R. Carter. Modelling and forecasting U.S. midytaldournal of the American
Satistical Association, 87:659671, 1992.

Life and Longevity Market Association. Longevity Pricing rdfmework., October
2010. URLhttp://ww. Il ma.org/files/docunents/Longevity Pricing_
Framewor k_Fi nal . pdf.

G.N. Loyes, N. Panigirtzoglou, and R. Ribeiro. Longevity: arke&in the making. Technical
report, JPMorgan, July 2007.

A.E. Renshaw and S. Haberman. Lee-Carter mortality forewstith age specific enhancement.
Insurance: Mathematics and Economics, 33:255-272, 2003.



86

V. D’Amato et al.




PROFIT TEST MODEL FOR PENSION FUNDS
USING MATRIX-ANALYTIC MODELING

Maria Govorun®, Guy Latouche’ and Marie-Ange Remiche’

fUniversieé Libre de Bruxelles, Bpartement d‘informatique, Boulevard du Triomphe 2,
1050 Brussels, Belgium

$Facultes Universitaires Notre-Dame de la Paixepartement d‘informatique,

Rue Grandgagnage 21, 5000 Namur, Belgium

Email: ngovorun@il b. ac. be, | atouche@l b. ac. be, reni che@ undp. ac. be

In the present work we apply matrix-analytic methods to build up a pension fund model with our
main objective being to describe the profit arising from the launch of a pension plan. We chose
the Present Value to describe the profitability of the new project because it is a widely used and
transparent measure, as shown in Smart (1977). Present Value consists of discounted cash inflows
and outflows which we obtain for every individual at future times. The problem requires that we
calculate tariffs and give a proper description of the evolution of plan participants before and after
the stabilization moment, which we also need to determine.

Here, we consider a defined benefit pension plan with a lump-sum payment upon retirement
and the sum of accrued premiums in case of a death or upon leaving the plan for other reasons.

The evolution of plan participants is assumed to follow a Markov chain with four sets of states:
active participant, retired participant, dead participant and participant stopping the contract. Re-
tired and dead participants, and those stopping their contracts are replaced by new participants.
The policy, whereby the replacements take place is a part of the model and composed of a delay
and a structure of the replacement. We need to estimate the transition rates of the Markov chain
and, in particular, the rates at which an individual dies, retires or stops the contract.

In order to determine Cash inflow and Cash outflow we need to determine these properly for
every individual. To do this we look for the distribution of the number of years already spent in
the plan by an active participant, and the succession of phases which he visited in the past.

This type of models may be used with more than one objective in mind. For instance, it allows
us to find values of pension plan characteristics to increase the profit. In the present work we look
for the optimal replacement speed to balance future cash flows in the long-run.

1. EVOLUTION OF PLAN PARTICIPANTS

We use Markov chains to describe the evolution of pension plan participants. This approach was
used by Bertschi et al. (2003) and by Mettler (2005), where an evolution of plan participants is
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described by a generator matrix. We assume that phases taigents are grouped into four
categories: active (A), retired {Rsurrendered (Sand dead (1), and denote the conjunction of
phases forR, S and D as(@). Denote the phase at timeas ;. We look at the evolution in
continuous time and organize the structure of the generator matrix according to these four sets of
phases. Therefore, we assume the generator matrix to have the form

Haa Harp s Iap
IIra g O 0
Ilga 0 IIgg 0
HDA 0 0 1_[DD

wherell 44 is ann by n matrix that describes active participanik, iz, I1,5 andIl 4, are column
vectors of size: representing transitions to one of the quitting staleg,, I1s4 andIl 4 are row
vectors of sizen describing replacements in case of retirement, surrender and death, correspond-
ingly. We assumélzg, I1ss andIlpp to be scalars, which are equal to each other and represent
the rates at which an individual who leaves the plan is being replaced.

We calculate all financial results once in a year, meaning a discrete evolution of plan partici-
pants:

Pa=Pe", 0<t<H,

whereP, is the distribution ofd; at timet, Pt(i) =P [P, =i, andH is a chosen time horizon.
Denote the number of years spent in the system at tirag an active participant ag,. The
probability that a new participant starts his contract at tinmephase is

MP=P[U, =0, & =i],

i € A, and it is determined a&/” = P(? (eH)Qi. Let us denotd/, = (Mt(i), i€ A).

Transition rates: aging and death

To find the death rates, we use an approach introduced by Lin and Liu (2007). According to this
approach, when active, participants follow a continuous time aging process, where time of death
follows a phase-type distribution (see Latouche and Ramaswami (1999)) with generatorimatrix
and initial probability vectory = [1 0 ... 0]. Therefore, the aging process is a finite-state Markov
process where the states are defined as health indices called “physiological ages”. The probability
to stay alive at leastyears for a newborn individual (survival probability) is equal to

SA(t) = ae1.

The phase-type distribution may be fitted to actual mortality data and may also be adapted to
different assumptions.

Transition rates: retirement

In order to determine the retirement rates we assume that retirement happens at the statutory re-
tirement ageR. In order to find the retirement rates for every “physiological age”, we define a
model similar to the aging model described above, but with an additional absorbing state repre-
senting retirement. The probability to stay alive at l¢agtars for a newborn individual (survival
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probability) is denoted as§“%(¢) and has a representation similar to the one for the aging model.
The generator matriX.” of this modified model is obtained from the generatdny subtracting
retirement rates from the diagonal. Define the jump functidgh= F(¢) such that

SA®t), te0,R)
0, t>R

—N
S|

==
1l

In order to findr we need to find an approximation of the functiéiit) by a phase-type distri-
bution. Denote the expected “physiological age” at &gjas:*. We assume the vecterto be a
constant value, for all phases less that and a constant valug + r, otherwise, and we apply
the least squares method as a fitting procedure.

Trangition rates: surrender option

Surrender rates (w;, j € A) for active employees should be chosen with caution and match the
actual data. From the data we can obtain the empirical distribution of the number of years spent
in the pension plan at the moment of stopping the contract. In our experience, the form of this
distribution is quite stable for all pension plans. Therefore, we can derive an empirical survival
probability S, which is the fraction of the plan participants who stay more thgears as active
participant.

In order to find a surrender rate for every physiological age we define a model similar to the
retirement model described above, but with an additional absorbing state representing surrenders.
The generator matrix becomés (w) = L — diag(w). The main difference of this model with
respect to the previous two is that timeow has the meaning of the number of years spent in
the pension plan and no longer the age of a participant. To adjust the interpretation, we take
into account the initial distribution of physiological ages of the plan participafts,With this

adjustment the terrﬁPoeL t) is the probability to survive at leastunits of time in the pension

plan as an active participant and to be in phaagtimet. In order to determinev, we need to find

an approximation of the empirical probabilifg. As in the problem of finding retirement rates
we assume a fixed structure of the vectoand apply the least squares method to the fitting of
Pyel®™)t1 to S, for all ¢.

A rather good approximation can be obtained assuming the vedtohold a similar structure
as for retirement rates. However, in this caséas a different meaning. Denote the maximum
possible length of service in the pension plan obtained from the dataHBseni* is the expected
phase of an individual who spetityears in the system with retirements described above.

In order to compare all three models we need to construct a survival function for the model with
surrenders. We cannot obtain it in the same way as for the first two models due to the difference
in the interpretation of the time in the model. In the first two cases, at the start, all the people are
newborn and the time is connected to the age of an individual, whereas in the third case the time
starts at the moment of entering the pension program. In order to perform a proper comparison we
construct the survival function such that it takes into account the ages of the plan participants prior
to the moment of entering the plan:

SARS (1) _1—<Z(1 aeleel®(t- )>P[B:$]+(1—aeLx1)§P[B:x]>,
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Survival probability
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Figure 1: Survival probability.

whereP [ B = z | is the initial distribution of real ages of the plan participants. All the survival
functions SA%5, SA and SAT are presented in Fig. 1 in different types of dots. The solid line
represents the jump at the retirement aye 65.

Transition rates: replacements

We need to make assumptions on a structure and a speed of the replacement. We assume the struc-
ture to be identical to the initial distribution of participants in the system and the same replacement
speed for surrendered, retired and dead participants.

2. CALCULATION OF TARIFFS

We use a traditional balance approach to calculate the tariffs for the chosen pension plan. We
assume that an individual in phagat the moment has the salar(f)gj), and calculate the tariff as

a percentage of this salary. We also assume the fund to have two types of expenditures per policy:
annual,c, and initial, /. In the balance equation we take into account two decrements: death and
surrender option. However, the model we chose to describe the evolution of the plan participants
poses some difficulties. Both of them are caused by the presence of “physiological ages” instead of
real ages. First of all, it makes the distance to the statutory retirement age undefined, which implies
an undefined horizon for calculations. Secondly, for an individual in phatee probability to
survive withint years is no longer a multiplication of successive one-year survival probabilities for
the phases fromi to (j +¢ — 1). To deal with these difficulties, we calculate tariffs= u(x, j)

for every phasg and every age:

N .. |0 .. [ . ] N -0
u(waj)aﬁa]g_m = pad) + :u(xaj)Ag':]R—a: + cu(x,J)a}}R_:ﬂ + 1,
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PT model, dependent decrements
o Classical MT approach, independent decrements
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Figure 2: Tariffs for ages.

where

L0 n+k [SD,D] [SDD oW
n\afj _ZUJF npj ) ZU k7

AL =3 )7 S

In the equation above, p[SD Pl = qU)el®Pnelky is the probability to remain active in the plan

for n years with respect to death and surrender option and then remain alikey&ars. The
quantity ,, (pq)g.SD} = oWl (=1)(1 — ¢L7”1) represents the probability to remain active for

years and then become inactive due to one of the indicated reasonSaﬁéﬁe,O, if i # 7 and

o) =1,if i = j; LP = L — diag(w).

We also consider another method of tariffs valuation. In the circumstances where one has two
separate sets of survival probabilities, one for death, one for surrender, it is a standard practice to
make the approximation that the two decrements are independent. In order to calculate tariffs with
this method it is sufficient to use the survival probabilities in the standard balance equation with
two independent causes of decrements. The method is not as precise as the previous one, however,
it gives similar results, we give an illustrative example in Fig. 2.

To obtain the tariff for the real age we weightu(x, j) with probabilities to be in the phase
conditioned on the age being Verification of the tariffs is based on the comparison with the
tariffs calculated with the corresponding mortality table and where the decrements are assumed to
be independent. The results are presented in Fig. 2.

In order to derive the tariffi(j) for phasej we perform a weighted sum of tariffgz, j) over all

x, multiplied by the probability to be in the age conditioned on the phase being
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3. TIMETO STABILITY

Time to stabilityt* is the length of time after which all characteristics of the population become
stable. This time is useful to know when choosing the time horizon for the cash flows calculations.
In the stationary regime the matrX’ has all zero eigenvalues and one eigenvalue which is equal
to one. The matrix™ has one eigenvalue which is equal to one and others that are strictly less than
one. Taking these facts into account we fiidrom the equation\’” = ¢, where) is the second
maximal eigenvalue of the matriX! in terms of modules andis a required degree of precision,

so thate'"* is nearly constant for > ¢*.

4. CASH FLOWSAND PRESENT VALUES

To estimate the profitability of the fund with respect to the chosen pension plan, we need to obtain
its future cash flows. Clearly, at every moment of time, the total cash flow is equal to the sum of
the cash flows over all individuals. To properly calculate the cash flow coming from an individual
in phase;j at timet, we need to know how long the individual has already been in the system
and which phase he was in at the moment of entering the program. Thus, for every individual
we need to find the distribution of years spent in the system (called the “seniority distribution”)
and the distribution of the entering phase (called the “reversal probability”). Denote the seniority

distribution vector at time¢ as"N, = <TNt(i), i€ A), where’ N = P[0, =r, &, =i]is
the probability that a participant at timtehas physiological agéand seniorityr- in the plan. As
suggested by Janssen and Manca (1994), we can solve the system of equations:

{ N (T_th) e r<t+1

0 _ )
Nt—’r-l—l - Mt—r-l—l

For the cash flow calculation we need conditional probabilitiegt) = P [ ¥; = r | &, = i | for
active plan participants, which we find from the equation

JPi(t) = "N /P [® =]

The reversal probability to enter the pension plarears ago in phasgegiven the phaséat timet
we define ad'P;;(¢). This probability can be found from the equation

Bp(t) =P[U,_, =0, ®_,=j, U,=r, &, =i]/ N

— P [ \Ijt—r = 0 ) @t_r frng j ] (enAA’I‘) /rNt(’L) :

Ji

where (eHAAT)ji Is the probability to stay among actives folyears starting from phasgand
being in phase at the end of the period. In terms of the distribution of new plan participants,

iji(t) = Mt@r (enAAT) i / TNt(Z)-
We assume all the premiums to be paid at the beginning of each year and we denote the cash inflow
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coming at time from the individuals in phasgi € A, asF; (i), where

t
F(i) = N°P[ &, =i ] | {Pi(t) 6] u(i) + Y JPi(t) Y Pji(t) O u(j)
r=1 JjeEA
N? is the total number of plan participants. The total cash inflow in thetiedr," = >, _, F;"(4).
The cash outflow coming at timtefrom the individual in phasé ¢ € A, consists of several terms:

Fy (i) = NP[®, =i] ("), + cNP[ &, =i ]+ N°(c+ )M+

t
+NP[ By =i ]((e"),g + (€M),,) D FPit) D r FPi(t) ©F ().
r=0 jEA
Here the first term represents payments to newly retired participants; the second and the third term
are periodic expenditures for current active policies and periodic and initial expenditures for new
policies; the last term describes payments to surrendered and dead participants.
We derive the present value implementing the formfilg = 3.7 (F" — F7) /(1 +v)', where
v is a discount rate.

5. OPTIMAL MODIFICATIONS

A first question about the model is how the speed of finding new clients affects the cash flows. To
answer this question we solve the equation

Fr(\) =F-(\),

whereF+, F~ are the values of the cash inflows and outflows in the long runi ghds the speed
of the replacement for surrendered, retired and dead plan participants. In order to cdltylate
F~ we obtain stationary characteristics of the population of the plan participants. The logic of
its derivation as well as the derivation 6", /'~ remains the same as in the previous sections,
assuming the initial distribution to be the stationary distribution of the population.

We solve this balance equation numerically. The resulting difference in cash flows is presented
in Fig. 3. TheX-axis is the number of years representing the delay for the replacemenit.-dkis
is the difference between cash inflow and cash outflow. The starred part of the curve corresponds
to a positive future cash flow and the solid line — to its negative values. In this example all salaries
are fixed and equal to one. The behavior of the curve is quite logical — the faster the replacement,
the greater the money. In order to have a positive profit, the replacement should happen within
about 3.3 years.
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Optimality results in the reinsurance literature focus mainly on the cedent’s perspective. When
the reinsurer’s perspective is not part of the considerations often Stop-Loss contracts are identified
as optimal. Current papers (see e.g. Bernard and Tian (2009) and Cheung (2010)) study optimal
reinsurance contracts that minimize the VaR or TVaR of the cedent. It turns out that again the
“classical” reinsurance treaties, as Stop-Loss and Quota-Share lead to optimal results. Some re-
cent results on this subject lead to optimal reinsurance contracts, that do not have linear or constant
retention functions. See e.g. Kaluszka (2005), where it is shown, that the optimal retention func-
tion is of a logarithmic type, if Wang’s principle is applied for the calculation of the reinsurer’s
premium.

In practice, reinsurance companies will often avoid such Stop-Loss contracts or set upper limits,
partly to reduce the problem of careless claim settlements and potential moral hazard of the first-
line insurer.

The goal of this study is to take this problem into account more explicitly and to optimize the
situation for both parties, the cedent and the reinsurer, where the objective function is a linear
combination of expected utility of the cedent and the reinsurer, respectively. Some analytical and
numerical results are provided.

1. INTRODUCTION

We consider a general class of reinsurance treaties, where the cedent and the reinsurer share the
risk X according to the following rule:

0, X <t

O = X, X <z*
N max(X — h(X),0), X >z* "’

min(X,h(X)), X >+ 2Nd F= {
wherez* is determined such that = h(z*). This restriction is introduced to assure continuity of
the reinsurance treaty.

1Supported by the Swiss National Science Foundation Project 200021-124635/1.
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We analyze the linear combination of the expected utilittesedent and reinsurer, respectively
and study the form of the functiainx) that maximizes the following problem:

r}rll(%ii {aE(uR(wR +Pr—R))+ (1 —a)E(uc(we + P — Pr— 0))};

whereur andu¢ are utility functions of the cedent and reinsurer, respectively andwitbndwe
we denote the initial capital. Furthermore we denoteé?gnd Py, the original and the reinsurance
premium of the riskX. The risk X is distributed with some distribution functidn(z).

We first study the case where the reinsurance premium is calculated under the expected value
principle, i.e. the security loading is proportional to the expected value:

Pr = (1+0Og) /Oo(ac — h(z))f(x)dx

Secondly we analyze the situation under the variance principle, i.e. the security loading is propor-
tional to the variance.

o0

Pu= [ = rwss +ou( [T nwpr@a— ([ h(w))f(x)dxf )

* *

We restrict ourselves to the case whé¥gis fixed. In this setting the cedent specifies the premium
level that he can afford to pay for the reinsurance. We optimize therefore over all contract forms
that lead to this premiun?z. The parameters df(x) can be determined through this assumption.

2. THE PERTURBATION APPROACH

Our aim is to find a reinsurance contract, more precisely a funétioh that maximizes

*

max{a ( /0 " un(wn + Pa)f(x)da + / " un(wn + Pr— o+ h(z)) f(x)dx) +

h(CC) *

* oS

+(1—a) (/Oz uc(we + Po — x) f(x)dr + /x uc(we + Po — h(a:))f(x)da;) }

We follow the considerations in Chan and Gerber (1985) and apply the following perturbation
approach:

We assumé,(z) to be optimal and set the perturbed versign) to h(z) = h(z) + t g(x), where

g(x) is some arbitrary function. The function(t), with

m(t) = aB(ug(wg + Pr — (X — h(X))4)) + (1 — a)E(uc(we + Pe — min(X, E(X))XM*)),

obtains its maximum then at= 0. The expression&X — A(X)), andmin(X, h(X)) x>, denote
the cedent’s and the reinsurer’s part of the risk under the perturbed reinsurancé(me)aty

We then calculate the derivative of(t) w.r.t. ¢ and set the derivative)’(¢) to 0, ast = 0. Due to

the structure ofn(t), the derivativen’(t) is again a function in terms of expected values. Inside
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the expectation we can rewrite all terms, such that weégetz)(...)) = 0.
Since the integration domain of the expected value is the positive real half-axig(@andé an
arbitrary function, the expression inside the brackets) has to be 0.

We apply the above described approach now in the case, where the reinsurer’s premium is cal-
culated according to the expected value principle. The derivativesivaf.f?, andPo = P — Pg
can then be written as

GiPn= (6 [ (Confn,  fre=(+0n) [ g

This leads to an integral equation iniz). Solving the integral equation, we obtain an implicit
equation forh(x):

H(z,h(x)) =up(we + Po — h(z)) — (1 + Op)d* " — up(wr + Pr — x + h(z))

l—«

+ (L+ OR)d" i (wr + P)F(a"),

whered* and:* are constants depending on the initial capital and the security loading of the
reinsurer. Using the Theorem on implicit functions, the derivatiVe) can be obtained by

P a%H B = up(wg + Pp — o+ h(z))
dr-  ZH  up(we+ Po— () + 125 up(ws + Pr — x + h(z))’

With the constraint* = h(z*) we can determing* by the following implicit equation that can be
solved numerically

¥ =we + Po —up (%UIR(’LUR + Pr)(1 — (14 Opr)d"F(z*)) + (1 + @R)d*i*) ,

whereu, is the inverse function ofy..

3. NUMERICAL RESULTS

We study the form of the functioh(x) now in two different settings: First we analyze the case of
a risk-neutral utility function:z. Secondly we derive the differential equation/g@f) in the case

of a risk-averse utility function, when the variance principle is applied for the calculation of the
reinsurance premiunfy.

3.1. Risk-neutral ur and expected value principle

Given the utility functionsuc(z) = —e c® andugr(x) = z, the non-linear differential equation
for h(x) reduces to
ePeh@p! () = 0.
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The optimal reinsurance treaty is therefore a Stop-Losgacintwvith

x:in (14 Op)i" — ¢
h( ) 601 (F(gj*) — @R(l —F(ﬂ?*))) ’

where the constant$ andc* depend on the initial capital and the weighin the linear combina-
tion. With the restrictionc* = h(z*), one can determine the optimal explicitly.

We analyze the optimal deductibté now for various levels of initial capital- and compare
it with the classical Stop-Loss contract with retentiott (thick black line) that leads to the same
premium.

The other parameters are setutg = 120 and 5 = 0.3. The initial capitalw: takes values in
the set{20, 30, ...,220}. The color gradient runs from dark gray foeyx. = 20 to light gray for
we = 220.
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Figure 1: Cedent’s and reinsurer’s part part for different levels of

Guerra and Centeno (2008) show that under the expected value principle a Stop-Loss contract
maximizes the cedent’s expected utility. The type of the optimal reinsurance contract does not
change when introducing a risk-neutral reinsurer to the optimization problem. But we clearly see
that the optimal retention increases for increasing meaning that the cedent has to cover a higher
amount of claims than in the “cedent-only” case.

3.2. Risk-averse ur and thevariance principle

We assume exponential utility functions for both partiesigx) = —e="c® andug(r) = —e Pr*
and furthermore we assume the variance principle for the calculatiél.ofpplying the pertur-
bation approach as described above leads to an integral equation, that can be solved in an iterative
way. In every iteration step we then solve the following non-linear differential equation
h(x
W (x) + h(z) et
éﬁReﬁR(I*h(’c)) — 2@R(d — )\)
where\ is determined in each iteration step and can be used to measure the accuracy of the ob-
tained solution. The constantsand d depend again on the initial capital and the weighin
the linear combination. For a deeper discussion on the solution of the integral equation, see e.g.
Polyanin and Manzhirov (1998).
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We analyze the optimal reinsurance treafy) again for various levels of initial capitabe
and compare it with a Stop-Loss with retentiotf (thick black line) and a Quota-Share contract
with quotaz?® (dashed black line) that lead to the same premigm
We fix the other parameters top = 120, 5 = 0.5 andSz = 0.47. The initial capitakv- takes
valuesin{10, 15,...,110}. The color gradient varies between dark gray for smalto light gray
for higher values.
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Figure 2: Cedent’s and reinsurer’s part for different levels gf

The numerical solution in this setting leads to a reinsurance treaty that is a combination of linear
and constant parts, as one can in Figure 2(a), for small levels of initial capitdincreasing the
amount ofw¢ leads to reinsurance contracts that tend toward the Quota-Share contract (dashed
black line).

4. CONCLUSION

We studied optimal reinsurance contracts that involve both the cedent’'s and the reinsurer’s per-
spective. In a first step we analyzed the linear combination of the utility functions of the two
parties and derived a non-linear differential equation for the optimal retention furigtion We

further observed that a risk-neutral reinsurer does not change the type of treaty of the “cedent-
only” situation, if the expected value principle is applied, but the retention is changed. If both
parties have exponential utility functions and the variance principle is applied, the parameters have
a strong influence on the form of the optimal retention function. The optimal reinsurance contract
numerically then turns out to be a combination of constant and linear retention functions.
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1. INTRODUCTION

In modeling mortality of coupled lives, it is essential tdoal for dependence between the two
remaining lifetimes. However, it is also vital to evaluake tchange in mortality over time by
comparing generations, both in terms of the change in iddali mortality, and the change in
dependence between the two lives. This should help lifeexffemd pension schemes in their long-
term planning. In this paper, we perform the previous task wweference to three generations
whose males were born between 1900 and 1927 (1903 and 193énfates). We proceed as
follows. We model marginal survival functions of males arthéles using the doubly stochastic
or Cox approach (with a stochastic mortality intensity). \Weorporate dependence through an
Archimedean copula model. We apply the marginal and copudemto a dataset of couples
from a large North American insurer, widely used in the jdifg empirical literature (Frees et al.
(1996)). We use marginal calibrations obtained via Maxiniikelihood and estimate the copula
parameters through the Genest and Rivest method after hawviaged the subset of complete data
in the sample. As part of our derivation, we show that the eerdsdata methodology which one
should in principle use for datasets like the one at handjsteading in generation comparisons.
This is part of the theoretical contribution of the paper. 8@ show that not only the strength, as
measured by Kendall’s tau, but also the type of dependehe&@pula) changes over generations.
Dependence between males and females decreases from 48%t@@oulas go from Frank to
Special. This complements the theoretical contributiothefpaper. Last but not least, we study
the pricing implications for a whole-life, joint-life andusvivor annuity. This is our empirical
contribution.
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2. MARGINAL SURVIVAL FUNCTIONS

We adopt the doubly stochastic approach, based on a coymtingss, the intensity of which
IS a stochastic process (see for instance Cairns et al. (ROO&der some technical conditions,
marginal survival functions can be written as:

S7(t) = Elexp(— / Al (s)ds)]

wherei is the age of the life and indicates the gender. The intensityis assumed to evolve
according to an affine process, so that the survival funatgnbe obtained in closed form. On top
of the affine assumption, we adopt an intensity belonginged=eller family:

dNI(s) = alAi(s)ds + ol \[Ad ()W (s),

whereW/ is a one-dimensional Wiener proces$,> 0, ¢/ > 0. The choice is justified by the
good fit of this intensity both in general — see Luciano anchei¢?008) — and on the dataset to be
used later — see Luciano et al. (2008). This leads to thewollp survival functions:

| Cexo(b)
SI(t) = exp | = RED_iy
¢; +dj exp(bjt)
with
b = —\/(a)* +2 (o))"
¢ = b +af
T2
d=dd

3. COPULA MODEL

As customary in actuarial applications, we consider themarameter Archimedean class , whose
expression is:

Clv,z) = 67" (d(v) + ¢(2))
where¢ is the so-called generator, endowed with the following prtips: ¢ : [0, 1] — [0, +o0]
ande(1) = 0. More specifically, in the calibration part we consider tbikoiwing copulas:

e Clayton,

Gumbel-Hougaard

Frank

4.2.20 in Nelsen (2006), whose generatas(ig) = exp(v=?) — e

Special, with generatat(v) = v=¢ — v°.
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4. FITTING THE MARGINSAND COPULASTO DATA

We choose three generations to be compared:

e a so-called Old Generation (male born between 1900 and I8dfle born between 1903
and 1916);

e a Middle Generation (m.b. 1907-20; f.b. 1910-23);
e a Young Generation (m.b. 1914-27; f.b. 1917-30).

Since the observation window in the original dataset cosgsronly 5 years, the data are censored
from the right. Using all the (censored) data would mean tpleynthe method of Wang and
Wells (2000). We argue that this would lead to misleadingcamions about generation-related
dependence. Therefore, for copula fitting, we consider ¢et@mplata only. The disadvantage is a
significant reduction in the size of the data. The advantageshat

e we can use the familiar method of Genest and Rivest (1993jitoae the copula parameter;

¢ this enables us to carry out a goodness-of-fit testing ubmgarametric bootstrap procedure
of Genest et al. (2006).

We obtain the following parameters for marginal survivaidtions:

OG Male | OG Female| MG Male | MG Female| YG Male | YG Female
a | 961.045 | 790.232 810.051 | 1249.792 528.581 | 619.733
o | 0.007 0.057 2.426 0.021 0.019 0.5

As a consequence, the conditions for the intensity to stajtipe are respected.

The estimates of Kendall's tau are: 0.4396 for the old gediwera0.3826 for the middle genera-
tion, 0.2792 for the young generation. So dependence dexsemwer generations, as one would
intuitively expect. The copula parameters are estimatesutih the inversion of Kendall’s tau
approach of Genest and Rivest. This means to compute thecisketween the theoretical-
function and the empiricak’-function, according to three different norms: quadraigtahce,
Cramer-Mises distance and Kolmogorov-Smirnov distancealllthree cases, the best copula —
i.e. the one with highegi-value — is also the one which minimizes all the distanceturits out

to be the Frank for the old generation, the Clayton for the iheiditie Special for the young. The
non-persistence of the same best-fit copula over genesagtoould not come as a surprise, since
all of them are Archimedean, but they differ in terms of upta@rdependence, and behaviour of
dependence as the members of the couple age. What the sarapis &etell us is that - over
generations - there is not only a decrease in dependencgsatembers of the couple, but also
a change in the type of dependence: for the old generatisrbest represented by the Frank (no
tail dependence, dependence decreasing while aging)hdomtddle by the Clayton (upper tail
dependence, dependence constant while aging), for thegyloyithe Special (upper tail depen-
dence, dependence increasing while aging). However, whelelecrease in dependence is strong
(Kendall's tau going from almost 44% to 28%), the dominaricegiven copula is less pronounced
(the distances anghvalues are not so strongly different). Apart from the statal difference in
dependence, we want to appreciate the impact on joint#ifesarrvivor contracts.
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5. ACTUARIAL APPLICATION

Let us consider a whole-life joint-life-and-survivor arityucontract, for which a benefit of 1 p.a.
is payable in arrears while both lives are alive. The beneditices t® < R < 1 on the first death,
and continues until the last survivor dies.

The tables below show the net single premiums for the caédreopula models and compare them
to the ones obtained assuming independence of the two [Me=y also give the ratio of the two
premiums. Interest is at 2% p.a.. As expected, the ratiodsedsing forR increasing. Note the
special cases at = 0, which corresponds to a joint life annuity?, = 1, which is the last survivor
annuity ; andR = 0.5, for which dependence has no impact.

R | Frank | Independence Ratio
0| 8722 7.72 1.13
1 110.273 9.772 1.051
: | 1079 10.456 1.032
1111.823 11.823 1

21 12.857 13.191 0.975
3113.374 13.875 0.964
1| 14.924 15.926 0.937
R | Clayton | Independence Ratio
0| 12.326 11.261 1.095
T | 13.754 13.222 1.04
1] 1423 13.875 1.026
+ | 15.183 15.183 1

2| 16.135 16.49 0.978
31 16.611 17.143 0.969
1| 18.039 19.104 0.944
R | Special| Independence Ratio
0 | 17.547 16.41 1.069
11 19.635 19.066 1.03
3| 2033 19.951 1.019
| 21722 21.722 1

2| 23.113 23.492 0.984
31 23.809 24.378 0.977
1| 25.896 27.034 0.958
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The actuarial application to pricing of joint-life prodscand reversionary annuities shows then
that not only we should dismiss the simplifying indepengeassumption, but we should also
select different dependence parameters and copulas feratif generations. Neglecting such
differences has a non-negligible impact on the fair pridenauities (unles® = 0.5).
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Deposit Guarantee Schemes (DGSs) are financial instignibiose main aim is to provide a safety
net for depositors so that, if a credit institution failsgytwill be able to recover their bank deposits
up to a certain limit. The recent global financial crisis ligbtiDGS at the centre of the political and
financial debate. In July, 2010, the European Commissiontadaplegislative proposal for an in-

depth revision of the Directive on DGS, which aims at harmimg and simplifying the schemes’

functioning. We propose to investigate some implicatiohthe proposal, focusing in particular

on the DGS financing mechanisms, by simulating the DGS |astsilalition using the Gaussian

one-factor model. The DGS is thus treated as a portfolio okbavhose default probabilities are
estimated from CDS spreads. The proposed approach is appkeshmple of Italian banks.

1. INTRODUCTION

Deposit Guarantee Schemes are financial institutions wimase aim is to reimburse depositors
whenever their bank goes into default. If a credit instdntfails, DGS intervenes and pays back
the bank deposits up a certain amount. It is quite well-knthat the existence of these institu-
tions leads to some benefits: from depositors’ point of vie®S protects a part of their wealth
from bank failures and avoid bank runs; from banking stgbpierspective, DGS contributes to
strengthen the confidence in the financial sector, thus ptiengbank runs, and to create a level
playing field, thus avoiding competitive distortions.

These schemes are in place in many countries all over thelWite in the US, Canada, Russia,
and Australia (Laeven (2002)). In this work we focus on sckenm place in Europe. In the
European Union, Directive 94/19/EC (European Parliamadt@ouncil (1994)) obliged Member
States to ensure the existence of at least one or more scloentiesir territory, but required only
minimum harmonization of rules across DGS; the Directivie delarge degree of discretion to
the schemes, especially in relation to the financing meshanisee Cariboni et al. (2008) and
Cariboni et al. (2010)).
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The 2008 global financial crisis brought DGS at the centréefiblitical and financial debate.
This crisis emphasized the necessity of an in-depth ravisidhe whole Directive on DGS. As a
result, in July 2010, the Commission adopted a legislatiep@sal on DGS (European Commis-
sion (2010)), which aims at simplifying and harmonizing maspects of the DGS functioning
left to the discretion of DGS up to now. The aspects mentionéde proposal which will be more
relevant for our work are the following.

e Simplification and harmonization of the scope of coveragay@eposits by customers and
by non financial corporations should be eligible for pratacin all DGS.

e Harmonization of the financing mechanisms of DGS. All DGSuitianove to an ex-ante
financing system, where financial resources are collected fnember banks in advance on
a regular basis.

e Choice of the target level for DGS funds. The target level f@3 funds would be fixed
equal t02% of the amount of deposits eligible for protection. The tiaios period to let
DGS reach the target level would be equal to 10 years.

In this work we want to investigate the adequacy of the festyreviously mentioned, especially
focusing on the loss distribution of the DGS fund. Followawell recognized approach (Bennett
(2002), Kuritzkes et al. (2002), and Sironi and Zazzara 420@GS funds can be regarded of as
portfolios of counterparty risks. These portfolios consiandividual exposures to insured banks,
each of which has a small but non-zero probability of causessa to the fund. We simulate the

empirical loss distribution of the DGS and we use it to iniggge whether the target size of the
fund fixed in the proposal is adequate to face potential Bdaikgres. The approach is applied to

a sample of 52 Italian banks, accounting for aroa0% of the total amount of eligible deposits in

2006.

2. EMPIRICAL DGSLOSSDISTRIBUTION

In order to obtain the DGS loss distribution, we first estienadnks’ default probabilities and then
we simulate banks’ losses. Individual bank losses are ggtgd to estimate the total loss hitting
the fund. Banks’ default probabilities are estimated from GD8 from risk indicators.

Credit Default Swaps are over the counter bilateral agre&swenere the protection buyer transfers
the credit risk of a reference entity to the protection sdthe a determined amount of tini€ (for

a detailed description refer to Duffie and Singleton (200%) @ Schoutens and Cariboni (2009)).
In this work we estimate banks default probabilities from torresponding CDS spreads market
data. In fact the CDS premia are among the best measures ofatkemnpricing of credit risk
currently available, due to standardized contract desigmisthe relatively high liquidity in the
market (Raunig and Scheicher (2009)). Unfortunately, CDSraots are written only on a very
limited number of banks: in 2006, our reference year, CDSrectg were written on only around
40 European banks, and on only 4 Italian banks. In order targalour sample, we make use
of the entire set of European banks underlying a CDS conteoattvestigate possible relations
between default probabilities and a set of financial indicsgtthis relation is then applied to the
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Figure 1: Procedure for default probabilities’ estimation

sample of Italian banks to get an estimate of the defaultgisibby also for those institutions which
do not have a CDS contract. In developing this approach,gpgati attention should be paid to
the differences between thisk-neutraland thehistorical default probabilities (labelef) P° and
DPT, respectively). In our model, the default probabilitietireated from CDS spreads are risk-
neutral because they come from an underlying pricing moHelwever, the correct probability
measure to be associated to risk indicators is the histgorcdability, because it is backward
looking like the financial indicators, which are built fronalance sheet data. We thus have to
find a proper map that allows us to move from one probabilitysoee to the other. Figure 1
summarizes the procedure to estimate the default probesbili

After DP® have been estimated from CDS spreads (see Schoutens andrnC19)), we
build a mapf between risk-neutral and historical default probab#itie achieve this goal by as-
sociating every Moody’s rating class with both an histdravad a risk-neutral default probability
and we calibrate the quadratic and convex function thatfiieghe figures, according to the root
mean square error criterium (see Schoutens (2003)).

We then study linear model3P” = X3+ ¢, that link the historical default probabilities to risk
indicatorsX. In literature there exists a number of possible financidicators (see, for example,
Chan-Lau (2006)); in this work we restricted our attentiomhi® risk indicators mentioned in the
proposal. Among all possible choices of indicators, the set of intticeithat best explains the
DP? is the one listed in Table 1. By applying the linear model at&iuelied we get an estimate
of the D P? for the sample of Italian banks, even for those who are nottyitig a CDS contract;
by applying the inverse of functiofito the estimated P” we finally get an estimate of the risk-
neutral default probabilities. We assume in our model thatdefault time of the-th bank;

Is exponentially distributed with intensity paramelgr thus the term structure of the cumulative
risk-neutral default probability up to timefor the i-th bank,p;(¢), has the expression given by

!Data source: historical probabilities are estimated frefadit rates published by Emery et al. (2008), risk neutral
probabilities from CDS spreads downloaded by Bloomberggssed from Bocconi University, Milan9" November
2010.

2In the proposal, financial indicators are the basis for thapaation of risk-based contributions. Data source:
Bankscope, accessed from Bocconi University, Milegf! November 2010.
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Exc. Capital
ROAA E—
Total Assets
Liquid Assets Exc. Capital
Customer & ST Funding Risk-weighted Assets
Net Loans Loan Loss Provisions

Customer & ST Funding Net Interest Revenug
Loan Loss Provisions

Cost to Income

Operating Income

Table 1: Financial indicators

Equation (1):
pi(t) =1 — et (1)

From risk-neutral default probabilities the default irdgy parameters; can be estimated accord-
ingly.

We can now turn to the loss distribution. In order to build émepirical loss distribution of the
scheme’s fund, we must define what we mean by default. In theifepcase of a DGS, a loss
occurs if an insured bank fails, thus triggering a fund’sqay Following a common approach, a
single bank is assumed to default when its asset value faits\ba certain threshold. Banks’ asset
valuesA,(t) are modeled by a Gaussian one-factor model, following #s{2002) approach:

At) = Y + /1= pX;, i=1,--- M. )

It can be easily shown that the default timg corresponding to a drawl; of the asset value
process, satisfies Equation (3):

n= i (o) = L2, ©
In this study a bankis regarded of as defaulting if the corresponding defamlétt; is lower than
the transition period, i.e. 10 years. The corresponding i®&qual to the amount of covered de-
posits held by the failed bank. The total loss hitting thedfislestimated by aggregating individual
banks’ losses.

Default probabilities are estimated by using 2006 daily Cp@ads of 40 European banks; the
sample of Italian banks representing the fund is made up dbBRs, accounting for arourtd%
of the total amount of eligible deposits in 2006. The empirioss distribution is built running
100000 Monte Carlo iterations, assuming common correlation fagtes 70% and recovery rates
R; = 40%, equal for all banks. Table 2 reports the loss distributibthe whole sample of Italian
banks: the figures show that the probability that the sampiead suffer any loss, within 10 years,
is aroundr7.5%.

Table 3 reports the empirical loss distribution of the DG8diu At the end of 10 years, the
DGS is assumed to have set aside a fund equaVi®f the amount of eligible deposits, which
corresponds to arourid72 billion € ; by comparing this figure with the loss distribution repdrte
in Table 2 we can see that this amount can cover ar@0fxdof the banking system’s losses.
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Percentile | 77.54 | 77.55 90 90.55 | 90.56 95 99 99.9 99.99 100
Loss (n€) 0 5 6,864 | 7,705 | 7,728 | 25,251 | 82,972 | 150,297 | 167,510 | 167,594

Table 2. Banking system’s loss distribution. Data sourceroBiat and survey distributed by
European Commission JRC among European DGS in 2009

Percentile | 90 | 90.55 | 90.56 95 99 99.9 99.99 100
Loss(r€) | O 0 7 17,530 | 75,252 | 142,577 | 159,790 | 159,874

Table 3: DGS fund’s loss distribution. Data source: Eurostal survey distributed by European
Commission JRC among European DGS in 2009

We further investigate the “optimal” size of the fund in orde have losses covered by the
DGS in95% of the cases. According to Figure 2, if we want the fund to céesses up to thes™
percentile of the distribution, the target size should lisedto around% of eligible deposits.

Target level of the Fund

i 99.9%

95%

1-a

09r-

0.88 I I I I I I I I I
[ 5 10 15 20 25 30 35 40 45 50

Target as a % of eligible deposits

Figure 2: Percentage of losses covered by the fund whenripet &ize ranges frot% to 50% of
eligible deposits

3. CONCLUSIONS

At the light of the recent financial crisis, the European Cossioin has adopted a legislative pro-
posal for an in-depth revision of the Directive on Deposita@zantee Schemes, with the aim of
harmonizing the schemes’ financing mechanisms and funegonAccording to the proposal,

DGS would have to reach a target for their funds equabtmf eligible deposits; the target would
need to be reached within a transition period equal to 10sye@mcusing on a sample of Italian
banks as of 2006, we have found out that such a designed fundosar around0% of banks’
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defaults during the transition period; if we want the funadover losses up 95" percentile of the
distribution, the target size should be raised to araifiicbf the amount of eligible deposits.
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1. INTRODUCTION

The estimation of Outstanding Loss Liabilities (OLLS) isicial to reserve risk evaluation in risk
management. Classical methods based on run-off triangéesanemall amount of input data to be
used. This fact determined their fortune, making them imatedo use, requiring the knowledge
of the triangle of annual paid claims amount only. Howeuas fact constitutes also an important
shortcoming, since using a small sample of data to prediatéuwutcomes may possibly lead to
inaccurate estimates. Anyway, their widespread use irepsadnal practice encourages further
improvements to limit this problem.

Starting from the beginning of this century, bayesian méshio estimating run-off triangles
gained increasing attention as a tool to include expertguunt in stochastic modéland enlarge
the information set on which reserves are computed. ThefuBayesian methods in loss reserv-
ing started decades ago, but it was the possibility of usimgkigh chain Monte Carlo (MCMC)
fast computer-running algorithms that gave high flexipitd the application of this methodology,
allowing for almost unrestricted distributional assuraps. De Alba (2002), De Alba and Nieto-
Barajas (2008) — who introduced correlation among diffeesgident years — and Ntzoufras and
Dellaportas (2002) offer examples of how Bayesian method®eamplemented in the estimation
of outstanding claims for a line of business, introducingipmformation on both future claim
amount (ultimate costs) and frequency. Simultaneousipesworks tried to introduce the use of
copulas — which gained increasing popularity in the finanoddhin the last decade — also in loss
reserving.

The question of how to cope with dependent risks such as fise$oan insurance company has
to face in its different lines of business (LoBs) is surely whast importance. Current practice and
Solvency Il standard formulas account for diversificatignniieans of linear correlation matrices

'For a comprehensive treatment on the use of copulas to aajgregpert opinions, see for example the seminal
work Jouini and Clemen (1996).
2Copulas have been recently used in individual claim modéia¢ and Zhou (2010)).
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estimated on a market-wide basis. Obviously, these coigelanatrices can fail to capture the
specificities insurance companies can present, due toggoigal reasons or management choices.
A few papers studied the application of copulas to run-adinigles estimation. Tang and Valdez
(2005) used simulated loss ratios to aggregate losses fifbenetit LoBs. Li (2006) compared
aggregation through the use of different copula functiangen distributional assumptions on
the marginals. More recently, De Jong (2009) introduced as&an copula model to describe
dependence between LoBs.

This paper aims at combining both these two important aspd&dyesian methods and the
use of copulas. The Bayesian approach, introducing datangpfrom expert judgement, allows
to include additional reliable information when estimgtireserves and to derive full predictive
distibutions. Copulas allow to obtain joint distributiomsan easily tractable way, separating the
process of defining the marginals and the dependence seuc¢tence, we introduce prior infor-
mation on the dependence structure, using Bayesian coputag iaggregation of losses across
LoBs. Up to our knowledge, this paper is the first attempt imoeiticing Bayesian copulas in
stochastic claims reserving. Dalla Valle (2009) appliedhalar technique to the problem of the
estimation of operational risks. We adapt their approat¢hdé@ggregation of OLLs from different
LoBs.

Combining a Bayesian approach to derive the marginal digioibs of OLLs for each single
LoB and the use of Bayesian copulas to aggregate them, it @lpedo obtain a fully Bayesian
model that incorporates expert judgement on the ultimaséscand development pattern of each
LoB as well as on the dependence structure between them.

We apply this model to four lines of business of an Italiarurasice company. We compare
results obtained from the Bayesian copula model with thosairdd from a standard copula ap-
proach, providing then a multi-dimensional applicatiorttad use of copula functions.

2. OUTLINE OF THE PAPER

This section briefly reviews the content of the paper. Fotlaficount of what follows please refer
to L. Regis, 2011, “A Bayesian copula model for stochasticataieserving”, in “Three Essays in
Finance and Actuarial Sciences”, Ph.D. Thesis.

We first present a standard Bayesian method to compute redena single line of business,
which we also use in the application to derive the marginstrifiutions. We consider an over-
dispersed Poission model (ODP), following Merz and Wutin{2008):

Xij i
£ o] -
5105

X;: Vi
Var{—ﬂ@] :ﬂ,
i o
with ¢; > 0,u; >0 V i=1,...,I, (accidentyear)
with~, >0V j=1,...,J, (development year)
62(ﬂla"'7ﬂf7717"'77J7¢17"'7¢I)'

In the application, the model has independent gamma priorbath 11's and~’s and it is re-

)
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normalized fixingu; = 1. The over-dispersion parameigiis set constant across accident years
and it is derived from Pearson’s residuals. A standard Npelrs-Hastings MCMC algorithm
permits to find the predictive distribution of the OLLs foretlconsidered line of business. The
combination of such a Bayesian model for the estimation offrtagyins and of the Bayesian copula
model we provide for the aggregation results in a fully Bagegramework for the estimation of
the overall reserves of a multi-line insurance company.

Thereafter, we tackle the problem of how to capture the dégece between LoBs. Correctly
capturing the presence of dependence between the lossésrient LoBs is intuitively a desirable
feature of a good model for claims reserving. In Table 1 ange2compare the correlation matrix
between the LoBs of an Italian insurance company, estimabad & time series of loss ratios, and
the one the CEIOPS mandated to use when calculating resskvevith the standard formula in
the Quantitative Impact Studies (QFS)

LoB

MTPL MOC FP TPL
MTPL 1 0.4751 0.4598 0.5168
(0) (0.0463) (0.0549) (0.0281)
MOC 0.4751 1 0.8789 0.7331
(0.0463) (0) (0.000001)| (0.0005)
Ep 0.4598 0.8789 1 0.8748

(0.0549)| (0.000001) (0) (0.000002)
TPL 0.5168 0.7331 0.8747 1
(0.0281)| (0.0005) | (0.000002) (0)

Table 1: Linear correlation between LoBs. The brackets tgpoalues.

LoB
MTPL | MOC | FP | TPL
MTPL 1 0.25 | 0.25| 0.5
MOC 0.25 1 0.5 | 0.25
FP 0.25 0.5 1 | 0.25
TPL 0.5 0.25 | 025 1

Table 2: Correlation matrix estimated by CEIOPS and imposédet@articipants to the Quantita-
tive Impact Studies (QIS) to use in the evaluation of resersee European Commission (2010),
p.203.

Table 1 and 2 clearly show that the industry-wide estimat@psed by CEIOPS and industry-
specific ones can differ. Results on the correlation of a tienges of realized losses, which we use
in the application of our model further support this evidenc

Copula functions permit us - as we briefly review in the paperseparate the process of esti-
mating the marginal distributions(L,), . .., F'(L,) of the OLLs of each LoB from the estimation

3The abbreviations in Table 1 and 2 stand for Motor Third Phiapility (MTPL), Motor Other Classes (MOC),
Fire and Property (FP) and Third Party Liability (TPL).



116 L. Regis

of the dependence structure. Moreover, the latter can besledan a highly flexible way, since
many copula functions are available to describe it and captsi (also non-linear) properties.

We then outline a simple procedure to obtain a joint distrdsuof OLLs for ann-dimensional
non-life insurance company through the use of copulas:

1. derive the marginal distributions of the OLIS(L,),..., F(L,) for each LoB indepen-
dently. For this task, it is possible to resort to classicathmds, simulation, as well as to the
Bayesian technique we outlined above,;

2. estimate the dependence structure betweenthdori =1,...,n;

3. choose a convenient copula function and evaluate itsypea(s). The copula will satisfy
the uniqueness properties stated in Sklar's theorem (gedNelsen (2006)), depending on
the form of its marginals.

Sampling from any:-dimensional copula obtained can be done exploiting thpgntas of con-

ditional distributions. Then, we can easily evaluate thanfiies of interest — such as relevant
percentiles — on the simulated sample. Difficulties in thecpdure lie mainly on the correct esti-
mation of the dependence structure, which is a complicaigddiven the low (annual) frequency
of the input data used in stochastic claims reserving mdabsed on run-off triangles. The same
observation applies to the choice of the most appropriapellecfunction. We compare the re-
sults of evaluating the OLLs of a multi-line insurer unddfatient copula assumptions. Including

company-specific measures of dependence in reservesagisimiogether with industry-wide es-
timates as expert judgement could help in improving theityuad the predictions of future losses.
Hence, we present a Bayesian approach to the use of copuladding uncertainty on the param-
eters of the copula function.

The procedure — in general — works as follows:

1. choose a convenient distributional assumption for ther @f the copula parameter(g),
m(6)

2. compute, using Bayes’ theorem, the posterior distrilbutibthe parameter given the input
data:

f(0]x) = f(x]0)n(6),

wherex denotes the x 7" matrix of observations]( is the number of observations).

A convenient choice of the prior distribution involves thete of priors whose densities are con-
jugate to the one of the distribution of the estimation objem our context, OLLs per accident
year. In the paper, we provide a detailed description of thegrlure for a Bayesian Gaussian cop-
ula. In that case, we choose an Inverse Wishart prior digtab for the covariance matrix, which is
conjugate to the multivariate Gaussian. Hence, the posteistribution for the covariance matrix
is again an Inverse Wishart with parameters that can be a®thirom the data.

Finally, we apply the framework to an Italian insurance camp We first compare the distri-
butions of overall OLLs as obtained through standard capuiader different copula type choices
(Gaussian, t and Archimedean copulas) when correlatiostimated through a time-series of loss
ratios and when the QIS 5 matrix of Table 2 is used. Then, wainlbhe simulated distributions
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resulting from our Bayesian Gaussian copula model. Parasetehe prior distribution are set
conveniently to match its mean to the QIS 5 correlation matri

Further extensions involve the application of the Bayestaméwork to a t-copula and the
introduction of an hierarchical model for the estimatiorpafameters.
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1. INTRODUCTION

We study an application of copula modelling to insurance using count data of the automobile
line of business. We consider the following homogeneous risk groups: third party liability prop-
erty damages, third party liability bodily injury and material own damages. First, we model the
marginal behaviour of each group, then we estimate a tri-variate copula. Data suggests similar
correlations between groups. We did a continuous and a discrete approach. Due to the limitations
of a direct discrete approach we perform a continuous approximation. In the discrete case we fit
a negative binomial to each risk group and in the continuous one we try the gamma and normal
approximations.

As our application relies on the assumption of parametric univariate marginals we perform the
goodness-of-fit tests by proposing a parametric extension of the test presented by Genest et al.
(2009). The test is based on the empirical copula,

t+1Z[{ 1<U1,.. Sun}

where u = (uy,...,u,) € [0,1]" and I is the indicator function. In the semiparametric approach
by Genest et al. (2009) the sample of the vector Zis given by

Rank(z;) Rank(z;,,) 1
Tl T j=1,..,

Zj = (Zj17 -~-’Zjn> = (

!'The author thanks Seguros LOGO S.A. for financial support.
The author gratefully acknowledges financial support from FCT-Fundagio para a Ciéncia e a Tecnologia (Pro-
gramme FEDER/POCI 2010)
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where Rank(z;;) is the rank of z; amongst the sample of the claim counts (zy;, ..., Z,;). To
evaluate the goodness-of-fit of a parametric copula model we propose that the sample of the vector
Z is given by

Zj = (Zjl, ~-~7Zjn) = (Fl(Sle), ,Fn(SE‘]n)> j = 1, ,t

The test is based on a statistical test that compares C (z) with an estimated Cj5(2), of the theoretical
copula Cy. This statistical test is given by,

t

T /[0 . [8(z) - cg(z)}2 10(z) = 3" {O(a)) - (Jg(zj)}2 | ()

J=1

A bootstrap procedure is required to compute the p-value of the test (1). The steps of the bootstrap
technique are detailed in Berg (2009) and could be easily adapted to the parametric approach. For
the univariate distributions we do the standard goodness-of-fit tests.

We work with a sample of the automobile portfolio of an insurer operating in Portugal. It has
monthly observations of claim counts from 2000 to 2008. As expected, the estimated values of
the Kendall’s fau presented in Table 1 reveal dependence among the three groups. The descriptive
statistics presented in Table 2 show some negative skewness for the material own damages risk
group which maybe be due to the existence of a franchise and an upper capital limit (value of the
vehicle). For details, please see Santos (2010).

Risk group TPL property | TPL bodily | Material own
damages injury damages

TPL property damages 1 0.437 0.492

TPL bodily injury 1 0.299

Material own damages 1

Table 1: Kendall’s tau matrix of the claim counts

Risk group TPL property | TPL bodily | Material own
damages injury damages

Mean 4028 337 1198

Standard Deviation 568.93 54.07 121.46

Coefficient of Variation 14% 16% 10%

Skewness 0.13 0.38 —0.19

Kurtosis —1.05 0.06 —0.61

Table 2: Descriptive statistics of the data
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Figure 1: TPL property damages - Gamma and normal vs empirical distribution.
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Figure 2: TPL bodily injury - Gamma and normal vs empirical distribution.
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Figure 3: Material own damages - Gamma and normal vs empirical distribution.
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2. CONTINUOUS MODELLING

We consider gamma and normal distributions approximations to model the marginal behaviour for
the claim counts of each risk group. The former can be viewed as a continuous version of the
negative binomial distribution, when the random variables do not take zero values and do not have
a large number of repeated values. The latter is taken from the Central Limit Theorem.

Parameters estimation is carried out using the Inference For Margins method (IFM). It is a two-
step method that first estimates the marginal parameters and then calibrates the copulae parameters.
It does n separate optimizations of the univariate likelihoods, followed by an optimization of the
multivariate likelihood as a function of the dependence parameter vector. Table 3 shows the max-
imum likelihood parameter estimates (ML) for the gamma and normal approximations as well as
the p-values of the Kolmogorov-Smirnov tests for the three risk groups. Accordingly, Figures 1-3
show plots of the empirical and approximating distributions.

Gamma distribution Normal distribution
Risk group « 15} p-value 7 o p-value
TPL property damages | 50.39 | 0.013 | 43.94% | 4028 | 568.93 | 40.37%
TPL bodily injury 39.60 | 0.117 | 96.60% | 337 | 54.07 | 76.34%
Motor own damages 9591 | 0.080 | 59.61% | 1198 | 121.46 | 65.06%

Table 3: ML estimates of gamma and normal fits and p-values

We tried five different trivariate copula families and estimated their parameters considering
both gamma and normal distributions. These results are shown in Table 4. We tried the ¢-copula
but the estimated degrees of freedom were high and thus the ¢-copula comes close to the Gaus-
sian copula. According to Embrechts et al. (2003) a robust estimator for the components of the
correlation matrix R of the Gaussian copula is given by R;; = sin(77;;/2).

Gamma distribution Normal distribution
Copulas 0, 0 p-value 0, 0 p-value
Gumbel 1.5437 | 1.6242 0% | 1.5072 | 1.5781 | 1.50%
Nelsen 1.0474 | 1.0923 | 28.47% | 1.0597 | 1.1043 | 6.89%
Cook-Johnson | 0.9482 - 10.09% | 1.0648 - 5.19%
Gaussian - - 41.36% - - 39.86%

Table 4: Copulae parameters estimates with gamma and normal distributions and p-values

According to the goodness-of-fit test, with a significance level greater than 10%, we came
out with the following models to fit the claim counts: Gaussian copula with normal marginal
distributions; Nelsen’s copula with gamma marginal distributions; Gaussian copula with gamma
marginal distributions; Cook-Johnson’s copula with gamma marginal distributions.

Cook-Johnson’s copula assumes an equal level of association for all pairs of random variables
which is a very restrictive property. For instance, according to the Kendall’s tau in Table 1 we
see that may not be true. Nelsen’s copula with gamma marginal distributions allows skewness in
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the data whereas the Gaussian copula leads to a radial symmetric distribution. Since our data has
some asymmetry, we conclude that Nelsen’s copula with gamma distribution marginals should be
preferred to model the joint claim counts of the three risk groups.

3. DISCRETE MODELLING

In the discrete modelling we consider a mixed Poisson distribution with a structure gamma distri-
bution for the marginals, leading to a negative binomial distribution. Table 5 shows the maximum
likelihood parameter estimates for the negative binomial distribution as well as the p-values of the
Chi-squared test. Figure 4 shows the negative binomial fit versus empirical distribution.

Negative binomial distribution

Risk group « D p-value
TPL property damages | 50.77 | 0.012 14.91%
TPL bodily injury 4392 | 0.115 24.81%
Motor own damages 105.96 | 0.081 78.11%

Table 5: ML parameter estimates of negative binomial distribution and p-values

TPL material damages TPL bodily injury Material own damages

Frequency
e
e

r T T T 1 T T T T T r T T T T T 1
3000 3500 4000 4500 5000 250 300 350 400 450 500 550 500 1000 1100 1200 1300 1400 1500

Claim Counts Claim Counts Chim Counts

Figure 4: Negative binomial vs empirical distribution

The discrete approach should be the natural method to fit the claim counts, however it has
limitations since the copula theory has serious restrictions when the marginals are discrete. Thus,
we can neither properly estimate the copula and its parameters nor fully test the fit. To overcome
these limitations we estimate copulae for the structure distributions. Since the parameters of the
copulae represent the dependence parameters we estimate them using the claim counts sample.
However, since the structure variables are not observable we cannot perform a goodness-of-fit test



124 ML.E Santos and A.D. Egidio dos Reis

for the copulae. Tables 6 shows the estimates for the structure gamma distributions and Table 7
shows the parameters estimates for the copulae.

Structure gamma
Risk group a B=p/(1-p)
TPL property damages | 50.77 0.0126
TPL bodily injury 43.92 0.1303
Motor own damages 105.96 0.0884

Table 6: Parameter estimates for the structure gamma distribution

Archimedean | Structure gamma

Copulas 0, 0,
Gumbel 1.5011 | 1.5829
Nelsen 1.0195 | 1.0704
Cook-Johnson | 0.8485 -

Table 7: Archimedean copulas parameter estimates for the structure gamma for marginals

Comparing the estimates obtained in the discrete modelling with the ones obtained in the con-
tinuous case we see that they are similar in the cases of Gumbel, Nelsen and Cook-Johnson’s
copulas.

4. CONCLUSION

According to the automobile data illustration presented, as multivariate model to fit the claim
counts between TPL property damages, TPL bodily injury and material own damages risk groups,
Nelsen’s copula should be chosen with gamma marginals. The discrete approach presented seems
to confirm this conclusion, and it is an interesting line of research for the future. Moreover, the
results obtained for the degrees of freedom of the ¢-copula support the absence of a tail dependence
in the risk groups. This seems reasonable because extreme events are not covered by these groups.
See Santos (2010) for details.

We remark that this application has at least one limitation due to a possible existence of season-
ality in the data. This is not captured by the IFM method that assumes independent observations.
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We consider the problem of claims reserving and estimatirige setup of run-off triangles. This
problem is motivated by the need of monitoring the randommé€laim developments up to the
time when the ultimate claim is finally settled. This aspdctlaims reserving relies, typically,
on a long-term point of view. This is in contrast with the ghrm horizon inherent to models
describing the total risk for an insurance company, sucth@a®he-year risk perspective used in
the Solvency Il project. The challenge of bridging the gapveen these two viewpoints gave rise
to some innovative research in the study of reserving psssesOne of the first papers dealing
with the one-year reserve risk was the one of Merz aridhfich (2008). In the special case of
a pure Chain-ladder estimate, they provided analytic foamdbr the mean squared error of the
predictions of the run-off result, referred to as th&@ms development resylCDR). Their methods
rely on an extension of the well-known Mack (1993) model.

The present paper intends to provide a general methodotoggdasuring the uncertainty of CDR.
Our approach largely extends that of Merz andtWich (2008). We will make an instrumental
use of the notation and methods of this paper and follow theraents of the proof of their main
results.

1. INTRODUCTION

Merz and Withrich defined in Merz and ¥thrich (2008) theclaims development resylEDR) at
time I + 1 for accounting yeaf/, I + 1] as the difference between two successive predictions of
the total ultimate claim. The first prediction is done at til@vith the available information up to
time I), and the second one is made one period later at fimel (with the updated information
available at timg + 1). Merz and Withrich base their study of the prediction of CDR, and of the
possible fluctuations around this prediction (predictiorartainty) on a distribution-free Chain
Ladder method.

In the present paper we extend their model to a more genaisd of models based on age-to-age
factors. The Chain Ladder Model of Merz anditrich (2008) turns out to be a particular case
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of our general model. In the final section we apply our reswalt®four methods (Chain Ladder
included) of claims reserving often used by practition@ise proofs of the main results are given
in Sloma (2011).

2. NOTATION

e C;; - cumulative payments for accident yeae {0,...,7} until development yeaj €
{0,...,J}

e (;; - random variables observable for calendar yeéarsj < .J and non-observable (to be
predicted) for calendar yeais- j > J + 1

e (; ;- ultimate claim for accident year

e We assume that = J (dataset as run-off triangle, see Table 1)

Accident Development Year
Year i o 1 2 3 i - J
)

=

[

Ci,j
(observations)

Cij
(to be predicted)

Table 1: Run-off triangle (f = J)

o D;={C;;:i+j <I;i<I}-claims data available at timte= /

e Diy={Ci;:i+j<I1+1;i<I}-claims data available at timte= I + 1

3. EXTENSION OF MACK'SMODEL FOR THE CHAIN LADDER METHOD
Define : F;; = C,;41/Ciy - individual development factorsy, ,, - positive random variables

o(C;x)-measurable and(C; ;) - o- field generated by; ;.

3.1. Modd Assumptions

(M.1) The accidentyear; ,...,C; s)o<i<s are independent.
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(M.2) (Ci;) <<, are Markov chains.

(M.3) There exist constant > 0 ando? > 0 such thatforalD <i < Tand0 <k < J—1we

have
E(Fz‘,k | Ci,Oa ce Ci,k) = E(Fi,k | Cz‘,k) = Jr
2

O

Var(F; i, | Cio, ..., Cix) =Var(Fi | Cig) =
Yik

3.2. Moddl Estimators

T—k—1 I—k
o1 Do VikFik 11 i VikFik
fk = ¢ = , and k+ = lIT’ 0 S k S J — 1,
Zi:o i,k Zi:o i,k

1

I—
vl Fop — fr)? foro<k<.J-—2,

1 M
~2
kT T k-1 ;

71 = min(G;_,/55 5, min(G7_3,575_,)).

4. CLAIMSDEVELOPMENT RESULT (CDR)

4.1. TrueCDR
e Single Accident Year
CDR(I + 1) =E[C; | D] — E[C;.5 | Drs1].

e Aggregation over Prior Accident Year

I
CDR(I +1) =Y CDRy(I + 1).
=1

4.2. Observable CDR

e Single Accident Year
CDR(I +1) =C}, - CIi*,

where
J—1 J—1

O;:J =Ciri H 71 and Ci{}_l = Cir-it1 H

J
j=I—i+1

T1+1
fir

j=I—i
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e Aggregation over Prior Accident Year

I

CDR(I + 1) = Y CDR(I + 1).
=1

5. MEAN SQUARE ERROR OF PREDICTION (M SEP) OF CDR

The conditional MSEP considered here gives the prospestivency point of view and quantifies
the prediction uncertainty in the budget valu@ &tr the observable CDR at the end of the account-
ing period. In the solvency margin we need to hold risk capitapossible negative deviations of
CDR from0.

msleR(z+1>|D1(0) =E {(Cﬁi(f +1) - 0>2 | Dz] ,

i=1

I 2
msepzl C/|3\R¢(I+1)\D1<O) =E (Z CDR,({ +1) — 0) | Dy

6. MAIN RESULTS

6.1. Single Accident Year

where
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6.2. Aggregation over Prior Accident Year

—— L o~ AI AI AI AI
msepg:l C/D\R¢(1+1)|D1(0) o Z mse%DRi(I+1)|DI(O) +2 Z Ci,J ) Ck,J (Tu + Ai’J) ,

i=1 k>i>0
where
~2 N 2 ~2 /(7T 2
=7 U[%/( 171‘) J-! Uj/ (fj)
Ti,J = g+l + STV VI-j.j>
I—i j=I—i+1 (53' )
2 7 )2 2 T\ 2
5 J-1 &
N 1_1/( H) Yid—i | | J/< J) Vi-jj
i,J I I+1 BI 51+1
I—i I—i j=I—i+1 J J

7. NUMERICAL EXAMPLE

Following Mack (1999) we define, far<i: < lend0 < j < I — i,

Yig = Wij* ngv
wherea > 0 andw;; € (0, 1] are arbitrary weights which can be used by the actuary to down
weight any outlyingF; ;.

We choose the parameterand the weights; ; to obtain the following four methods (A-D) often
used by practitioners

A. Chain Ladder Model (o = 1, w; ; = 1 for all ¢, j) (see Merz and \thrich (2008) and Mack
(1999)),

>iso CinFin _ >is_ Cikn
Yie Ciue Xy Cir
B. Mean Model The estimators of;, are the straightforward averages of the observed individua
development factors; ; (o = 0, w; ; = 1 for all 7, j),

fk: foro<k<J-1.

k-1
~ 1

= — F; for0<k<J-—1.
Jr I—k; ik, fOr0<k<J

C. Linear Regression Model The estimators off;, are the results of an ordinary regression of

,,,,,,,,,,

I—k—1 —k—
Fi = Zz_o ikt ik 21:0 ik Z’k+1’ foro<k<J-1.

I—k—1 ~9 I—k—1 ~9
2izo  Cik Y=o Cik
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D. Sample Median Model (o = 0, w; ; € {0;1} for all 7, ). The weightsw; ; are chosen in the
way that the estimators gj. are given by

fe = mediar{(F,, :i € {0,...,1 — k—1}}, where

| X (ng1)
2
Xy denotes thé&'™ order statistics of the samplé;, ..., X,,.

if nis odd

otherwise

8. NUMERICAL RESULTS

m’(ﬁk,(i+| D (0)'72
i A B C D
0
1 567 563 572 Q
2 1’488 1°501 17475 1’474
3 3'923 3’863 37082 450
4 9’723 9°634 9°812 472
S 28'443 28320 287563 473
6 20°954 200460 21475 4°614
7 287119 27485 287783 1’5378
8 53’320 52017 54690 1’904
Total 81’080 79'749 82’468 8’771
A/A B/A C/A D/A
Total (%) || 100,0% 984% 101,7% 10.8%

Table 2: Estimates of MSEP (run-off triangle from Table 2 of Merz and Wiithrich (2008))

’m’(ﬁef(w i, 19 e
A B C D
Total 33’470 143’670 14’462 3’787
A/A B/A C/A /A

Total (%) || 100,0% 429.2% 43,2% 11,3%

Table 3: Estimates of MSEP (run-off triangle from Table 1 of England and Verrall (2002))

9. CONCLUSIONS

The methodology developed in Merz anditNfrich (2008) is applied in practice within the Sol-
vency Il framework in the context of estimation of the oneryeaatility of reserves (see CEIOPS
(2010), methods 4-6, p. 64-67).

Our general model gives an alternate approach for suchcapipins. Numerical results from Table
2 (except for model D, the results are close to each otherJabi& 3 (divergent results) show that
the choice of model for reserving processes is still an opatienging problem and underlines the
importance of statistical inference methods to properbeas the model structure in each case.
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