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PREFACE 
 
The fifth edition of the “Actuarial and Financial Mathematics Conference” on February 9 and 
10, 2012 was a great success. In the buildings of the Royal Flemish Academy of Belgium for 
Science and Arts in Brussels we welcomed 150 participants on both days coming from 17 
different countries. This international conference has become an important meeting place for 
professionals of the banking and insurance business such as Dexia Bank, KBC Bank en 
Verzekeringen, Generali Belgium, Delta Lloyd, AG insurance, Risk Dynamics, Reacfin 
amongst others. We counted 60 of them. Some are former master or PhD students of the 
organising universities.  
  
The successful format of this conference consists of 9 plenary 45 minutes talks by invited 
internationally renowned speakers, 8 contributed talks of 30 minutes selected by the scientific 
committee from the many submissions and a poster session during the coffee and lunch 
breaks. 
The first day Thaleia Zariphopoulou (University of Oxford, UK and University of Texas at 
Austin, USA), Rüdiger Frey (Universität Leipzig, Germany and WU Vienna, Austria), 
Cornelis W. Oosterlee (CWI Amsterdam & Delft University of Technology, The Netherlands), 
Erhan Bayraktar (University of Michigan, USA) and Alexandre Novikov (University of 
Technology of Sydney, Australia) talked about their recent research results with a focus on 
finance. Their clear expositions gave the audience some insight in time consistency for mean-
variance portfolio optimization, in structural credit risk models with incomplete information 
of the asset value, in the COS-method as an efficient pricing method for financial derivatives, 
in a framework for solving optimal liquidation problems in limit order books and in analytical 
approximations and numerical results for pricing of volume-weighted average options. 
The second day, the attendants had the opportunity to listen to the following invited speakers: 
Stéphane Loisel (Université Lyon 1 - I.S.F.A., France), Ludger Rüschendorf (University of 
Freiburg, Germany), Annamaria Olivieri (University of Parma, Italy) and Anja De 
Waegenaere (Tilburg University, The Netherlands). All talks dealt with insurance issues but 
with an interplay with finance such as explicit formulas for ruin probabilities and related 
quantities in collective risk models with dependence among claim sizes and among claim 
inter-occurrence times, the description of possible influence of positive dependence on the 
magnitude of risk in a portfolio vector, the joint modelling of financial and mortality/longevity 
risks when modelling variable annuities, two potential strategies to mitigate the adverse 
effects of longevity risk on pension providers. 
 



 
 

The eight talks of the contributed speakers selected by the scientific committee matched very 
well the invited talks they were programmed with. These talks with topics in finance and 
insurance were given by Salvatore Federico (Université Paris 7, Franc), Asma Khedher 
(CMA, University of Oslo, Norway), Marie Chazal (Université Libre de Bruxelles, Belgium), 
Łukasz Delong (Warsaw School of Economics, Poland),  Monika Forys (KU Leuven, 
Belgium), Roman Muraviev (ETH Zürich, Switzerland), Matthias Boerger (IFA Ulm & Ulm 
University, Germany) and Donatien Hainaut (ESC Rennes Business School and ENSAE, 
France).  
New this year was the poster storm session during which the 16 poster presenters got each one 
minute and two slides to tell the audience about the results presented on their poster. By these 
presentations more participants were attracked to the poster session.  
We thank all speakers and presenters for their enthusiasm and their nice presentations which 
made the conference a great success.  
 
The proceedings contain three articles related to the invited talks, three papers containing 
results presented in the contributed talks and eight short communications of poster presenters  
of the poster sessions on both conference days. In this way the reader gets an overview of the 
topics and activities at the conference.  
 
We are much indebted to the members of the scientific committee, Hansjörg Albrecher (HEC 
Lausanne, Switzerland), Freddy Delbaen (ETH Zurich, Switzerland), Michel Denuit 
(Université Catholique de Louvain, Belgium), Ernst Eberlein (University of Freiburg, 
Germany), Monique Jeanblanc (Université d'Evry Val d'Essonne, France), Ragnar Norberg 
(SAF, Université Lyon 1, France), Michel Vellekoop (University of Amsterdam, the 
Netherlands), Noel Veraverbeke (Universiteit Hasselt, Belgium) and the chair Griselda 
Deelstra (Université Libre de Bruxelles, Belgium), for the excellent scientific support, for 
their presence at the meeting and for chairing sessions. We also thank Wouter Dewolf (Ghent 
University, Belgium), for the administrative work. 
 
We are very grateful to our sponsors, namely the Royal Flemish Academy of Belgium for 
Science and Arts, the Research Foundation ─ Flanders (FWO), the Scientific Research 
Network (WOG) “Stochastic modelling with applications in finance”, le Fonds de la 
Recherche Scientifique (FNRS), KBC Bank en Verzekeringen, and the BNP Paribas Fortis 
Chair in Banking at the Vrije Universiteit Brussel and Université Libre de Bruxelles. Without 
them it would not have been possible to organise this event in this very enjoyable and 
inspiring environment. 
 
The growing success of the meeting encourages us to continue the organisation of this 
contactforum to create future opportunities for exchanging ideas and results in this fascinating 
research field of actuarial and financial mathematics. 
 
 
The editors: 
Griselda Deelstra 
Ann De Schepper 
Jan Dhaene 
Wim Schoutens 
Steven Vanduffel 
Michèle Vanmaele 
David Vyncke 

 
 
 
The other members of the organising committee: 
Jan Annaert 
Pierre Devolder 
Pierre Patie 
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Abstract

Variable Annuities (VA) package living and death benefits, eventually aiming at constructing a
post-retirement income, while offering a number of possible guarantees in respect of financial
and mortality/longevity risks. In many circumstances, the policyholder keeps access to her
fund, and can in particular cash money beyond the benefits already set. Apart from financial
and mortality/longevity risks, the insurer is therefore exposed also to the risk of unexpected
decisions of the policyholder. We suggest to adopt a comprehensive approach to these different
risk sources, and we describe a unifying valuation framework of the guarantees under quite
general assumptions.

Keywords: Post-retirement income, GMxB, Guaranteed income drawdown, Optimal surren-
der time, Fair value, Least Square Monte Carlo.

1. INTRODUCTION

Life annuities and pension products usually involve a number of guarantees, such as minimum
accumulation rates, minimum annual payments or a minimum total payout. Packaging different
types of guarantees is the feature of the so-called variable annuities. Basically, these products are
unit-linked investment policies providing a post-retirement income. The guarantees, commonly
referred to as GMxBs (namely, Guaranteed Minimum Benefits of type “x”), include minimum
benefits both in case of death and survival.
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To some extent, the term variable annuity is generic; different benefit arrangements are labeled
in this way. Indeed, the variety of what currently is called variable annuity is very rich. This
witnesses the advantages of packaging life insurance benefits: under the same policy, the policy-
holder gets protection against several lifetime risks, and finds long-term investment opportunities
as well; on the other hand, the insurer may gain some natural hedging effects among some risks,
in particular between mortality and longevity risks.

A description of the main characteristics of variable annuity products, and the market trends, is
provided by Ledlie et al. (2008). A number of contributions about possible approaches to the pric-
ing and hedging of the most common guarantees are available in the literature. Recently, special
attention has been addressed to withdrawal benefits, thanks to the fact that, when appropriately
managed, they can provide a flexible post-retirement income. With regard to the pricing of this
class of benefits, Milevsky and Salisbury (2006) assess their cost and compare their findings with
prices quoted in the market; Dai et al. (2008) develop a singular stochastic control model, and
investigate the optimal withdrawal strategy for a rational policyholder; Chen and Forsyth (2008)
describe an impulse stochastic control formulation, while Chen et al. (2008) explore the effect of
alternative policyholder behaviours. In all such contributions, most of the attention is addressed to
financial risks. The valuation of a variable annuity providing a guaranteed minimum death benefit
and a guaranteed minimum withdrawal is the target of Bélanger et al. (2009), while general frame-
works for the pricing of guarantees under the assumption of an optimal policyholder behaviour are
described by Bauer et al. (2008) and Bacinello et al. (2011). The case of lifelong withdrawals is
dealt with by Holz et al. (2007).

After describing the most common designs of GMxB’s, we address their fair valuation. Fol-
lowing Bacinello et al. (2011), we adopt a unifying approach to the assessment of different risks
originating from the guarantees. In particular, we model jointly financial and mortality/longevity
risks. We also address possible withdrawals made by the policyholder, outside of what contrac-
tually specified. In this respect, we assume alternatively a passive behavior of the policyholder
(“static” approach) and a semi-active behavior (“mixed” approach). None of such assumptions is
fully realistic; nevertheless, assuming a completely active behavior of the policyholder (“dynamic”
approach) would originate major computational difficulties. Conversely, some bounds for the in-
trinsic value of the fair fee for the various guarantees are obtained, which may be useful for setting
prices in practice.

The paper is arranged as follows. In section 2 we describe the structure of the GMxB’s, refer-
ring in particular to the most common designs available in the European market. In section 3 we
define the valuation framework; in particular, we illustrate the possible approaches to the model-
ing of the policyholder behavior. In section 4 we provide some numerical investigations of the fair
value of the contract. Finally, in section 5 we conclude with some closing remarks.

2. THE STRUCTURE OF GMxB’s

A variable annuity is a fund-linked contract, with rider benefits in the form of guarantees on the
policy account value; such riders become attainable either upon death or at specified dates. In the
latter case, some riders are available just in face of specific policyholder’s choices (as we explain
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below).
Available guarantees are referred to as GMxB, where ‘x’ stands for the class of benefits in-

volved. According to a first grouping, guarantees are arranged as:

• Guaranteed Minimum Death Benefits (GMDB);

• Guaranteed Minimum Living Benefits (GMLB).

The second class can be further detailed as follows:

• Guaranteed Minimum Accumulation Benefits (GMAB);

• Guaranteed Minimum Income Benefits (GMIB);

• Guaranteed Minimum Withdrawal Benefits (GMWB).

Premiums, arranged on a single recurrent basis, are invested into the reference fund (selected
by the policyholder, out of the basket offered by the insurer), and they accumulate, net of fees,
in the policy account value. Fees (covering the cost of guarantees, as well as asset management,
administrative and other costs) are charged year by year through a reduction of the policy account
value. They are typically expressed as a percentage of the policy account value; some upfront costs
may also be applied upon premium payment. Usually, the policyholder has the possibility to add
or remove some guarantees after policy issue. Accordingly, the corresponding fees start or stop
being charged.

We now define in detail the main GMxB’s. We refer to a contract issued at time 0, with an
accumulation period of T years, T ≥ 0 (usually T corresponds to the retirement time). The
GMDB and GMAB can be cashed before time T (some insurers are willing to provide the GMDB
also after time T , but up to some maximum age, say 75 years); the GMIB and GMWB can be
cashed after time T , as they provide the post-retirement benefit. If T = 0, only post-retirement
benefits are involved.

LetAt denote the policy account value at time t. Clearly,At depends on the premiums invested,
the benefits paid, the performance of the reference fund, as well as on the cost of the guarantees.

Under a GMDB, the benefit paid upon death (provided that this event occurs prior to the stated
maturity) is given by

bDt = max{At, GD
t }, (1)

where GD
t is the guaranteed amount. Examples of GD

t are as follows: return of premiums; roll-up
of premiums, at a specified guaranteed interest rate; highest policy account value recorded at some
prior specified dates (ratchet guarantee); policy account value recorded at the latest of some prior
specified dates (reset guarantee). In all examples, the guaranteed amount is suitably modified in
case of partial withdrawals. The cost of the guarantee is charged to the policy account value until
time T , or as long as the policy stays in-force (because of death or surrender, the contract could
terminate prior to time T ).

Under a GMAB, at some specified date (typically, time T , as we assume), the insured, if alive,
receives the following benefit:

bAT = max{AT , GA
T }, (2)

where GA
T is the guaranteed amount. Examples of GA

T are similar to those for the GMDB, apart
from the reset guarantee (which, within a GMAB, simply allows to postpone the maturity date T ).
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Similarly to the GMDB, the cost of the guarantee is charged to the policy account value until time
T , or (if the contract terminates earlier) as long as the policy stays in-force.

The GMIB provides a lifetime annuity from time T . The guarantee may be arranged in two
different ways.

• The guarantee concerns the amount to be annuitised. The post-retirement income is defined
as follows:

bI = η max{AT , GI
T}, (3)

where GI
T is the guaranteed amount to be annuitised, defined similarly to the GMAB. The

quantity η is the annuitisation rate, defined at time T according to the prevailing market
conditions.

• The guarantee concerns the annuitisation rate. The post-retirement income is defined as
follows:

bI = AT max{η, g}, (4)

where g is the guaranteed annuitisation rate. This case is usually referred to as the Guaran-
teed Annuity Option (GAO).

It is implicit in both definitions the assumption that the GMIB will be exercised if it is in the money,
neglecting subjective preferences regarding annuitisation vs. bequest, as well as asymmetric infor-
mation. In both cases, if the annuity is fixed, then bI is the flat annual income; conversely, if the
payments are indexed to the insurer’s profit, i.e. the annuity is participating, bI is just the initial
amount of the annual income, which is then subject to revaluation. Of course, arrangements with
annuity payments other than annual are possible. We also note that, in principle, it is possible to ar-
range the GMIB so that both the amount to be annuitised and the annuitisation rate are guaranteed,
but this would be very expensive. The cost of the GMIB is charged before annuitisation.

When exercised, the GMIB implies pooling effects; thus, after annuitisation the policyholder
looses access to the policy account value. This means, in particular, that upon death of the annui-
tant no money is available to her estate, unless some death benefits have been explicitly underwrit-
ten. The following are examples of arrangements, alternative to a straight lifetime annuity, which
provide also a death benefit: annuity-certain with maturity T ′ > T (in which payments are not
contingent on the lifetime; considering the expected lifetime of the policyholder, a long duration
T ′ − T is usually selected for the annuity, say 20-25 years); annuity-certain with maturity T ′ > T
(where T ′ − T usually ranges from 5 to 10 years), followed by a deferred whole-life annuity if the
insured is alive at time T ′; life annuity with capital protection (or money-back annuity), in which
in case of death prior to time T ′ > T (with T ′ − T usually ranging from 5 to 10 years) the insurer
pays back the annuitised amount net of the annual payments already made.

It is worthwhile to mention that what is described above summarizes just some of the GMIB
arrangements available in the market; indeed, several variants are offered by insurers.

Also the variety of GMWBs available in the market is very rich. Basically, the GMWB is a
guaranteed income drawdown. The guarantee concerns the periodic payment and the duration of
the income stream. At specified dates (namely, every year, every month, and so on), the policy-
holder can withdraw the amount

bWt = βtWt, (5)
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where Wt is the so-called base amount (given, for example, by the account value when the guaran-
tee is selected), while βt is the guaranteed withdrawal rate. At specified dates (e.g., at every policy
anniversary), the base amount may step up to the current policy value, if there is a ratchet provision
(such a guarantee may be lifetime or limited to a given period, say 10 years); obviously, the base
amount is suitably modified if the policyholder withdraws more or less than what is contractually
specified. Indeed, the guaranteed payment can alternatively be the exact, the maximum or the min-
imum amount that the policyholder is allowed to withdraw. The duration of the withdrawals may
be fixed (e.g., 20 years) or lifetime. In the former case, if at maturity the account value is positive,
it is paid back to the policyholder or, alternatively, the contract stays in-force until the exhaustion
of the policy account value. The cost of the guarantee is charged to the policy account value during
the withdrawal period. The policyholder keeps access to her fund.

From the descriptions above, it emerges that the GMAB and GMDB are similar to what is
offered in endowment insurance contracts, apart from the possible range of guarantees, which is
wider within variable annuities. The GMIB is, usually, like a traditional life annuity. The GMWB
is the real novelty of variable annuities in respect of traditional life annuities. Even if a GMIB and
a GMWB can be arranged so that they become similar (as it is suggested by some of the variants
described above), they differ basically in respect of: the duration of the annuity (which is usually
lifetime in the GMIB), the accessibility to the policy account value (just for the GMWB) and the
features of the reference fund (which can be unit-linked in the GMWB, given that in principle
the financial risk is borne by the policyholder, while it is typically fixed-interest, and possibly
participating, in the GMIB, given that in this case the financial risk is taken by the insurer). As
mentioned above, the presence of death benefits also in the GMIB, a lifetime duration for the
withdrawals in the GMWB and other possible features may reduce a lot the differences between
the GMIB and the GMWB.

3. THE FAIR VALUE OF THE CONTRACT: THE VALUATION FRAMEWORK

Adopting the well-known approach to the valuation of the market price of a security (see, e.g.,
Duffie (2001)), we assess the fair value of a variable annuity contract as the expected present value
of its cash flows. Discounting is performed at the risk-free rate, while the expectation is taken with
respect to a suitably risk-adjusted probability measure. The incompleteness of insurance markets
implies that infinitely many such probabilities exist. We assume that the insurer has picked out a
specific probability for valuation purposes. From now on, all random variables and processes will
be considered under this probability. The expectation conditional on information available at time
t is denoted as Et[·]. We let rt be the risk-free force of interest at time t, and

Mt = e
∫ t
0 ru du, t ≥ 0,

the value at time t of 1 euro invested at time 0 in a money market account yielding the risk-free
rate r.

For brevity, we refer to a contract issued with a single premium; the more general case of
recurrent premiums may be easily obtained. We let P denote the single premium at time 0, net
of upfront costs. We further assume that all possible guarantees are selected at time 0 and are
maintained as long as the contract stays in-force.
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In order to project the future cash flows of a variable annuity contract, we need assumptions
about the dynamics of the reference fund, the mortality rates and the policyholder behavior in
regard of (partial) withdrawals (outside of what contractually specified). Whatever are such as-
sumptions, the fair value of the contract at time t is defined as follows

Vt = Et

[∫ ∞
t

Mt

Mu

dBu

]
, t ≥ 0, (6)

where Bt represents the total cumulated amount of the benefits paid up to time t, which can be
specified in detail once we have modeled the policyholder behavior. Three approaches can be
adopted in this regard: a static, a mixed and a dynamic approach.

1. According to the so-called static, or passive, approach (see, e.g., Milevsky and Salisbury
(2006)), it is assumed that the policyholder just cashes the benefits contractually specified, with
no extra withdrawal. Thus, in particular: the policyholder does not withdraw any fund from her
account during the accumulation period or during the payout phase of a GMIB rider; if the contract
contains a GMWB rider, the policyholder withdraws exactly the amounts contractually specified;
the contract is never surrendered.

In this case, the total cumulated benefit amount Bt is defined as follows:

Bt = (BL
τ− + bDτ ) 1τ≤t +BL

t 1t<τ , t ≥ 0, (7)

where τ is the residual lifetime of the insured, 1E is the indicator of the event E (which takes
value 1 if E is true, and 0 otherwise), bDτ is the death benefit paid upon death and BL

t (BL
τ−) is the

cumulated living benefit paid up to time t (up to death). Examples of BL
t are as follows:

• under a GMAB:

BL
t = bAT 1t≥T ;

• under a GMIB with lifetime payments, and payment dates (T ≤) T1 < T2 < . . . :

BL
t = bI

∑∞
i=1 1t≥Ti;

• under a GMWB with temporary withdrawals independent of survival, and withdrawal dates
(T ≤) T1 < T2 < · · · < Tm (≤ T ′):

BL
t =

∑m
i=1 b

W
Ti
1t≥Ti +max{AT ′ , 0} 1t≥T ′ .

As described in section 2, the benefits bAt , bIt , b
W
t and bDt depend on the policy account value (see

(1)–(5)). So, in order to project the amount of the benefits, we still need to assess the policy account
value. Let St denote the unit value at time t of the reference fund backing the contract, and ϕ the
proportional fee rate applied to the account value in order to recover the cost of all the guarantees.
We have A0 = P , while the instantaneous evolution of the in-force policy account value is as
follows:

dAt =

At
dSt
St
− ϕAt dt− dBL

t if At > 0;

0 otherwise.
(8)

In some situations, the fair value (6) can be expressed in closed-form, once a very natural
assumption of stochastic independence between financial and mortality/longevity risk factors is
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made. This is the case of the celebrated single premium arrangement analysed by Brennan and
Schwartz (1976) and Boyle and Schwartz (1977), where the contract contains both a GMDB and a
GMAB rider. However, if more sophisticated assumptions do not allow to obtain such closed-form
formulae, a straightforward application of the Monte Carlo method can be carried out in order to
value the expectation in (6).

Since Vt is net of fees, (6) gives the value of the variable annuity contract as a function of the
fee rate ϕ. Of course the contract is fairly priced if and only if

V0 ≡ V0(ϕ) = P, (9)

so that a fair fee rate ϕ∗ is implicitly defined as a solution of (9).

2. Let us now assume a semiactive behavior of the policyholder (mixed approach): as in the
static approach, the policyholder just cashes the benefits contractually stated; however, unlike the
static approach she can decide, at any time, to surrender the contract.

We denote by bSt the surrender value, given by the policy account value net of some penalty,
that the policyholder receives in case of surrender at time t > 0. If surrender is not admitted for
some t, e.g. during the payout phase of a GMIB rider, then bSt = 0.

The instantaneous evolution of the in-force policy account value is still defined by (8); however,
the surrender value must be added to the total cumulated benefits defined in (7). To this end, let
λ denote the surrender time, conventionally equal to τ if the policyholder never surrenders the
contract. Given λ, the total cumulated benefits up to time t, denoted by Bλ

t , are now

Bλ
t = (BL

τ− + bDτ ) 1τ≤min{t,λ} +BL
t 1t<min{τ,λ} + (BL

λ + bSλ) 1λ<τ,λ≤t, t ≥ 0.

The corresponding value of the contract, which is now denoted by V λ
t , is

V λ
t = Et

[∫ ∞
t

Mt

Mu

dBλ
u

]
, t ≥ 0.

Finally, the fair value at time 0 of the contract (net of insurance fees) is given by

V0 = sup
λ
V λ
0 , (10)

where the supremum is taken with respect to all possible surrender times. Once again, the fair fee
rate ϕ∗ is implicitly defined by (9). We note that in (10) we assume implicitly in respect of the
surrender decision an optimal behavior of the policyholder (corresponding to the worst case for the
insurer); individual preferences are disregarded, while they could lead to suboptimal choices, and
then a lower value of the contract.

The supremum in (10) needs to be evaluated by means of a numerical approach. Among
the possible methods that have been proposed in the literature to solve such kind of problems
(binomial or multinomial trees, partial differential equations with free boundaries, Least Squares
Monte Carlo), we choose the Least Squares Monte Carlo method. Our problem fits perfectly in
the general framework dealt with by Bacinello et al. (2010), so that we refer to their paper for an
accurate description of the philosophy underlying this method and the valuation algorithm. For a
brief description of the Least Square Monte Carlo algorithm adapted to our framework, we refer
to Bacinello et al. (2011).
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3. We now provide some remarks on the dynamic approach to policyholder behavior. In
this case, it is assumed that the policyholder is active: she withdraws amounts not necessarily
coinciding with those contractually specified under a GMWB; in particular, she can decide not to
withdraw, or to surrender the contract; partial withdrawals or surrender decisions could be made
on dates not coinciding with those contractually specified, as well as during the accumulation
period. In all of these cases, some penalties are applied by the insurer, while guaranteed amounts
(if present) are accordingly reduced.

The fair value of the contract must be assessed in respect of all possible (and admitted) with-
drawal strategies. A withdrawal strategy is modeled as a stochastic process specifying the amount
to withdraw at each date (provided the insured is alive), including possibly the surrender value. A
strategy is admitted if it complies with contractual constraints. Let θ be the selected withdrawal
strategy; we denote by Bθ

t the total cumulated benefits up to time t; since we are not providing
numerical assessments of the fair value of the contract under this assumption, we do not define
Bθ
t in detail (we refer, instead, to Bacinello et al. (2011)). Given θ, the contract value at time t is

defined as follows:

V θ
t = Et

[∫ ∞
t

Mt

Mu

dBθ
u

]
, t ≥ 0,

while the fair value of the contract at time 0 is

V0 = sup
θ
V θ
0 , (11)

where the supremum is taken with respect to all admitted withdrawal strategies. We note that (11),
similarly to the mixed approach, gives the value of the contract under the assumption of an optimal
policyholder behavior; depending on individual preferences, the real value of the insurer’s liability
could be lower. As already mentioned, in this paper we do not offer specific results following this
fully dynamic approach, which of course requires a numerical scheme. Some results concerning
a contract with a GMWB rider are presented, e.g., by Milevsky and Salisbury (2006), Dai et al.
(2008), Chen et al. (2008) and Chen and Forsyth (2008).

In order to compare the values obtained under the three approaches to the policyholder behav-
ior, we denote by V static

0 , V dynamic
0 and V mixed

0 the contract values at time 0 defined respectively by
(6), (10) and (11). By their very definition, it turns out

V static
0 ≤ V mixed

0 ≤ V dynamic
0 .

Indeed, from the insurer’s point of view, the dynamic approach assumes the worst case scenario
since the policyholder can choose among all withdrawal strategies and, in particular, the surrender
time. In the mixed approach, instead, the policyholder can choose only the surrender time, so that
her optimal strategy is selected within a subset of what considered by a dynamic agent. Finally,
the static approach defines a single, specific, withdrawal strategy included in the previous subset.
As a consequence, the proportional fees that have to be applied to the account value to make the
contract fair are ordered in the same way: they are the highest with the dynamic approach and the
smallest with the static one.



Variable Annuities as life insurance packages: a unifying approach . . . 11

4. THE FAIR VALUE OF THE CONTRACT: SOME EXAMPLES

We provide some numerical investigation on the fair value of (single premium) variable annuity
arrangements. Due to the importance of individual post-retirement benefits (which, in many coun-
tries, are needed to complement the reduced social security benefit and the benefit provided by
defined contribution pension plans), we focus in particular on immediate post-retirement guaran-
tees. We address the following arrangements, which differ one from the other for the duration of
the annuity and the possible presence of death benefits:

case a: GMWB with maturity 20 years;

case b: lifetime GMWB;

case c: lifetime GMWB, joint to a GMDB with maturity 10 years and guaranteed amount given
by the single premium net of the GMWB benefits totally paid up to death.

In all cases, the entry age is x = 65, while (according to the previous notation) T = 0; hence, just
the post-retirement period is focused. The base amount used to define the annual income bWt (see
(5)) is Wt = A0 = P ; the guaranteed withdrawal rate is: βt = 1

20
= 5% in case a; βt = 4.5% in

case b (such a rate corresponds, approximately, to the reciprocal of the expected residual lifetime
obtained under the assumed mortality model, which is defined below); βt = 4% in case c (the lower
guaranteed withdrawal rate in this case, when compared to case b, is justified by the presence of
the GMDB). In case of surrender at time t (event that we address within the mixed approach), a
surrender penalty rate p is applied. The policyholder cashes the benefit bSt = (1− p)At if t is not
a withdrawal date, and bSt = bWt + (1− p) max{At − bWt , 0} otherwise.

We now briefly describe the financial and mortality model adopted in the valuation. We refer
to the framework presented in Bacinello et al. (2010) and Bacinello et al. (2011). All processes are
specified under the selected risk-adjusted probability measure.

We assume that the risk-free force of interest follows the square root process:

drt = ξr (ζr − rt) dt+ σr
√
rt dZ

r
t .

We then assume that the unit value of the reference fund satisfies a diffusion with stochastic
volatility, namely the dynamics

d logSt =

(
rt −

1

2
Kt

)
dt+

√
Kt

(
ρSK dZK

t +
√

1− ρ2SK dZS
t

)
,

where the variance Kt follows the square root process

dKt = ξK (ζK −Kt) dt+ σK
√
Kt dZ

K
t .

We assume a stochastic force of mortality, following the mean reverting square root process

dµt = ξµ (µ̂(t)− µt) dt+ σµ
√
µt dZ

µ
t , (12)

where µ̂(t) = c−c21 c2 (x + t)c2−1 is the deterministic Weibull intensity. In the following, we
denote by τ̂ the residual lifetime having force of mortality µ̂. The standard Brownian motions
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Zr, ZK , ZS, Zµ are assumed to be independent. The residual lifetime τ is then linked to µ
through

τ = inf

{
t ≥ 0 :

∫ t

0

µs ds > E
}
,

where E is a unit exponential random variable independent of (µt)t≥0. The force of mortality µt
drives the instantaneous probability of death at time t conditional on survival for an individual aged
x at time 0. The unconditional survival probability is given by

P (τ > t) = E
[
e−

∫ t
0 µs ds

]
and can be computed in closed form given the affine nature of µ (see Biffis and Millossovich
(2006)). We note that, according to (12), the force of mortality µ is pushed toward the moving
target µ̂ and the dynamics is noised by the Brownian term, amplified by the size of µ.

The parameters underlying these processes are listed in Table 1. We do not deal with the
calibration of the model to market data, as we just aim at illustrating how to perform a fair valuation
of the contract allowing for several risk sources. The coefficients c1 and c2 defining the Weibull
intensity µ̂ were obtained by fitting the survival probabilities for a male aged 65 implied by the
projected life table IPS55, commonly used in the Italian annuity market.

r K S A µ

r0 = 0.03 K0 = 0.04 S0 = 100 A0 = 100 µ0 = µ̂(0)

ξr = 0.60 ξK = 1.50 ρSK = −0.70 ξµ = 0.50

ζr = 0.03 ζK = 0.04 σµ = 0.03

σr = 0.03 σK = 0.40 c1 = 90.50

c2 = 10.49

Table 1: Parameters used in the simulation.

Results relating to the static approach were obtained by averaging over 10 sets of 10 000 sim-
ulations each, while those relating to the mixed approach by averaging over 10 sets of 20 000
simulations each. In the Least Square Monte Carlo algorithm we have employed 4 state variables
(K, A, r and µ) and up to 4-th degree powers as basis functions (see Bacinello et al. (2011) for
more details).

In Table 2 we quote the fair value of a GMWB contract with duration 20 years (i.e., case a)
obtained under the static (last column of the table) and the mixed approach (central columns).
Alternative values have been set for the fee rate ϕ, and the surrender penalty rate p. As expected,
the cost of the liability obtained under the mixed approach is higher, as an optimal decision is
taken by the policyholder in respect of the surrender time. The single premium is set to P = 100.
When the contract value is higher than 100, it means that either the fee rate or the penalty rate are
too low; vice versa, when the contract value is lower than 100. For example, while the fee rate
ϕ turns always to be too high under the static approach (so that we can conclude for the fair fee
rate ϕ∗ < 1%), under the mixed approach and a surrender penalty rate p = 1% we can conclude
for the fair fee rate 2% < ϕ∗ < 3%. Similar comments can be made in respect of Tables 3 and 4,
where the fair value of the contract for cases b and c is quoted. We point out that the results in the
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three tables are not directly comparable, due to the different guaranteed withdrawal rates. Clearly,
in setting such a rate the insurer has to look for the trade-off between the guaranteed withdrawal
rate and the fair fee rate which better satisfies commercial aspects.

V mixed
0 V static

0

ϕ p = 0% p = 1% p = 2% p = 3% p = 4% p = 5%

1% 103.921 103.261 102.636 102.021 101.446 100.923 98.696

2% 101.260 100.624 99.912 99.270 98.588 97.908 91.536

3% 99.823 99.042 98.315 97.543 96.802 96.077 86.238

4% 98.555 97.793 97.040 96.275 95.551 94.818 82.427

5% 97.537 96.752 95.963 95.187 94.446 93.706 79.755

6% 96.543 95.749 94.977 94.213 93.465 92.729 77.936

Table 2: Fair value of a GMWB with duration 20 years (case a).

V mixed
0 V static

0

ϕ p = 0% p = 1% p = 2% p = 3% p = 4% p = 5%

1% 109.798 109.171 108.525 107.953 107.391 106.825 106.825

2% 104.296 103.733 103.138 102.527 101.934 101.307 99.759

3% 102.397 101.729 101.129 100.535 99.946 99.379 94.810

4% 100.807 100.170 99.528 98.955 98.313 97.714 91.350

5% 99.440 98.804 98.165 97.562 96.960 96.353 88.918

6% 98.245 97.604 96.973 96.382 95.775 95.170 87.195

Table 3: Fair value of a GMWB with lifetime duration (case b).

V mixed
0 V static

0

ϕ p = 0% p = 1% p = 2% p = 3% p = 4% p = 5%

1% 105.358 104.655 103.992 103.371 102.717 102.115 102.115

2% 101.685 100.971 100.273 99.569 98.846 98.198 94.095

3% 99.873 99.159 98.434 97.745 97.066 96.343 88.390

4% 98.320 97.626 96.911 96.214 95.500 94.827 84.344

5% 97.015 96.288 95.552 94.849 94.152 93.470 81.471

6% 95.820 95.099 94.386 93.677 92.977 92.267 79.416

Table 4: Fair value of a GMWB with lifetime duration joint to a GMDB with maturity 10 years
(case c).
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5. FINAL REMARKS

Variable annuities have several appealing features, as they merge the most attractive characteris-
tics of unit-linked and participating life insurance contracts: dynamic investment opportunities,
protection against financial risks, benefits in case of early death or high longevity. Further, they
offer the opportunity to arrange a satisfactory trade-off between annuitisation needs and bequest
preferences. Pricing tools used in practice seem to be not appropriate, as they mainly focus just on
a part of the risks (typically, the financial risks), assuming overall simplified models. On the con-
trary, the variety of the risk sources requires to adopt a unifying framework, as we suggest in this
paper. There are still many open issues to be discussed. As to the policy design, it is interesting to
consider guarantees relating to the health status, with particular regard to long-term benefits in the
post-retirement period. From a modeling point of view, further work is required in respect of the
policyholder behavior, allowing for individual preferences. In a risk management perspective, it is
interesting to examine the risk profile of the insurer as a function of the alternative ways of arrang-
ing the benefits; in particular, natural hedging effects, or a worsening of the overall risk position,
originated by some benefit combinations should be investigated.
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Ruin theory concerns the study of stochastic processes that represent the time evolution of the
surplus of a stylized non-life insurance company. The initial goal of early researchers of the field,
Lundberg (1903) and Cramér (1930), was to determine the probability for the surplus to become
negative. In those pioneer works, the authors show that the ruin probability ψ(u) decreases expo-
nentially fast to zero with initial reserve u ≥ 0 in numerous cases when the net profit condition is
satisfied: if the insurance company receives premium continuously at a deterministic rate c > and
pays for claims that are described by a compound Poisson process, for all u ≥ 0 we have an upper
bound for the ruin probability ψ(u) ≤ e−Ru, as well as information on the asymptotic behaviour,
because ψ(u) ∼ Ce−Ru as u→ +∞, where 0 < C ≤ 1. This result is valid for light-tailed claim
amounts, i.e. when the probability of very large claims decreases fast enough. This condition is
satisfied in the particular case where claims amounts are bounded, which is often true in practice.
Following the approach of Gerber (1974), it is possible to link the Cramr-Lundberg adjustment
coefficient R with the risk aversion coefficient a. If one measures a random claim amount X
thanks to indifference pricing method (which means that the insurer does not show any preference
between not insuring the risk and bearing the risk after receiving premium π), with exponential
utility function u(x) = (1− e−ax)/a, the insurer would ask for premium1

π =
1

a
ln
(
E
(
eaX
))
.

Gerber (1974) notes that if the insurer determines the premium following this principle, then
the Cramér-Lundberg adjustement coefficient R is identical to the risk aversion parameter a.
Conversely, if the insurer wants the ruin probability to decrease exponentially fast, she can use

1Denote by E(Y ) the mathematical expectation of an integrable random variable X , by V ar(X) its variance if X
is square integrable. Denote V aRβ(X) the Value-at-Risk (quantile) of level β ∈ [0, 1] of a general random variable
X .
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indifference pricing principle with exponential utility function. Note that in this dynamic vi-
sion, at first order, the insurer uses a pricing principle that looks like the variance principle π '
E(X) + a

2
V ar(X). This is different from the static framework, which consists (like in Solvency

II) in studying the probability that the net asset value of the company is negative in one year. If
one computes the risk margin thanks to the cost of capital approach, this leads to a theoretical
pricing as E(X) + b (V aR99,5%(X)− E(X)). This corresponds at first order to the standard error
coefficient pricing principle π ' E(X)+ bq

√
V ar(X), where b is a parameter that quantifies cost

of capital, and q is a factor that links the standard error coefficient and the 99.5%-Value-at-Risk of
X (approximately 3 for a Gaussian distribution, 4 or 5 for heavier tails). Ruin theory thus provides
more sustainable valuation principle than the Value-at-Risk approach, because it takes into account
liquidity constraints and penalizes large position sizes.

In risk management, insurance companies start to set risk limits: more precisely, they want to
guarantee that the Solvency Capital Requirement (SCR) coverage ratio stays above a certain level
with a large enough probability. Modeling the evolution of the SCR coverage ratio is of course del-
icate. Internal models (that study the one year change in net asset value) are already very complex
and require large computation times. On the average term, insurers often merely study solvency
in some adverse scenarios, without trying to affect probability to each of those scenarios. Ruin
theory does not offer a precise, miraculous answer to this question, but it may provide interesting
insight thanks to different situations for which the ruin probability is known explicitly or can be
approximated. Note that the zero surplus level corresponds then to the minimum SCR coverage
ratio level in that case. Finite-time ruin probabilities have been studied among others by Picard
and Lefèvre (1997), and Ignatov et al. (2001). The probability of ruin at inventory dates has been
studied by Rullière and Loisel (2003). Researchers in ruin theory currently work on models with
credibility adjusted premium, with tax payments, with correlations and correlation crises between
claim amounts, as well as the ability for the insurer to invest into risky assets or to transfer part of
its risks. Less binary risk and profit indicators are also considered. For regularly varying claim size
distributions (Pareto distribution for example), Embrechts and Veraverbeke (1982) have shown that
the ruin probability decreases more slowly with u:

ψ(u) ∼ Ku−α+1,

where α > 1. In several models with a non diversifiable and no compensable risk driver, Albrecher
et al. (2011) and Dutang et al. (2012) show that the ruin probability admits a positive limit as
u→ +∞:

ψ(u)− A ∼ B

u
,

where 0 < A < 1 and B > 0 are constant numbers. Here, ruin should be understood in a broader
sense, economic ruin or switch to run-off mode before being completely ruined. This corresponds
to the idea that capital is not always the answer and that the capacity to react fast is a key element of
efficient risk management. The book by Asmussen and Albrecher (2010) contains most references
of papers dealing with ruin theory.

Another classical problem of ruin theory is to determine optimal dividend strategies. In Switzer-
land, if ruin were not a problem, it would not be efficient to pay dividends, because they are taxed.
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It would be better to let the stock price increase faster in the absence of dividends, because capital
gains are not taxed. But as ruin may occur, the investor faces the problem of dividend optimization.
De Finetti, who was also actuary at Generali, shew in a simplified model that the optimal dividend
strategy consisted in paying dividends above some horizontal barrier (which of course increases
ruin probability) and computed the optimal barrier level. Dubourdieu (1952) formalized several
results on this issue and gave credit to De Finetti for the main ideas (see posterior paper by De
Finetti (1957)). In a more general setting, optimal strategies might involve several bands instead
of one single barrier. Since the works by Borch (1974) and by Gerber (see for example Gerber
(1979)), this subject had been almost forgotten, but has been addressed by numerous papers in
the recent years (see the survey by Avanzi (2009) on those issues and by Albrecher et Thonhauser
(2009) on optimal control strategies).

This theory could be useful to address the problem of determining appropriate Solvency Capital
Requirement coverage ratio target levels. In the new regulation framework Solvency II, in addition
to the technical provisions (composed of best estimate of liabilities and of a risk margin), the
insurer must have at least the so-called Solvency Capital Requirement (SCR). Most insurers have
now to choose a target SCR level, usually comprised between 110% and 200%. Besides, they
usually adopt a kind of dividend strategy that corresponds to a refraction strategy: if the SCR
coverage ratio becomes higher than a threshold, then the insurer starts to pay part of the excess as
dividends. If the SCR coverage ratio overshoots a certain level (250%, say), then all the excess is
paid as dividends, which corresponds to reflection from a barrier. For Enterprise Risk Management
purposes, it might be interesting to study the probability to become insolvent before 5 or 10 years
in a steady regime to check whether the activity would be sustainable in a steady regime, in the
absence of change of risk environment. With a first-order approximation, this corresponds to a
finite-time ruin problem with a certain dividend strategy, where the ruin level is the 100% coverage
ratio level (it is different from the economic ruin level where the net asset value of the company
becomes negative). The dynamic balance sheet is illustrated in Figure 1 and the simplified ruin
problem is illustrated in Figure 2.

SCR0

SCR1

SCR2
SCR3

t=0 t=1 t=2 t=3

BE0

BE1

BE2 BE3

RM0

RM1

RM2 RM3

time t

Assets at
time t

180% SCR

SCR = Solvency Capital Requirement
RM = Risk Margin
BE = Best Estimate of Liabilities

Dividend-type
payment

0

130% SCR1

220% SCR2

280% SCR3
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Figure 1: Evolution of economic balance sheet.
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t=0 t=1 t=2 t=3
time t

SCR Coverage ratio
at time t

100%

130%

180%

220%

250%

280%

Figure 2: Evolution of SCR coverage ratio.

Nevertheless the simplified view is far from being perfect, because the insolvency threshold
depends on the evolution of the assets and liabilities. Of course, the evolution of the economic
balance sheet of a company is much more complicated than classical risk models. However, as
multi-period risk models are often intractable on a 5-year time horizon in practice, it may be
interesting to have benchmarks that come from ruin theory in mind while thinking about the risk
appetite implementation.
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Abstract

Some classical results on risk bounds as the Fréchet bounds, the Hoeffding–Fréchet bounds
and the extremal risk property of the comonotonicity dependence structure are used to describe
worst case dependence structures for portfolios of real risks. An extension of the worst case
dependence structure to portfolios of risk vectors is given. The bounds are used to (re-)derive
and extend some results on optimal contingent claims and on optimal (re-)insurance contracts.

1. RISK BOUNDS AND COMONOTONICITY

For a risk vector X = (X1, . . . , Xn) of risks Xi with distributions Pi resp. distribution functions
Fi, it is a classical problem to determine (sharp) bounds for a risk functional of the form EΨ(X)
induced by dependence between the components Xi of X . The class of all possible dependence
structures is given by the Fréchet classM(P1, . . . , Pn) of joint distributions with marginals Pi. For
the case of real risks one can consider equivalently the class F(F1, . . . , Fn) of joint distribution
functions with marginal distribution functions Fi ∼ Pi.

The sharp upper and lower dependence bounds for the risk function Ψ are given by

M(Ψ) = sup

{∫
ΨdP ;P ∈M(P1, . . . , Pn)

}
and m(Ψ) = inf

{∫
ΨdP ;P ∈M(P1, . . . , Pn)

}
.

(1)

They are called (generalized) upper resp. lower Fréchet bounds. Typical risk functionals of
interest are, in the case of real risks Xi, risk functionals of the joint portfolio like (

∑n
i=1Xi−K)+,

1[t,∞)(
∑n

i=1 Xi) or maxiXi leading to bounds for the excess of loss, for the value at risk and for
the maximal risk of the joint portfolio.

23
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The following three examples of sharp risk bounds are classical examples of generalized Fré-
chet bounds.

B1) Sharpness of Fréchet bounds
If Xi are real random variables with distribution functions Fi, 1 ≤ i ≤ n, then for the distribution
function F = FX of X = (X1, . . . , Xn) the following bounds are sharp:

Fc(x) :=

(
n∑
i=1

Fi(xi)− (n− 1)

)
+

≤ F (x) ≤ F c(x) := min
i
Fi(xi). (2)

The upper bound F c(x) is the distribution function of the comonotonic vectorXc := (F−1
1 (U),

. . . , F−1
n (U)) = (Xc

1, . . . , X
c
n) where U ∼ U(0, 1). In consequence, the upper bound in (2) is

sharp. The lower bound Fc(x) is a distribution function if n = 2 and then corresponds to the
antithetic (countermonotonic) vector

Xcm := (F−1
1 (U), F−1

2 (1− U)) = (Xcm
1 , Xcm

2 ).

The bounds in (2) go back to Fréchet (1951) and Hoeffding (1940) for n = 2. The upper and
lower bounds were described in Dall’Aglio (1972). Sharpness of the lower bound in (2) was first
given in Rü1 (1981).

B2) Hoeffding–Fréchet bounds
For real random variables X1 and X2, Hoeffding (1940) found the following representation of the
covariance:

Cov(X1, X2) =

∫∫
(F (x, y)− F1(x)F2(y))dxdy. (3)

Together with the Fréchet bounds in (2) this representation implies the sharp upper and lower
Hoeffding–Fréchet bounds:

Cov
(
F−1

1 (U), F−1
2 (1− U)

)
≤ Cov(X1, X2) ≤ Cov

(
F−1

1 (U), F−1
2 (U)

)
, (4)

or, equivalently,

EF−1
1 (U)F−1

2 (1− U)) ≤ EX1X2 ≤ EF−1
1 (U), F−1

2 (U)). (5)

The comonotonic resp. countermonotonic vectors are the unique (in distribution) vectors which
attain the upper resp. lower risk bounds in (4) and (5).

If V is a random variable uniformly distributed on (0, 1) and independent of X1 and X2, we
define the distributional transform

Ui := Fi(Xi, V ) = τXi
, i = 1, 2, (6)

where Fi(x, λ) := P (Xi < x) + λP (Xi = x) are the modified distribution functions. Then we
have that

Ui ∼ U(0, 1) and Xi = F−1
i (Ui) a.s. (7)

1Rüschendorf is abbreviated with Rü in this paper.
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In fact the pair (U1, U2) is a copula vector of X (see Rü (1981, 2009)). Further the pairs

(X1, F
−1
2 (F1(X1, V ))) = (X1, F

−1
2 (τX1))

and (X1, F
−1
2 (1− F1(X1, V ))) = (X1, F

−1
2 (1− τX1))

(8)

are comonotonic resp. countermonotonic pairs with marginal distribution functions F1 and F2 and
thus attain the upper resp. lower Hoeffding–Fréchet bounds in (5). The interesting point in (8) is
that the solution can be written as pair (X1, F

−1
2 (τX1)) resp. (X1, F

−1
2 (1−τX1)) with distributional

transform τX1 = F1(X1, V ) which is increasing in (X1, V ).

B3) Comonotonic vector as worst case dependence structure
The third classical result concerns sharp upper bounds on the excess of loss. It states that the
comonotonic vector Xc = (F−1

1 (U), . . . , F−1
n (U)) is the worst case dependence structure w.r.t.

excess of loss. Formulated in terms of convex ordering ≤cx it says:

If Xi ∼ Fi, 1 ≤ i ≤ n, then
n∑
i=1

Xi ≤cx

n∑
i=1

F−1
i (U). (9)

This result was first established in Meilijson and Nadas (1979) together with the following
equivalent representation: For all d∗ ∈ R1 holds

sup
Xi∼Fi

E

(
n∑
i=1

Xi − d∗
)

+

= E

(
n∑
i=1

F−1
i (U)− d∗

)
+

= Ψ+(d) := inf∑n
i=1 di=d

∗

n∑
i=1

E(Xi − di)+.

(10)

For continuous strictly increasing distribution functions one can choose a solution (d∗i ) of (10) as

d∗i = F−1
i

(
F∑n

i=1X
c
i
(d∗)

)
. (11)

In general, if d∗ is a u0-quantile of L(
∑n

i=1X
c
i ), then d∗i can be chosen as u0-quantile of Fi.

As a consequence of (9), one obtains that

Ψ

(
n∑
i=1

Xi

)
≤ Ψ

(
n∑
i=1

Xc
i

)
(12)

for all law invariant convex risk measures Ψ (see Föllmer and Schied (2004), Burgert and Rü
(2006)). Thus the comonotonic risk vector is in this sense a universal worst case dependence
structure for the joint portfolio.

2. WORST CASE DEPENDENCE FOR RISK VECTORS

In the case that the components Xi of the risk vector X are d-dimensional, 1 ≤ d, there does
not exist a universal worst case dependence structure corresponding to the comonotonic vector in
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d = 1. Several aspects of this problem have been described in Rü (2004) and Puccetti and Scarsini
(2010). To each law invariant risk measure Ψ, there corresponds one worst case dependence struc-
ture which is described in Rü (2006, 2012).

Let for a density vector Y = (Y1, . . . , Yd) with Yi ≥ 0, EYi = 1, 1 ≤ i ≤ d, with distribution
µ

Ψµ(X) := sup{EX̃ · Y ; X̃
d
= X} (13)

denote the max-correlation risk measure in direction Y (resp. µ) as introduced in Rü (2006).
Then Ψµ(X) defines a law invariant convex risk measure defined for risk vectors X ∈ Rd. Any
lsc convex law invariant risk measure Ψ on Lpd(P ), the class of risk vectors with components
Xi ∈ Lp(P ), has a representation as

Ψ(X) = sup
µ∈A

(Ψµ(X)− α(µ)), (14)

whereA is a weakly closed class of scenario measures and α(µ) is a law invariant penalty function.
Thus the max-correlation risk measures play in the multivariate case a similar role as the spectral
risk measures in d = 1 and are the building blocks of the class of convex, law invariant risk
measures.

The worst case dependence structure of a joint portfolio
∑n

i=1Xi with Xi ∈ Rd, Xi ∼ Fi w.r.t.
a law invariant convex risk measure Ψ as in (14) is defined as X∗i ∼ Fi, 1 ≤ i ≤ n, such that

Ψ

(
n∑
i=1

X∗i

)
= sup

Xi∼Fi

Ψ

(
n∑
i=1

Xi

)
. (15)

Its determination involves two steps:

Step 1) Determine a worst case scenario measure µ∗ ∈ A solving an optimization problem of the
form

Fa(µ
∗) = sup

µ∈A
Fa(µ), (16)

where Fa(µ) =
∑n

i=1 Ψ(Xi)−α(µ) is the sum of the marginal risks. Fa(µ) depends only
on the marginals Fi.

Step 2) Let X∗i ∼ Fi, 1 ≤ i ≤ n be µ∗-comonotone, i.e. for some Y ∗ ∼ µ∗

X∗i ∼oc Y
∗, 1 ≤ i ≤ n. (17)

All X∗i are optimally coupled to the same vector Y ∗, 1 ≤ i ≤ n, in the L2-sense, i.e. they
solve the classical mass transportation problem

E‖X∗i − Y ∗‖2 = inf{E‖Xi − Y ‖2;Xi ∼ Fi, Y ∼ µ}. (18)

Step 1) and Step 2) imply that

(X∗1 , . . . , X
∗
n) is a worst case dependence structure w.r.t. Ψ. (19)

One could call the vector X∗ = (X∗1 , . . . , X
∗
n) in analogy to the case d = 1 a Ψ-comonotonic vec-

tor. Some examples like elliptical distributions, Archimedian copulas and location-scale families
are discussed in Rü (2006, 2012). In general both steps needed to determine worst case dependent
vectors can be done only numerically.
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3. APPLICATIONS OF DEPENDENCE BOUNDS

Our aim in this section is to use the classical dependence bounds for risk functionals to derive in a
simple and unified way some results on the optimization of financial products and of (re-)insurance
contracts.

3.1. Optimal contingent claims

As a step to derive optimal portfolio results as in the classical paper of Merton (1971), He and
Pearson (1991a,b) formulated the static problem of optimal claims. This also fitted with economic
theory on optimal investments following the Markowitz theory. As reference we mention Merton
(1971) and for more recent formulation Dybvig (1988), Dana (2005), Schied (2004), and Föllmer
and Schied (2004). The problem of cost efficient options was formulated in Dybvig (1988) and
discussed in detail in Bernard and Boyle (2010) and Bernard et al. (2011a,b).

3.1.1. OPTIMAL INVESTMENT PROBLEM

Given an investment (claim) X and a price measure Q = ϕ · P with price density ϕ w.r.t. P the
optimal investment problem is formulated as follows:

Find an optimal investment C∗ such that

EQC
∗ =

∫
ϕC∗dP = inf

C≤cxX
. (20)

C∗ has the lowest price under all investments C, which are less risky thanX in the sense of convex
order ≤cx. The minimal price

e(X,ϕ) := EQC
∗ (21)

is called the reservation price in Jouini and Kallal (2001). The following result is stated in Dybvig
(1988), Dana (2005), and Föllmer and Schied (2004) in various generality.

Theorem 3.1 (Optimal investment) Let X be an investment with FX = F and let ϕ be a price
density. Then the reservation price is given by

e(X,ϕ) =

∫ 1

0

F−1
ϕ (1− t)F−1(t)dt. (22)

An optimal investment is given by

C∗ = F−1(1− τϕ(ϕ;V )), (23)

where τϕ is the distributional transform of ϕ (see (8)).

Proof. By the Hoeffding–Fréchet bounds in (5) for any investment C, we have

Aϕ(C) := inf
C̃∼C

∫
ϕC̃dP =

∫ 1

0

F−1
ϕ (1− t)F−1

C (t)dt. (24)
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Also by a well-known stochastic ordering result

C1 ≤cx C2 implies
∫ 1

0

h(t)F−1
C1

(t)dt ≥
∫ 1

0

h(t)F−1
C2

(t)dt

for decreasing functions h. This implies that

inf
C≤cxX

Aϕ(C) = Aϕ(X) = e(X,ϕ) =

∫ 1

0

F−1
ϕ (1− t)F−1(t)dt.

The representation of the optimal claim in (23) by the distributional transform follows from the
fact that the pair (ϕ,C∗) attains the lower Fréchet bound (see (8)).

Remark 3.1 a) (C∗, ϕ) is a pair of antithetic variables. The distribution of the optimal pair is
unique and is given by the anticomonotone distribution. Defining

C̃ := E(C∗ | ϕ) =

∫ 1

0

F−1(1− τϕ(ϕ, v))dv, (25)

then C̃ = g(ϕ), where g ↓ is a decreasing function of the price density ϕ alone. Further,
C̃ ≤cx C and EQC̃ = EQC

∗. Thus there exists an optimal investment C∗ = g∗(ϕ), where g∗ ↓
is a decreasing function of the price density ϕ.

b) Transformed measure. Defining the transformed measure

Q∗ := ϕ∗P with ϕ∗ := F−1(1− τF (X, V )), (26)

then ϕ∗ is decreasing in X and

e(X,ϕ) = EQC
∗ = EQ∗X. (27)

Thus the reservation price is identical to the expectation of X w.r.t. the transformed price
measure Q∗. Then Q∗ describes a worst case price density for the claim X .

c) Path dependent options. Let S = (St)0≤t≤T be a price process and assume that the price
density ϕ is a function of ST , ϕ = ϕ(ST ), then

C∗ = g(ST ). (28)

Thus any path dependent option C = f(S) can be improved by a European option

C∗ = g(ST ).

If ϕ is increasing (decreasing), then g can be chosen decreasing (increasing). For this obser-
vation see Bernard et al. (2011b).

d) Cost efficient options. Given an option X with distribution function F , we consider the class
C = C(F ) of all options which have the same payoff distribution as X ,

C = {C;FC = F} = C(X). (29)
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As a corollary, Theorem 3.1 implies

Theorem 3.2 (Cost efficient claims) For a given claim X and price density ϕ the claim

C∗ := F−1(1− τϕ(ϕ, V )) ∈ C(X) (30)

is a cost efficient claim, i.e.
EQC

∗ = inf
C∈C(X)

EQC.

Proof. For the proof, note that any C ∈ C(X) satisfies that C ≤cx X . Thus Theorem 3.2 follows
from Theorem 3.1.

The notion of cost efficient claims was introduced in Dybvig (1988) and studied in the discrete
case. It was extended in recent papers in Bernard and Boyle (2010) and Bernard et al. (2011b) to
the case of continuous distributions. Several explicit results on lookback options, Asian options or
related path dependent options in Black–Scholes type models are given in these papers.

3.1.2. MINIMAL DEMAND PROBLEM

Closely related to the optimal investment problem is the minimal demand problem. Given a law
invariant convex risk measure Ψ, a price measure Q = ϕP and a budget set

B = {C;C claim, EQC ≤ c}. (31)

The minimal demand problem aims to find a claim C∗ in the budget set with minimal risk

C∗ ∈ B; Ψ(C∗) = inf{Ψ(C);C ∈ B}. (32)

This problem has been discussed in Dana (2005), Schied (2004), and Föllmer and Schied
(2004). An existence result is obtained in these papers for lsc convex risk measures. For law
invariant convex risk measures, the Hoeffding–Fréchet bounds imply similarly as in Theorem 3.1.

Theorem 3.3 (Minimal demand problem) There exists a solution C∗ of the minimal demand
problem (32) such that

C∗ = g(ϕ) for some g ↓ .

Remark 3.2 For the corresponding utility maximization problem w.r.t. an expected utility function
U

U(C∗) = Eu(C∗) = sup
C∈B

U(C),

where u is a utility function. Explicit solutions are derived in He and Pearson (1991a,b) and many
related papers for the standard utility functions. The solutions are obtained in the form

C∗ = I(λQ(c))ϕ, I(x) := (u′)−1(x), (33)

where λQ(x) is a constant chosen such that

EQC
∗ = c.

The main methods applied to solve this problem are a duality approach closely connected to a
martingale approach (see Merton (1971), He and Pearson (1991a,b), and Kramkov and Schacher-
mayer (1999)) and a projection approach based on ϕ-divergence distances (see Goll and Rü (2001)
and Biagini and Frittelli (2005, 2008)).
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3.2. Optimal (re-)insurance contracts

Optimal (re-)insurance contracts can be seen as particular instances of the optimal risk allocation
problem. In this section we discuss some variations on the optimality of the classical stop-loss con-
tracts which are obtained from the risk bound results for the comonotonic risk vector in Section 1,
B1)–B3).

A (re-)insurance contract I(X) for a risk X ≥ 0 is defined by a function I = R+ → R+,
0 ≤ I(x) ≤ x, I(0) = 0. Let I denote the class of all reinsurance contracts (see Kaas et al.
(2001)). I ∈ I is called an increasing insurance contract if x − I(x) is increasing in x. If I is an
increasing insurance contract, then I is 1-Lipschitz. The premium to be paid for the contract I(X)
is given by

πI(X) = (1 + ϑ)EI(X). (34)

The stop-loss contract Id(X) – with retention limit d – is defined by

Id(X) = (X − d)+. (35)

By a classical result going back to Arrow (1963, 1974) the stop-loss contract minimizes the re-
tained risk X − I(X) given a fixed premium π0. The strongest version of this result is given in
(Kaas et al. 2001, Example 10.4.4, p. 238).

Theorem 3.4 (Optimality of stop-loss contracts) For any I ∈ I with EI(X) = EId(X) = π0
1+ϑ

with retained risks RI(X) := X − I(X) and Rd(X) := X − Id(X) holds

Rd(X) ≤cx RI(X). (36)

Remark 3.3 The proof in Kaas et al. (2001) is based on stochastic ordering and in particular on
the Karlin–Novikov criterion for convex ordering. As a consequence of (36), it holds for any law
invariant convex risk measure Ψ that

Ψ(Rd(X)) ≤ Ψ(RI(X)).

This result is reproved in Cheung et al. (2010a).

As in classical Markowitz theory we can formulate a corresponding efficient boundary result.
Let Ψ be a law invariant convex risk measure and define for I ∈ I

µI := E(X − I(X)), σ2
Ψ(I) := Ψ(X − I(X)),

µ(d) := µId , σ2
Ψ(d) := σ2

Ψ(Id).

Corollary 3.5 Consider the risk setRΨ := {(µI , σ2
Ψ(I)); I ∈ I} of all reinsurance contracts and

the risk set TΨ := {(µ(d)), σ2
Ψ(d)); d ≥ 0} of all stop-loss contracts. Then the risk set TΨ of the

stop-loss contracts is the lower boundary of the risk setRΨ.

Proof. The proof is similar as in the classical variance case.
An interesting risk minimizing insurance protection problem for risks of joint portfolios was

introduced in a recent paper of Cheung et al. (2010b). For a portfolio X =
∑n

i=1 Xi with Xi ∼ Fi,
the risk is strongly influenced by the dependence of the components Xi of the joint portfolio. Let
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In = {I = (I1, . . . , In); Ij increasing reinsurance contracts} denote the set of increasing reinsur-
ance contracts of the joint portfolio. Let π(I) = (1 − ϑ)

∑n
k=1EIk(Xk) denote the premium of

contract I and π0 be a given level of premium. I∗ ∈ In is called the optimal worst case reinsurance
contract if it solves the following problem:

RΨ(π0) := inf
I∈In

π(I)=π0

sup
Xi∼Fi

Ψ
( n∑
k=1

(Xk − Ik(Xk))
)
, (37)

where Ψ is a law invariant convex risk measure. Thus with problem (37) one aims to find ro-
bust versions of reinsurance contracts which take into account the possible worst case dependence
structure in the portfolio.

Cheung et al. (2010b) show in a recent paper that certain stop-loss contracts solve problem
(37). This result can be obtained in a simplified way from the risk bound results in Section 1,
which also allow to extend the result to general distributions not assuming continuity and strictly
increasing distribution functions.

Theorem 3.6 (Optimal worst case reinsurance contracts) The stop-loss contracts

I∗k(x) = Id∗k(x) = (x− d∗k)+, 1 ≤ k ≤ n

as defined in (40) are optimal worst case reinsurance contracts at premium π(I) = π0 for any
choice of law invariant convex risk measure Ψ.

Proof. The proof follows from the risk bounds in Section 1 by the following two steps.

1) Since for I ∈ In : Xk − Ik(Xk) = (id − Ik)(Xk) is an increasing function of Xk, it follows
from B1) and B3) that for any Xk ∼ Fk and I ∈ In

n∑
k=1

(Xk − Ik(Xk)) ≤cx

n∑
k=1

(Xc
k − Ik(Xc

k)), (38)

where Xc = (Xc
k) is the comonotonic vector.

The comonotonic vector Xc is by (9) the worst case dependence structure. As a consequence
of (38), we obtain

Ψ

(
n∑
k=1

(Xk − Ik(Xk))

)
≤ Ψ

(
n∑
k=1

(Xc
k − Ik(Xc

k))

)
(39)

for any law invariant convex risk measure Ψ (see (12)).

2) Let d∗ ≥ 0 satisfy E(
∑n

k=1X
c
k − d∗)+ = π0

1+ϑ
, then there exist d∗k ≥ 0 such that

∑n
k=1 d

∗
k = d∗

and (
n∑
k=1

Xc
k − d∗

)
+

=
n∑
k=1

(Xc
k − d∗k)+ (40)

(see (11) for the choice of d∗k).
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For I ∈ In holds
∑n

k=1 Ik(X
c
k) = J(X), where X :=

∑n
k=1X

c
k and J ∈ I(X) is an increasing

insurance contract. As a result, (39) and (40) together with the classical optimality result for stop-
loss contracts in Theorem 3.4 imply optimality of I∗k .

Remark 3.4 Theorem 3.6 can be extended to the worst case risk problem with upper bounds on
the premiums π(I) ≤ π0. This follows from the fact that d∗i = d∗i (π0) are increasing in π0 (see (11)
for the continuous case). For this result and examples see Cheung et al. (2010b).

Acknowledgement: The author would like to thank Ka Chun Cheung and Phillip Yam for some
useful comments on this paper.
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1. INTRODUCTION

Recent considerations in finance have led to an increasing interest in multidimensional models
with jumps taking the dependence between components into account (see for instance Cont and
Tankov (2004)). In this context one is interested in finding closed-form formulas in such models
for prices of options as spread options. A spread option is an option written on the difference of
two underlying assets S(2)(t)− S(1)(t), t ≥ 0.

In the paper Benth et al. (2012) we consider a spread option of European type with strike 0
written in a bivariate jump-diffusion setting. Thus the pay-off function at maturity date T takes the
form

max(S(2)(T )− S(1)(T ), 0),

where (S(1)(t), S(2)(t))t≥0 is a bivariate jump-diffusion. We prove a Margrabe type formula for
this spread option. The Margrabe formula is based on an appropriate change of measure which
allows to move from pricing the spread option written in a bivariate process setting to pricing a
European option written in a one-dimensional process setting (see Margrabe (1978) and Carmona
and Durrleman (2003) for spread options written in continuous models). In our computations we
use the Girsanov theorem to derive formulas for the spread option written in a bivariate jump-
diffusion setting. We illustrate our results on spread options with several examples. We first
compute spread option prices written in models with stochastic volatility. Moreover, we derive
formulas for the spread option prices in the case the bivariate Lévy process has a NIG distribution
and in the case of Merton dynamics. Therefore, we use the Girsanov theorem to describe the
dynamics of the new.

Eberlein et al. (2009) studied the problem of valuation of options depending on several assets
using a duality formula. In particular, they derived a formula for the valuation of spread options
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written in the setting of an exponential semimartingale described by the triplet of predictable char-
acteristics of a one-dimensional semimartingale under the dual measure. In the paper Benth et al.
(2012) we present a different approach for the valuation of spread options. Our approach is more
direct and generalises their work to exponential jump diffusions with stochastic factors including
stochastic volatility models.

From the modeling point of view, one can approximate the small jumps of the jump-diffusion
by a continuous martingale appropriately scaled. This was introduced by Asmussen and Rosinski
(2001) in the case of Lévy processes. Benth et al. (2010, 2011) studied convergence results of
option prices written in one-dimensional jump-diffusion models. They also studied the robustness
of the option prices after a change of measure where the measure depends on the model choice.
In the paper Benth et al. (2012), we approximate the bivariate small jumps by a two-dimensional
Brownian motion appropriately scaled and we prove the convergence of the spread option written
on a bivariate jump-diffusion, modelling the two underlying assets. The main contribution in this
paper is to apply the Margrabe type formula to prove the robustness of the spread option using one-
dimensional Fourier techniques. We compute the convergence rate in the case the price process is
driven by a bivariate Lévy process. Gaussian approximations of multivariate Lévy processes are
studied in Cohen and Rosinski (2005).

In the present short paper we present the main results of the paper Benth et al. (2012). Namely,
the Margrabe formula in a bivariate jump-diffusion framework and the robustness study of the
spread options.

2. THE MARGRABE FORMULA IN A BIVARIATE JUMP-DIFFUSION FRAMEWORK

We first recall some basic results on Lévy processes and introduce the necessary notation. Let
(Ω,F ,P) be a complete probability space equipped with a filtration {Ft}t∈[0,T ] (T > 0) satis-
fying the usual conditions (see Karatzas and Shreve (1991)). We introduce the generic notation
L = (L(1)(t), . . . , L(d)(t))∗, 0 ≤ t ≤ T , for an Rd-valued Lévy process on the given probability
space. Here ()∗ denotes the transpose of a given vector or a given matrix. We work with the right
continuous version with left limits of the Lévy process and we let4L(t) := L(t)−L(t−). Denote
the Lévy measure of L by ν(dz), satisfying∫

Rd
0

min(1, |z|2) ν(dz) <∞,

where |z| =
√∑d

i=1 z
2
i is the canonical norm in Rd. Recall that ν(dz) is a σ-finite Borel measure

on Rd
0 := (R − {0})d. From the Lévy-Itô decomposition of a Lévy process (see Sato (1999)), L

can be written as

L(t) = at+ σ
1
2B(t) +

∫ t

0

∫
|z|≥1

z N(ds, dz) + lim
ε↓0

∫ t

0

∫
ε≤|z|<1

z Ñ(ds, dz), (1)

for a Brownian motion B = (B(1)(t), . . . , B(d)(t))∗ in Rd, a vector a ∈ Rd and a symmetric
non-negative definite matrix σ ∈ Rd×d. N(dt, dz) = N(dt, dz1, . . . , dzd) is the Poisson random
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measure of L and Ñ(dt, dz) := N(dt, dz) − ν(dz)dt its compensated version. Notice here that∫ t

0

∫
|z|≥1 z N(ds, dz) =

( ∫ t

0

∫
|z|≥1 z1N(ds, dz), . . . ,

∫ t

0

∫
|z|≥1 zdN(ds, dz)

)∗
. The convergence in

(1) is P-a.s. and uniform on bounded time intervals.
In the following, we consider a spread option of European type written on the difference of two

underlying assets whose values are driven by a jump-diffusion. We consider a two-dimensional
price process S given by the following dynamics under the measure P:

dS(t) = S(t)
{
a(t)dt+ σ(t)dB(t) +

∫
R2
0

γ(t, z)Ñ(dt, dz)
}
, (2)

where a(t) = a(t, ω) ∈ R2, σ(t) = σ(t, ω) ∈ R2×2, and γ(t, z) = γ(t, z, ω) ∈ R2 are adapted
processes. Note that the equation we consider for the price process is a stochastic differential
equation using as integrators the Brownian motion B and the compensated compound Poisson
process Ñ of the Lévy process L defined in equation (1), where we choose d = 2.
The coefficients of the equation (2) are such that γi(t, z1, z2) > −1, i = 1, 2, for almost all ω ∈ Ω,
(t, z) ∈ [0, T )× R2

0, and moreover, for all 0 < t < T , and i = 1, 2, we assume

E
[ ∫ t

0

(
|ai(s)S(i)(s)|+

2∑
j=1

|σij(s)S(i)(s)|2 +

∫
R2
0

|γi(s, z1, z2)S(i)(s)|2
)
ds
]
<∞, P-a.s. (3)

The latter condition implies that the stochastic integrals are well defined and martingales.
Hereafter we detail the following Girsanov-type measure change, which will be useful in the

sequel.

Lemma 2.1 Define the measure P̃ by the Radon-Nikodym derivative with respect to P given on the
σ-algebra FT as follows

dP̃
dP

∣∣∣∣
Ft

= exp(Y (t)), 0 ≤ t ≤ T, (4)

where

Y (t) = −1

2

∫ t

0

(σ2
11(s) + σ2

12(s))ds+

∫ t

0

σ11(s)dB
(1)(s) +

∫ t

0

σ12(s)dB
(2)(s)

+

∫ t

0

∫
R2
0

ln(1 + γ1(s, z1, z2))− γ1(s, z1, z2)ν(dz1, dz2)ds

+

∫ t

0

∫
R2
0

ln(1 + γ1(s, z1, z2))Ñ(ds, dz1, dz2), (5)

satisfying

E[exp(Y (T ))] = 1. (6)

Thus the processes B(1)

P̃
and B(2)

P̃
defined by

dB
(1)

P̃
(t) = −σ11(t)dt+ dB(1)(t)
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dB
(2)

P̃
(t) = −σ12(t)dt+ dB(2)(t)

are Brownian motions with respect to P̃ and

ÑP̃(dt, dz1, dz2) = −γ1(t, z1, z2)ν(dz1, dz2)dt+ Ñ(dt, dz1, dz2) (7)

is a compensated (time-inhomogeneous) Poisson random measure under P̃. We denote

νP̃(dt, dz1, dz2) := −γ1(t, z1, z2)ν(dz1, dz2)dt

The spread is defined by the difference of the two underlying asset prices S(2)(t) − S(1)(t),
t ≥ 0. Thus, the payout function of a European spread option with strike 0 at maturity date T is
given by

max(S(2)(T )− S(1)(T ), 0) . (8)

In the following we state a Margrabe type formula for a spread option written on a bivariate jump-
diffusion (see Section 5.2 in Carmona and Durrleman (2003) for spread options written on contin-
uous process prices). We choose the risk-free instantaneous interest rate r(t) = r(t, ω) to be an
Ft-adapted stochastic process which is Lebesgue integrable on any compact.

Proposition 2.2 Assume that

exp

(∫ T

0

{a1(s)− r(s)}ds
)

max(
S(2)(T )

S(1)(T )
− 1, 0)

is P̃ integrable where the measure P̃ is defined in (4). Then the price C of a spread option with
strike K = 0 and maturity T is given by

C = S(1)(0)EP̃

[
e
∫ T
0 {a1(s)−r(s)}ds max(S

(2)(T )

S(1)(T )
− 1, 0)

]
.

Notice that the price of S(2) expressed in the numéraire S(1) is a geometric jump diffusion. The
dynamics under the measure P̃ can be easily computed.

3. ROBUSTNESS OF SPREAD OPTIONS

In this section we consider dynamics with no explicit Brownian component, namely we consider
dynamics driven by a pure Lévy process or by centered Poisson random measures.

3.1. Robustness of the price process

Now we assume that the price process S = (S(1), S(2)) is given by the following dynamics

S(t) = x+

∫ t

0

a(s)S(s)ds+

∫ t

0

∫
R2
0

S(s)γ(s, z)Ñ(ds, dz), (9)
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where S(0) = x ∈ R2. We assume that the solution of the latter equation exists and that for
i = 1, 2,

γi(s, z) = gi(z)γ̂i(s),

where
∫
|z|≤ε g

2
i (z)ν(dz) < ∞. Moreover we assume that the stochastic factors ai(s) and γ̂i(s) are

such that
|ai(s)|, |γ̂i(s)| ≤ C, i = 1, 2,

where C is a positive constant (not depending on ω).
We define the matrix G(ε) =

(
Gij(ε)

)
1≤i,j≤2

, by

Gij(ε) =

∫
|z|≤ε

gi(z)gj(z)ν(dz), for 1 ≤ i, j ≤ 2

and the matrix β(ε) by the square root of G(ε), namely

β(ε) =

(
β1(ε) β2(ε)
β2(ε) β3(ε)

)
= G

1
2 (ε). (10)

We approximate the price process S by

S(1)
ε (t) = x1 +

∫ t

0

a1(s)S
(1)
ε (s)ds+ β1(ε)

∫ t

0

S(1)
ε (s)γ̂1(s)dW

(1)(s)

+ β2(ε)

∫ t

0

S(1)
ε (s)γ̂1(s)dW

(2)(s) +

∫ t

0

∫
|z|≥ε

S(1)
ε (s)γ1(s, z)Ñ(ds, dz),

S(2)
ε (t) = x2 +

∫ t

0

a2(s)S
(2)
ε (s)ds+ β2(ε)

∫ t

0

S(2)
ε (s)γ̂2(s)dW

(1)(s)

+ β3(ε)

∫ t

0

S(2)
ε (s)γ̂2(s)dW

(2)(s) +

∫ t

0

∫
|z|≥ε

S(2)
ε (s)γ2(s, z)Ñ(ds, dz), (11)

where Sε(0) = (x1, x2) and W = (W (1),W (2)) is a two-dimensional Brownian motion. Notice
here that the variance-covariance matrix of the process Sε is given by Σ̃(ε, t) =

(
Σ̃i,j(ε, t)

)
1≤i,j≤2

,

where

Σ̃1,1(ε, t) =
(
β2
1(ε) + β2

2(ε)
)
E
[ ∫ t

0

(S(1)
ε (s))2γ̂21(s)ds

]
,

Σ̃1,2(ε, t) = Σ̃2,1(ε, t) =
(
β1(ε)β2(ε) + β2(ε)β3(ε)

)
E
[ ∫ t

0

S(1)
ε (s)S(2)

ε (s)γ̂1(s)γ̂2(s)ds
]
,

Σ̃2,2(ε, t) =
(
β2
2(ε) + β2

3(ε)
)
E
[ ∫ t

0

(S(2)
ε (s))2γ̂22(s)ds

]
.

Since the matrix β(ε) is given by equation (10), the matrix Σ̃(ε) is the same as the variance-
covariance matrix of the small jumps of the process S. We prove the following robustness result
of the price process.
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Proposition 3.1 For every 0 ≤ t ≤ T <∞, we have

‖S(1)(t)− S(1)
ε (t)‖22 ≤ CG11(ε) ,

‖S(2)(t)− S(2)
ε (t)‖22 ≤ CG22(ε) ,

where S and Sε are solutions of (9) and (11), respectively and C is a positive constant depending
on T , but independent of ε.

3.2. Robustness of the Margrabe formula

In the following we study the robustness of the spread option written on a bivariate geometric Lévy
process. We suppose that the dynamics of the price processes S and Sε are given by equations (9)
and (11), respectively. Applying Proposition 2.2, the price of the spread option written in the
underlying process S is given by

C = S(1)(0)EP̃

[
e
∫ T
0 {a1(s)−r(s)ds}max(S

(2)(T )

S(1)(T )
− 1, 0)

]
, (12)

where the measure P̃ is defined by (4) for σ11 = σ12 = 0.
For the approximating processes, the spread option price is analogously given by

Cε = S
(1)
ε (0)EP̃ε

[
e
∫ T
0 {a1(s)−r(s)}ds max(S

(2)
ε (T )

S
(1)
ε (T )

− 1, 0)
]
, (13)

where P̃ε is defined by
dP̃ε

dP

∣∣∣∣
FT

= exp(Yε(T )).

Here above

Yε(T ) = −1

2

(
β2
1(ε) + β2

2(ε)
)∫ T

0

γ̂21(t)dt+ β1(ε)

∫ T

0

γ̂1(t)dW
(1)(t)

+ β2(ε)

∫ T

0

γ̂21(t)dW (2)(t)

+

∫ T

0

∫
|z|≥ε

ln(1 + γ1(t, z1, z2))− γ1(t, z1, z2)ν(dz1, dz2)dt

+

∫ T

0

∫
|z|≥ε

ln(1 + γ1(t, z1, z2))Ñ(dt, dz1, dz2).

We can now conclude the following convergence result.

Proposition 3.2 Let C and Cε be defined in equations (12) and (13). It holds that

lim
ε−→0

Cε = C.
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Abstract

In this paper the concept of implied liquidity is discussed as one of the possible measures of
the market fear. As the bid-ask spread can move in a constant market with no change in liq-
uidity, this spread itself is not a perfect measure of liquidity. Hence the concept of implied
liquidity is regarded in this paper as a proper measure that isolates and quantifies in a fun-
damental way liquidity risk in financial market. The idea of implied liquidity has its basis
in recently developed two-way pricing theory (conic finance), where the traditional one-price
model was replaced by a two-price model, yielding bid and ask prices for traded assets. Pricing
is performed using distortion functions and distorted expectations. Calculations performed on
the Dow Jones index show how liquidity dried out during the recent financial crisis. Intraday
investigation shows a reasonable pattern of the liquidity parameter during a day.

1. INTRODUCTION

Market liquidity is regarded as one of the key measures in business, economics or investment,
especially for risk-management purposes. It reflects an asset’s ability to be sold. High bid-ask
spreads characterize illiquid products, whereas liquidity implicates a smaller spread. However, it
is very difficult to measure liquidity in an isolated manner. Bid-ask spreads can move around in
a non-linear manner if spot or volatility moves, without a change in liquidity. In this paper we
present the concept of implied liquidity as one of the possible measures of the market fear, which
allows investors to measure the liquidity level of positions.

The concept of implied liquidity was proposed in (Corcuera et al. 2012). It is based on the
fundamental theory of conic finance, in which the one-price theory is abandoned and replaced by
a two-price theory yielding bid and ask prices for traded assets. For more background, we refer
to Cherny and Madan (2009), Cherny and Madan (2010) and Madan and Schoutens (to appear,
2011). The pricing is performed by making use of non-linear distorted expectations employing
a distortion function. In essence, the distorted expectation used in Cherny and Madan (2009) is
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parameterized by one parameter. A high value of this parameter gives rise to a wide bid-ask spread,
a low value to a small spread. Given a market bid-ask spread, one can, via reverse engineering (cfr.
implied volatility), back out the unique implied parameter to be put into the distortion function to
recoup the market spread. This implied parameter is called the implied liquidity parameter. This
allows us to measure the degree of liquidity of a certain asset in an isolated manner and to quantify
it exactly.

Implied liquidity parameter is also used as one of the three components constituting the Fear
Index FIX proposed in (Dhaene et al. 2011). FIX is created on the basis of the (equity) option
surfaces on an index and its components. The quantification of the fear level is hence on the basis
of option price data only and not on any kind of historical data. The index allows us to measure an
overall level of fear in the market. The index takes into account market risk, via the VIX volatility
barometer, liquidity risk, via the concept of implied liquidity, and finally systemic risk, via the
concept of comonotonicity.

This paper is organized as follows. First we elaborate on the implied liquidity concept and
present some basics of the conic finance theory. Subsequently distortion functions are explained
and illustrated. Theory of bid-ask pricing is followed by the introduction of the implied liquidity
parameter LIQ. Examples based on European Call options close the second section. In the next
section the graphical representation of implied liquidity in the period of the recent financial crisis
is shown. The chapter is closed with numerical results of current intraday observations of LIQ.

Computations are conducted on the basis of a historical study over the period January 2008
- October 2009, for which we calculated the implied liquidity level. Some key events in the re-
cent credit crisis in that period are clearly identified. Intraday observations come from period
27.02.2012-2.03.2012. All calculations are done on the basis of Dow Jones index options data.

2. IMPLIED LIQUIDITY EXPLAINED

High bid-ask spreads characterize illiquid products, whereas liquidity implicates a smaller spread.
However, it is very difficult to measure liquidity in an isolated manner. Bid-ask spreads can move
around in a non-linear manner if spot or volatility moves, without a change in liquidity.

In the sequel, we will discuss the concept of implied liquidity, which in a unique and funda-
mentally founded way isolates and quantifies the liquidity risk in financial markets. The idea of
implied liquidity has its basis in the recently developed two-way pricing theory (conic finance)
proposed in Cherny and Madan (2009). In this theory, the one-price theory was replaced by a two-
price theory, yielding bid and ask prices for traded assets. Pricing is performed by using distorted
expectation with respect to the distortion function. We will start with summarizing the basics of
the conic finance theory.

2.1. Conic finance - bid and ask pricing

In this section, we summarize the basic conic finance techniques needed to calculate the implied
liquidity parameter related to a vanilla option position. For more background, see Cherny and



Implied Liquidity explained 47

Madan (2009), Cherny and Madan (2010) and Madan and Schoutens (to appear, 2011). We will
start with an introduction to distortion functions and distorted expectations.

2.1.1. DISTORTION FUNCTIONS AND DISTORTED EXPECTATIONS

Conic finance uses distortion functions to calculate distorted expectations. In Cherny and Madan
(2009), a distortion function from the minmaxvar family parameterized by a single parameter
λ ≥ 0 as in Equation (1) is chosen.

Φ(u;λ) = 1−
(

1− u
1

1+λ

)1+λ

(1)
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Figure 1: Distortion function

Figure 1 presents this distortion function for different values of parameterλ. One can observe,
that larger values ofλ give rise to a more concaveΦ(u;λ) and that more probability is assigned to
the down side values and less for the up side ones.

The distortion function is used to define a distorted expectationde(X;λ). Operational cones
were defined by Cherny and Madan (2009) and depend solely on the distribution functionG(x) of
X and a distortion functionΦ. Here a cashflowX is said to be acceptable,X ∈ A, if the distorted
expectation ofX is non-negative. More precisely, the distorted expectation with respect to the
distortion functionΦ (we use the one given in Equation (1) but other distortion functions are also
possible), of a random variableX with distribution functionG(x), is defined as

de(X;λ) =

∫

+∞

−∞

xdΦ(G(x);λ).

Note that ifλ = 0, Φ(u; 0) = u and hencede(X; 0) = E[X] is equal to the original expectation.
One can consider the following example, which refers to Table 1. Let us consider 5 different

payoffs: 0, 4, 7, 8 and 11. Assumingλ = 0.8, the following cumulative probabilities can be
obtained:
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cash flow 0 4 7 8 11
cumulative probability 0.2 0.4 0.6 0.8 1
distorted cumulative probability 0.6119 0.8087 0.9193 0.9791 1
probability 0.2 0.2 0.2 0.2 0.2
distorted probability 0.6119 0.1968 0.1106 0.0598 0.0209

Table 1: Distorted v.s. regular cumulative probability

In case of uniform probabilities, average cash flow equals to 6, whereas in case of the distorted
case, the distorted average cash flow is 2.2697, which is much less than in regular case.

Hereafter, we will employ distorted expectations to calculate bid and ask prices.

2.1.2. BID-ASK PRICING

Cherny and Madan (2009) performed bid and ask price calculations using distortion functions and
distorted expectations. The ask price of payoffX is determined by

ask(X) = − exp(−rT )de(−X;λ).

This formula is derived by noting that the cash-flow of sellingX at its ask price is acceptable in
the relevant market, that isask(X) −X ∈ A. Similarly, the bid price of payoffX is determined
as

bid(X) = exp(−rT )de(X;λ)

Here the cash-flow of buyingX at its bid price is acceptable in the relevant market :X−bid(X) ∈
A.

One can prove that the bid and ask prices of a positive contingent claimX with distribution
functionG(x) can be calculated as

bid(X) = exp(−rT )

∫

+∞

0

xdΦ(G(x);λ), (2)

ask(X) = exp(−rT )

∫

0

−∞

(−x)dΦ(1−G(−x);λ). (3)

Suppose now that we are given a market bid and ask price for a European call. We can then
calculate the mid price of that call option, as the average of the bid and ask prices. Out of this
mid price we calculate the implied Black-Scholes volatility. Next we can calculate the bid and ask
prices (using the implied volatility as parameter). Under the Black-Scholes framework, this comes
down to the following calculations for a European call option with strikeK and maturityT. The
distribution of the call payoff random variable to be used in (2) and (3) is in this case given by

G(x) = 1− N

(

log(S0/(K + x)) + (r − q − σ2/2)T

σ
√
T

)

, x ≥ 0

whereS0 is the current stock price,r the risk-free rate andq the dividend yield. Further, N is
the cumulative distribution function of the standard normal law andσ is the implied volatility
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determined on the basis of the mid price. Forx < 0, G(x) = 0, since the payoff is a positive
random variable. The above closed-form solution forG(x) in combination with Equation (2) and
(3) gives rise to very fast and accurate calculations of the bid and ask prices.

The following example shows how the bid-ask spread of European Call widens when the pa-
rameterλ increases. In this example the 25 days ATM European Call option on DJX index from
21.02.2012 was used. Closing stock price on that day was at the level of 129.66$ and mid price
for strike 130$ was 1.385$. The implied Black-Scholes volatility was around 11% and we used an
interest rate of 0.05%. In Figure 2 one can see the bid, mid and ask prices for the European Call
option for a range ofλ’s.
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Figure 2: Bid, mid and ask prices for European Call options

One can observe that forλ = 0 we have the regular expectation and bid and ask prices equal
the mid price of 1.385$. Asλ increases, the bid-ask spread more and more widens.

The parameterλ in (2) and (3), for which the difference between the calculated and the market
bid and ask prices is the smallest is calledthe implied liquidity parameter. The smaller the implied
liquidity parameter, the more liquid the underlying and the smaller the bid-ask spread. In the
extremal case where the implied liquidity parameter equals 0, the bid price coincides with the ask
price, and we are back in the one-price framework. Results for the Dow Jones index are shown in
the following section.

3. NUMERICAL RESULTS ON IMPLIED LIQUIDITY

It is well-known that a distressed market suffers from the drying up of liquidity. In the previous
chapter we have overviewed the conic finance theory and pricing tools. Having this at hand, we
come to a measure LIQ for quantifying liquidity risks in the market. This measure is based on the
implied liquidity and measures the liquidity risk.

We denote byLIQj the 30–days implied liquidity of companyj, calculated from the near and
next term implied liquidities:λ∗

j(T1) andλ∗

j(T2). λ∗

j(Ti), i = 1, 2 itself is calculated as an average
of all the individual implied liquidities of all non-zero bid call and put options of companyj.
Hence,LIQj of thej–th company is given by

LIQj = x1λ
∗

j(T1) + (1− x1)λ
∗

j(T2)
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Here,x1 is a weight calculated as:

x1 =
NT2

−N30

NT2
−NT1

where:

– NT1
= time to settlement of the near-term options (i.e. with maturityT1);

– NT2
= time to settlement of the next-term options (i.e. with maturityT2);

– N30 = 30 days;

In the same way we calculate the implied liquidityLIQDJX of the index. This combination of
near and next term liquidities provides ashort term forward looking implied liquidity.

The overall liquidity index for a particular day is defined as:

LIQ =
1

2
LIQDJX +

1

2n

n
∑

j=1

LIQj. (4)

Equation 4 is further used for calculations of implied liquidity of Dow Jones index. LIQ was
obtained for the crisis period and further we have conducted intraday observations of the implied
liquidity over several days in February and March 2012. Results are presented in the following
subsections.

3.1. Illustration during the crisis

In Figure 3 the market liquidity estimation based on the DJX index and all the 30 underlying stocks
is presented. We clearly observe that LIQ is not constant over time and apparently exhibits a mean-
reverting behavior. Recent work investigates this stochastic liquidity behavior more in depth, see
(Corcuera et al. 2012).

The long run average of the implied liquidity of the data set in the period between January 2008
and October 2009 equals 390 bp. The highest value of the LIQ parameter, 1260 bp, was reached on
the 24th of October 2008. Around this day several European banks were rescued by government
intervention. Liquidity clearly dried up in these times of the high distress.

04/2008 07/2008 10/2008 01/2009 05/2009 08/2009
0

0.02

0.04

0.06

0.08

0.1

0.12

LI
Q

Figure 3: Implied liquidity, period 01.2008-10.2009
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Current research focuses on intraday calculations, which areexplained in the following section.

3.2. Intraday calculations

Historical data allowed us to calculate implied liquidity on a daily basis.
Figure 4 presents averaged weekly measurements of the implied liquidity during the day, for the

time period 27.02.2012-2.03.2012. Calculations are done using the Dow Jones out-of-the-money
options data.
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Figure 4: Average daily implied liquidity, period 27.02.2012-2.03.2012

We note that the U.S. stock market operates between 9:30am and 16:30pm. The pattern shows
that a day usually starts with a high liquidity parameter value, which decreases during the day. This
means that liquidity itself is on the lowest level at the start of a session and market becomes more
and more liquid over the day. One can observe a small decrease of liquidity around lunch time and
after that a further increase of liquidity. LIQ increases again in the end of the session, indicating
drying-out liquidity at the end of the working day.

4. CONCLUSIONS

Since in a market the bid and ask spread can move around in a non-linear fashion with maturity
and/or volatility and the spread can move in a constant market with no change in liquidity, spread
itself is not a perfect measure of liquidity. In this paper the concept of implied liquidity measure is
further discussed as a proper measure which isolates and quantifies in a fundamental way liquidity
risk in financial markets.

Implied liquidity uses the concept of the conic finance, in which the one-price theory is aban-
doned and replaced by a two-price one, yielding bid and ask prices for traded assets. The pricing
is performed by making use of non-linear distorted expectations.

Research is focused on the implied liquidity parameter LIQ intrinsically related to bid-ask
spreads. We presented the historical values of the LIQ parameter solely based on vanilla index
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options and individual stock options of Dow Jones Index. Obtained results show that the liquidity
clearly dried out in the time of the crisis in 2008. Moreover we observe that LIQ is not constant
over time and exhibits a mean-reverting behavior.

The last section show results of the intraday calculations of implied liquidity, yielding the
pattern of the liquidity parameter behavior.
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ON THE MARKET SELECTION HYPOTHESIS
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Abstract
We analyze the market selection hypothesis introduced by Mielton Friedman (1953) in a fairly
complex economy consisting of heterogeneous agents. We show that in the long run there
exists a unique dominating agent whose consumption ratio converges to 1 as time evolves,
whereas all other agents’ consumption shares converge to 0. Furthermore, we prove that the
equilibrium prices of the interest rate and the market price of risk are dictated by this sole dom-
inating agent. Our main mathematical tool is Strassen’s functional law of iterated logarithm
along with some other probabilistic arguments and limit theorems for stochastic processes.

1. INTRODUCTION AND MAIN RESULTS

The market selection hypothesis (see Friedman (1953)) states that agents with a better assessment
of the market, or with certain beneficial traits, are expected to govern the economy. On the other
hand, irrational agents, or those ones with a rather superficial understanding of the market’s dy-
namics are supposed to be eliminated from the economy in some sense. Translating the above
ideas to more concrete statements, one can expect that ”successful” agents are going to consume a
considerable portion of the aggregate endowment in the economy, and have a significant impact on
the market prices. In contrast to this, the ”unsuccessful” agents will consume only a neglectable
portion of the total endowment in economy (or even in a more radical scenario, their consumption
shares will converge to zero, as time evolves to infinity), and will not affect the market prices at
all.

Since the seminal work of Friedman (1953), the market selection hypothesis has attracted a
wide attention especially in the last decade, when many researchers were aiming at establishing
and examining the theoretical validity of this hypothesis in a variety of stochastic settings (see
Blume and Easely (2006), Cvitanic et. al. (2011), Nishide and Rogers (2011), Yan (2008) and the
references therein).

We examine the market selection in a highly heterogeneous and stochastic setting. We propose
a model including simultaneously several sources of heterogeneity among the agents inhabiting
the economy:
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• Endowments.

• Impatience rates.

• Risk-aversions.

• Diverse beliefs.

• External habit-formation coefficients.

The first three notions are somewhat standard in the heterogeneous equilibrium literature. The
latter two ingredients are relatively novel in the form presented here, since both of them are treated
in parallel. We expand a bit our discussion on that: agents are allowed to have diverse beliefs
concerning certain aspects of the market (the mean growth rate and the public signal delivering
information). Furthermore, agents possess only partial information, i.e., some processes are un-
observable (the mean growth rate) and are estimated by exploiting the available information (the
aggregate endowment processes and a public signal). However, due to diverse beliefs, the filtered
dynamics differ among agents and in particular differ from the actual dynamics under the physical
measure. In terms of the preceding notions, the model we adopt here follows closely the works of
Dumas et. al. (2009) and Scheinkman and Xiong (2003).

The preferences of the agents are modeled by external habit-formation. More specifically, the
expected utility functions maximized by the agents are the so-called ”catching up with the Joneses
utilities”; see Chan and Kogan (2002) and Xiouros and Zapatero (2010). This is a model of habit-
formation incorporating the impact of an external process called the standard of living, where each
individual experiences a different level of this impact. The higher this level, the more sensitive
the individual is to the patterns of the standard of living index. The closer is this index to 0, the
closer are the preferences of the individual to ”classical” CRRA (constant relative risk-aversion)
utility functions. In our setting, the standard of living is defined as a geometric past average of
the aggregate endowment process. Since we assume that the market clears (i.e., the aggregate
endowment is equal to the aggregate consumption), the standard of living index can be interpreted
as a process encoding the addiction of the individual caused by the past (aggregate) consumption.

Within the above framework, we prove (and provide an explicit characterization through a
function called the survival index) the existence of a unique agent that dominates the market, as
time growths to infinity. Furthermore, we show that in the long-run, the interest rate and the market
price of risk derived endogenously in equilibrium are determined according to this dominating
agent. Due to the fact that we can detect this surviving consumer by the characteristics of the
agents, we conclude that the market selection hypothesis indeed holds true, at least in a modified
form.

2. SETUP

2.1. Utility Maximization

The financial market in the model is assumed to be complete in the sense that it is represented by
a (unique) positive state price density (or, pricing kernel) (Mt)t∈[0,∞), and all claims adapted to
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the filtration (Gt)t∈[0,∞) (which is specified below) are dynamically hedgable. The market will be
implemented later on by three assets (two risky and one riskless) with an interest rate and market
price of risk determined endogenously by the market clearing condition leading to equilibrium. We
start with a rather intuitive approach where we first present the utility maximization problem, de-
spite that it is based on a certain structure arising from the fact that agents have diverse beliefs and
use standard Kalman filtering to revise them. There are N agents in the economy (i = 1, . . . , N ),
and each agent i solves the following expected utility maximization problem from consumption
with an infinite time horizon:

sup
(ct)t∈[0,∞)

EQi
[∫ ∞

0

e−ρitUi(ct)dt

]
,

under the budget constraint

E

[∫ ∞
0

citMtdt

]
≤ E

[∫ ∞
0

εitMtdt

]
.

As usual, ρi is the impatience rate, ct denotes the consumption choice, and εit is the endowment
process of agent i. The measure Qi stands for a subjective probability measure (it will be set pre-
cisely in the sequel). Furthermore, the measure Qi is equivalent to the physical measure P on the
filtration (Gt)t∈[0,∞), but as we will explain below, they are not equivalent on a bigger filtration
generated by all the shocks of the model. The subjective density (Radon-Nykodym derivative of
these measures on the filtration (Gt)t∈[0,∞)) is denoted by Zit := E

[
dQi

dP

∣∣Gt] , and an explicit for-
mula is given below by some standard arguments from filtering theory combined with Girsanov’s
theorem. The utility function is of external habit-formation CRRA type and given by

Ui (ct) =
1

1− γi

(
ct
Hit

)1−γi
,

where the process (Hit)t∈[0,∞) is called the ”standard of living” index and given by

logHit = βie
−λt ·

(
x0 + λ ·

∫ t

0

eλs · log(Ds)ds

)
,

where (Dt)t∈[0,∞) is the aggregate endowment process, i.e.,

Dt :=
N∑
i=1

εit.

This specification of a habit-forming utility function postulates that the gratification attributed to
a certain consumption process has to be discounted by the standard of living index. That is, there
is a habit-formation affect (whose strength can change among agents) incorporated in the decision
making procedure of each investor.
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2.2. Equilibrium

It can be easily checked (due to the completeness of the market) that the optimal consumption
stream of each agent i is given by

cit = ci0e
ρi
γi
t
M
− 1
γi

t Z
1
γi
it H

γi−1

γi
it .

We are now ready to introduce the standard notion of equilibrium in this setting.

Definition 2.1
(
(cit)t∈[0,∞), (Mt)t∈[0,∞)

)
is an equilibrium, if:

(a) It corresponds to the solution of the utility maximization problem of each agent i.
(b) The market clears:

N∑
i=1

cit = Dt.

The above definition combined with the explicit formula for the optimal consumption stream
allows to provide an analytic description of the equilibrium state price densities.

Example. In a homogeneous economy type i (i.e., when the economy is represented by one agent
of type i), the corresponding equilibrium state price density is given by

Mit = e−ρitD−γit ZitH
(γi−1)
it .

Example. The heterogeneous (i.e. the general case) equilibrium state price density is given by

Mt = F (cγ110M1t, . . . , c
γN
N0MNt),

where F (a1, . . . , aN) : RN
+ → R is defined via

N∑
i=1

a
1/γi
i F−1/γi(a1, . . . , aN) = 1.

This is a very important formula as this allows to compute the dynamics of the state price density
Mt by using Ito’s formula and derive the corresponding dynamics of the interest rate and the market
price of risk.

2.3. Endowment process and observability

Note that so far no specific assumptions were imposed on the dynamics of the underlying pro-
cesses. We model the aggregate endowment process by the following dynamics

dDt

Dt

= µDt dt+ σDdW
(1)
t , D0 = 1.
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Here, and henceforth, W (j), j = 1, 2, 3 are standard independent one-dimensional Wiener pro-
cesses defined on the same probability space. This process is assumed to be observable by all
agents. The constant σD is positive and the mean growth rate process µDt is modeled by an mean-
reverting process, i.e.

µDt = µ+ (µ0 − µ) e−ξt + σµe−ξt
∫ t

0

eξsdW (2)
s ,

where µ, µ0, ξ > 0. This process is assumed to be unobservable. There is another source of
information available to all agents: this is an observable public signal given by

st = φW
(2)
t +

√
1− φ2W

(3)
t ,

where φ ∈ [0, 1). Thus we see that this public signal provides a certain valuable information to
the agents since it exhibits a non-negative correlation (φ) with the shock governing the dynamics
of the mean growth rate process. Consequently, agents will be aiming to optimally filter the (un-
observable) dynamics of µDt from the information conveyed by the aggregate endowment process
and the public signal, i.e., their information set is the following sigma-algebra:

Gt := σ ({su; 0 ≤ u ≤ t} ∪ {Du; 0 ≤ u ≤ t}) .

2.4. Diverse Beliefs and Learning

Agents are allowed to have diverse beliefs concerning some aspects of the market. More specifi-
cally, each agent i beliefs that the average and initial growth rates differ from the correct ones and
the correlation of the public signal with the mean-growth rate process is φi ∈ (−1, 1) and not the
actual correlation φ. Mathematically, we denote by Qi (i = 1, . . . , N ) a measure defined on the
underlying probability space such that the latter dynamics are given by

µDt = µi + (µ0i − µi) e−ξt + σµe−ξt
∫ t

0

eξsdW (2)
s , (1)

and
st = φiW

(2)
t +

√
1− φ2

iW
(3)
t , (2)

under this measureQi, whereW (i), i = 1, 2, 3 are as before independent standard one-dimensional
Wiener processes, under Qi. Such measures always exist, given that the probability space is large
enough. Note that (1) implies that each Qi is a singular measure (with respect to the physical
measure) on the large filtration generated by W (1),W (2) and W (3). We say that agent i is over-
confident in the signal if φ > φ, otherwise we say that this agent is under-confident. Agents are of
course in the process of learning the unobservable process µDt by using their information set, but
the filtering is executed under the subjective measure Qi:

µDit = EQi
[
µDt
∣∣Gt] .

Now, the dynamics can be derived explicitly by using the theory of optimal filtering:

µDit =
µi0
yit

+
ξµi
yit

∫ t

0

yiudu+
1

(σD)2 yit

∫ t

0

νiuyiu
Du

dDu +
σµφi
yit

∫ t

0

yiudsu, (3)
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where

yit = exp

(
ξt+

1

(σD)2

∫ t

0

νisds

)
, (4)

and the variance process

νit := EQi
[(
µDt − EQi

[
µDt
∣∣Gt])2 ∣∣Gt]

is deterministic and given by

νit = αi2(σ
D)2

e(αi2−αi1)t − 1

e(αi2−αi1)t − αi2/αi1
, (5)

where
αi2 =

√
ξ2 + (σµ/σD)2(1− φ2

i )− ξ,

and
αi1 = −

√
ξ2 + (σµ/σD)2(1− φ2

i )− ξ.

Now, we aim at showing that Qi is in fact equivalent to the physical measure P on the smaller
(information set) filtration (Gt)t∈[0,∞). For this purpose, denote by i = 0 a fictional rational agent
who knows the correct dynamics of all the underlying processes, i.e., his or her subjective measure
coincides with the physical measure P . Thus this agent filters the dynamics according to the
following rule

µD0t = EP
[
µDt
∣∣Gt] .

It is a well known fact that the process

dW0t = dW
(1)
t −

µD0t − µDt
σD

dt

is a (P,G)−Brownian motion. (In fact, it is evidently G adapted, and one can check that it is a
Brownian motion by using Levy’s theorem). We set next

δit :=
µDit − µD0t
σD

to be i−th agent’s error in estimation. Now, denote

dWit = dW
(1)
t −

µDit − µDt
σD

dt

As above, it is a (Qi,G)−Brownian motion. On the other hand, we can write

dWit = dW0t − δitdt.

Now, let P i be a measure given by the following Radon-Nykodym derivative

Zit := E

[
dP i

dP

∣∣Gt] = exp

(∫ t

0

δisdW0s −
1

2

∫ t

0

δ2isds

)
.
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Then, it follows by Girsanov’s theorem that Wit is a P i−Brownian motion and also st is a Brow-
nian motion. Now, we claim that the filtration G is generated by the public signal st and W (i)

t , for
arbitrary i = 1, . . . , N . To see this, note that

dDt

Dt

= µDitdt+ σDdW
(i)
t ,

and
dµDit = −ξ

(
µDit − µi

)
dt+

νit
σD

dW
(i)
t + σµφidst.

Finally, since st and W (i) are both Brownian motions under Qi and P i we get that P i = Qi on
the filtration (Gt), and we have in particular found the corresponding density process. From i−th
agent’s viewpoint, the dynamics of the total endowments process are given by

dDt

Dt

= µDitdt+ σDdWit.

3. MAIN RESULTS

For each agent i, we denote by

κi = κ(βi, γi, µi, φi, ρi) :=

ρi +

(
µ− 1

2
(σD)2

)
(γi + (1− γi)βi)+

1

2

(
µi − µ
σD

)2

+
ξ2 +

(
σµ/σD

)2
(1− φφi)

2
√
ξ2 + (σµ/σD)2 (1− φ2

i )
.

the survival index of this agent. As will be seen below this index depending on all agents’ charac-
teristics ranks the agents’ surviving skills. The proofs of the results presented below can be found
in Muraviev (2012).

Theorem 3.1 Assume that there exists a unique agent I such that

κI < κi,

for all i 6= I. Then, in equilibrium, the only surviving consumer in the long run is the one of type
I:

lim
t→∞

cit
Dt

= lim
t→∞

cit∑N
j=1 cjt

= 0,

for all i 6= I , and
lim
t→∞

cIt
Dt

= lim
t→∞

cIt∑N
j=1 cjt

= 1.
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Next, we would like to deal with asset prices. So far, we have assumed that there is a quite
obscure market represented by the state price density derived explicitly in equilibrium. However,
for getting results concerned with the long-run behavior of endogenous prices, we need to define
the market structure. Recall that Gt = σ (st,Wit), i = 1, . . . , N . We implement the market by
a bank account, one risky asset which pays a dividend being equal to the aggregate endowment
process Dt, and one further asset that is not modeled explicitly. These prices are determined
endogenously in equilibrium. Furthermore, it is a well known fact that in this case the interest rate
and the market price of risk are detected through the dynamics of the state price densities (they are
equal respectively to minus the drift and minus the diffusion term). We are now ready to state the
following result.

Theorem 3.2 (i) We have
lim
t→∞
|rt − rIt| = 0,

and
lim
t→∞
|θt − θIt| = 0.

(ii) Under some conditions, we have

lim sup
t→∞

|rt − rit| = +∞,

and
lim sup
t→∞

|θt − θit| = +∞,

for all i 6= I .
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Bermúdez (2009) described bivariate Poisson regression models for ratemaking in car insurance.
The central idea was that the existing dependence between the two different types of claims must
be taken into account in order to achieve better ratemaking. However, another question comes up
here. How to deal with the unobserved heterogeneity usually observed in such a data set when
using a bivariate regression model. The aim of this paper is to show different bivariate claim
counts models to account for such features of the data, i.e. overdispersion and excess of zeros.
These models are applied to an automobile insurance claims data set with two different types of
claims in order to analyse the consequences for pure and loaded premiums when the independence
assumption is relaxed.

1. INTRODUCTION AND MOTIVATION

A priori ratemaking based on generalized linear models is usually accepted. Although it is possible
to use the total number of claims as response variable, the nature of automobile insurance policies
is such that the response variable is the number of claims for each type of guarantee. With the usual
ratemaking procedure, a premium is obtained for each class of guarantee as a function of different
factors. Then, assuming independence between types of claims, the total premium is obtained as
the sum of the expected number of claims of each guarantee.

Two questions arise here:
1. Is the independence assumption realistic? When this assumption is relaxed, how might the

tariff system be affected?
2. If the independence assumption is relaxed, how to deal with the unobserved heterogeneity

usually observed in such a data?

In Bermúdez (2009), the bivariate Poisson regression models (BP) were presented as an in-
strument that can account for the underlying connection between two types of claims arising from
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the same policy. The conclusion was that even when there are small correlations between the
counts, major differences in ratemaking may appear. Using BP models leads to a ratemaking that
presents larger variances and, hence, larger loadings than those obtained under the independence
assumption.

In automobile insurance, the problem of unobserved heterogeneity is caused by the differences
in driving behaviour among policyholders that cannot be observed or measured by the actuary. The
main consequence of unobserved heterogeneity is overdispersion. The presence of excess of zeros
in most insurance data sets can be also seen as a consequence of unobserved heterogeneity.

To account for the excess of zeros, zero-inflated bivariate regression Poisson models (ZIBP)
were included in the analysis in Bermúdez (2009). In contrast to the BP model, the marginal
distributions of a ZIBP model are not of Poisson type and, as such, they can present overdispersion.

A natural way to allow for overdispersion is to consider mixtures of a simpler model. This is
well done in the univariate setting when moving from the Poisson model to the negative binomial
model. In Bermúdez and Karlis (2011), finite mixtures of BP regression models (FMBP) were
considered.

2. BIVARIATE CLAIM COUNTS MODELS

2.1. Bivariate Poisson regression models

Let Y1 and Y2 be the number of claims for third-party liability and for the rest of guarantees respec-
tively. It is assumed that Y1 and Y2 follow jointly a bivariate Poisson distribution (Kocherlakota
and Kocherlakota (1992)):

(Y1, Y2) ∼ BP (λ1, λ2, λ3).

The BP distribution allows for positive dependence between Y1 and Y2; λ3 = Cov(Y1, Y2), is a
measure of this dependence; finally, the marginal distributions are Poisson with E[Yk] = λk + λ3
for k = 1, 2.

If covariates are introduced to model λ1, λ2, and λ3, the BP model can be defined by:

log λki = βT
k xki, k = 1, 2, 3, i = 1, . . . , n

where xki is a vector of covariates for the i-th observation related to the k-th parameter and βk is
the associated vector of regression coefficients. For details, we refer to Bermúdez (2009).

In this model, the marginal means and variances are equal. Therefore, we need to consider
extensions to allow for overdispersion.

2.2. Zero inflated bivariate Poisson regression models

From the above BP model, the ZIBP model is specified by:

fZIBP (Y1, Y2) =

{
(1− p)fBP (Y1, Y2|λ1, λ2, λ3) + pfD(Y1| θ) Y1 = Y2 = 0

(1− p)fBP (Y1, Y2|λ1, λ2, λ3) elsewhere,
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where fBP (Y1, Y2|λ1, λ2, λ3) is the BP joint probability function, and fD(Y1| θ) is the degenerate
probability function at zero. See Bermúdez (2009) for more details.

In contrast to the BP model, the marginal distributions are overdispersed. However, are these
ZIBP models the best option to deal with the unobserved heterogeneity?

2.3. Finite mixture of bivariate Poisson regression models

In order to allow for overdispersion, mixtures of bivariate Poisson distribution can be considered
starting by aBP (a1λ1, a2λ2, a3λ3) distribution where the ais jointly follow a trivariate distribution.
The specification of the random-effects distribution can be a continuous, a discrete or a finite
distribution. We consider the latter case giving rise to finite mixture models.

Namely, the FMBP model takes the form:

Yi = (Y1i, Y2i) ∼
m∑
j=1

pjBP (y1, y2;λ1ji, λ2ji, λ3ji), i = 1, . . . , n, j = 1, . . . ,m,

log(λkji) = βT
kjxkji, k = 1, 2, 3, j = 1, . . . ,m,

where xkji is a vector of covariates for the i-th observation associated with the k-th parameter of
the j-th component of the mixture and βkj is the set of regression coefficients.

A natural extension of the model is to use covariates also in the mixing proportions, i.e. the
vector of probabilities (p1, . . . , pm).

This model has some interesting features. First of all, the zero inflated model is a special case.
Secondly, it allows for overdispersion, and thirdly, it allows for a neat interpretation based on the
typical clustering usage of finite mixture models, see Bermúdez and Karlis (2011).

3. APPLICATION

A dataset containing information for 20,000 policyholders of the automobile portfolio of a major
insurance company operating in Spain has been used. For each policy, 12 exogenous variables
were considered plus the yearly number of accidents recorded for the two types of claim.

We have fitted models of increasing complexity to this data set, starting from a simple indepen-
dent Poisson regression model (DP). In Table 1, it can be seen that the 2-FMBP regressions are by
far the best models, especially the regression with covariates in the mixing proportion, which has
the best AIC.
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Model Log-Lik Parameters AIC
Double Poisson -48882.95 24 97813.90
Bivariate Poisson (BP) -48135.98 25 96321.96
BP2 (regressors on λ3) -47873.37 26 95798.74
Zero inflated BP (ZIBP) -45435.00 26 90922.00
ZIBP2 (regressors on λ3) -45414.80 27 90883.60
2-finite mixture BP (2-FMBP1) -44927.01 51 89956.02
2-FMBP2 (regressors on p) -44842.22 53 89737.44

Table 1: Information criteria for selecting the best model for the data

Five different, yet representative, profiles were selected from the portfolio to compare the im-
pact of using these models in a priori ratemaking. The first can be classified as the best profile since
it presents the lowest mean score. The second was chosen from among the profiles considered as
good drivers, with a lower mean value than that of the average for the portfolio. A profile with a
mean lying very close to this average was chosen for the third profile. Finally, a profile considered
as being a bad driver (with a mean above the average) and the worst driver profile were selected.

Table 2 shows the results for the five profiles. The main differences in ratemaking when using
bivariate models as opposed to the independent Poisson model is that bivariate models increase
variances in most cases, meaning overdispersion. This is especially noticeable for ZIBP and FMBP
models.

Best Good Average Bad Worst
Model Mean Var Mean Var Mean Var Mean Var Mean Var
DP 0.0793 0.0793 0.1070 0.1070 0.1866 0.1866 0.2860 0.2860 0.6969 0.6969
BP2 0.0873 0.1027 0.1131 0.1285 0.1804 0.1958 0.2824 0.3726 0.6920 0.7821
ZIBP2 0.0826 0.1037 0.1055 0.1371 0.1898 0.2822 0.2771 0.4963 0.5562 1.3440
FMBP2 0.0908 0.1514 0.0919 0.1430 0.2270 0.3787 0.3531 0.7482 0.5382 1.0184

Table 2: Comparision of a priori ratemaking

4. CONCLUSIONS

In Bermúdez (2009), ZIBP models were fitted to account for the excess of zeros found with re-
spect to the simple BP models; at the same time, they allow for overdispersion. However, using
FMBP models we show that in fact the problem is not merely zero inflation but more than this,
so assuming the existence of two type of clients described separately by each component of the
mixture significantly improves the modelling of the dataset.

In Bermúdez and Karlis (2011), a new model consisting of a finite mixture of bivariate Poisson
regressions is proposed. The idea is that the data consist of subpopulations for which the regression
structure is different. The model corrects for zero inflation and overdispersion.

The existence of “true” zeros assumed by ZIBP models may be a too strong assumption in
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some cases. However, the 2-FMBP model is not based on this somewhat strict assumption and
allows mixing with respect to both zeros and positives. This idea is more flexible and it better
holds in our case: the group separation is characterized by low mean with low variance for the first
component (“good” drivers) and high mean with high variance for the second one (“bad” drivers).

Finally, most of the parameters show the same behavior for both “good” and “bad” drivers.
However, we find three parameters which are only significant for the second component, so they
can be used to define the “bad” drivers, basically parameters related to driver’s age and the driving
experience.

References
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Tecnologia, Universidade Nova de Lisboa, Portugal
Email: parcr@fct.unl.pt, lbafonso@fct.unl.pt

Abstract

The quantification of operational risk has, much more than other types of risk that banks
and insurers are obliged to manage, to deal with various concerns regarding data. Several stud-
ies document some of those concerns. One of the main questions that worries both researchers
and practitioners is the bias of data for the operational losses amounts recorded.

We support the assertions made by several authors and defend that the bias concern is a very
serious problem when modeling operational losses data. The bias is presented in all databases,
not only in the commercial databases provided by various vendors, but also in databases where
the data for operational losses is collected and compiled internally.

We show that it’s possible, based on mild assumptions on the internal procedures put in
place to manage operational losses, to make parametric inference using loss data statistics. We
estimate the parameters for the losses amounts, taking in consideration the bias that, not being
considered, generates a twofold error in the estimators for the mean loss amount and the total
loss amount, the former being overvalued and the last undervalued.

In this paper, we do not consider the existence of a threshold for which, all losses above,
are reported and are available for analysis and estimation procedures. We follow a different
approach to the parametric inference. We consider that the probability that a loss is reported
and ends up recorded for analysis, increases with the size of the loss, what causes the bias
in the database but, at the same time, we don’t consider that a threshold exists, above which,
all losses are recorded and available for analysis, hence, no loss has probability one of being
recorded, in what we defend is a realist framework. We deduce general formulae, present some
results for common theoretical distributions used to model (operational) losses amounts and
estimate the impact for not considering the bias factor when estimating the value at risk.

Keywords: Operational Risk Management, Loss Data, Bias, Weighted Distributions, VaR.
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1. SAMPLING FRAME AND SAMPLE

Consider the following notation and hypotheses:

• X the individual operational loss amount is a random variable with cumulative distribution
function FX(·).

• SX = {Xi, i = 1, . . . , N} is the random sample of the operational losses occurred over a
period, with the Xi independent and identically distributed (i.i.d.) with FX(·).

• Not all the observations presented in the original sample SX , will be available to model op-
erational losses and for statistical inference, namely, parametric estimation. SY = {Yj, j =
1, . . . ,M}, with M ≤ N are the observations available for estimation sample). The unob-
servable SX , produced by the original stochastic process, is called the sampling frame.

• Each individual loss presented in SX has a probability, say pi, i = 1, . . . , N , of being
recorded and, in that case, belonging to the sample SY , the data that is available to us to
study the phenomenon.

The researcher of operational losses ends up with a biased sample of all the operational losses
that should have been reported. The bias is originated due to the positive correlation between the
loss amount and the probability of being reported.

Each element in the sampling frame SX , has probability of inclusion in the sample SY , de-
pending on the quality of the mechanism put in place to filter the sampling frame and on the size
of the element, with largest elements having bigger probabilities. If the mechanism is perfect, all
the elements in the sampling frame would be selected and end up in the sample, so that we would
have no loss of information and no biased sample.

After realization, the probability for an operational loss to be reported is dependent on the
quality the mechanism put in place to record operational losses, and if the mechanism is not perfect,
proportional to its likelihood.

2. WEIGHTED DISTRIBUTIONS

We can read the yearly work on weighted distributions in Fisher (1934). The problem of param-
eter estimation using non-equally probable sampling schemes was first addressed by Rao (1965),
Patil and Rao (1977) and Patil and Rao (1978). In these papers the authors identified various
sampling situations which can be modeled using weighted distributions and calculated the Fisher
information for certain exponential families, focusing primarily on w(x) = x, for nonnegative
random variables, denominating this weighted distributions by the size-based form of the original
distribution.

Definition 2.1 Assume a random variable X , with probability density function (pdf) (or proba-
bility mass function (pmf)) fθ(x), with parameters θ in a given parameter space Θ. Also, assume
that the values x and y are observed and recorded in the ratio of w(x)/w(y), where w(x) is a
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non-negative weight function, such that E (w(X)) exists. If the relative probability that x will be
observed and recorded is given by w(x) ≥ 0, then the pdf of the observed data is

fw(x) =
w(x)

ω
f(x),where w(x) ≥ 0 and ω =

∫
R
w(x)fX(x)dx = E (w(X)) .

The pdf fw(x) is denominated the weighted pdf corresponding to f(x).

Consider the following notation and hypotheses:

• N (and of course M ) is a rv, although, depending on the sampling scheme used, the distri-
bution of M conditional on N may be a degenerated random variable.

• The sample membership indicators Ik, with k = 1,. . . , N , are independent. The sampling
scheme implies that the sampling is made without replacement. The sample membership
indicators are distributed related to size according to

P(Ik = 1 | Xk) = F ξ
X(xk), ξ ∈ [0,+∞[.

So, Ik | Xk ∼ B
(
F ξ
X(x)

)
has a Bernoulli distribution with probability of success F ξ

X(x).
We can say that this is a particular case of a Poisson sampling design with inclusion proba-
bilities proportional-to-size, see for instance Sarndal et al. (1992).

• ξ is as a censorship parameter (other possible analogies can be a disclosure or a quality
parameter). If ξ = 0 (implying no censorship, total disclosure of all losses or a system
so effective that all losses end up reported) we would have P(Ik = 1 | Xk) = 1, so that
SY = SX , and we would be in the usual situation of a random sample from FX(·).

However, when ξ > 0, we are in the presence of some degree of censorship in our sample,
making more likely that big losses are included in the sample than small losses.

Proposition 2.1 Let X1, . . . , XN be a random sample of individual losses, with Xi independent
of N a random variable with support on N. If we consider SX = {X1, . . . , XN} as our sampling
frame (or simply frame) and apply on SX a sampling scheme proportional-to-size with no replace-
ment, such that, P(Ii = 1 | Xi = x) = F ξ

X(x), with i = 1, . . . , N , where FX(·) is the cdf of Xi and
ξ ∈ [0,+∞[ is the censorship parameter, then:

a) Not conditional on knowledge of the frame, the inclusion variables are i.i.d. Bernoulli with
π = 1

ξ+1
the probability of success; B

(
1
ξ+1

)
= B (π), that is,

P(Ii = 1) =
1

ξ + 1
= π, i = 1, . . . , N.

b) Since ]SY =
∑
X

Ik =
N∑
i=1

IXi , we have that, E(]SY | N) = Nπ = N
ξ+1

.

c) P(Xj = x | Ij = 1) = F ξ
X(x)fX(x)(ξ + 1), j = 1, . . . , N , ξ ∈ [0,+∞[.

Proposition 2.2 With the assumptions of Proposition 2.1, the distribution of the observations in
the sample, that is, the distribution of the losses recorded, hence, the distribution of the observa-
tions available to the researcher to make inference, is a weighted distribution on fX(·) with weight
function w(x) = F ξ

X(x).
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3. APPLICATION

We are only authorized to disclosure aggregated data. During 2010 the bank internal reports ac-
count for a total operational loss of 4 414 000 e. This total loss was originated by 4 700 operations.
So that we have a mean operational loss of 939 e. The risk department estimated a probability of
1/250, for an operation to generate an operational loss and of 95% for the loss ending up reported
and documented. In this case ξ0 = (1− 95%)/95% = 0.05263.

3.1. EXPONENTIAL MODEL

With the Exponential model, fX(x) = 1
β
e(−

1
β
x)I+R(x), β > 0,

fw(x) =
(

1− e−
1
β
x
)ξ 1

β
e−

1
β
x(ξ + 1)IR+(x), with

E (Xw) =

∫
R+

x
(

1− e−
1
β
x
)ξ 1

β
e−

1
β
x(ξ + 1)dx = βHξ+1,

where Hn is the n-th harmonic number. When we compare E (Xw) with E(X) = β, we have that:

R =
E (Xw)

E(X)
= Hξ+1.

For instance, when ξ = 0.05263, so that P(IX = 1) = 95%, we have E(Xw)
E(X)

= H1.0263 = 1.03,
meaning, the expected value of a recorded loss is 3% larger than the original loss.
We have β̂ = 939e vs β̂w = 939/1.03 = 911.65e. The individual losses V@R1% isF−1

β̂
(99%) =

4 324.25 e vs F−1
β̂w

(99%) = 4 198.30 e.
Estimating the true total operational losses the bank incurred, we have

E

(
N∑
i=1

Xi

)
= (1 + ξ0)× 4 700× 911.65 = 4 510 268.42 e

estimating an increase of 96 268.42 e (2.18%).

3.2. PARETO MODEL

With the Pareto model, fx(x) = αβα

xα+1 I]β,+∞[(x), with β, α ∈ R+. We will consider the case with
β = 1, but the generalization is straightforward, so

fw(x) =
(
1− x−α

)ξ
αx−(α+1)(ξ + 1)I]1,+∞[(x), with

E (Xw) = (1 + ξ)B (1− 1/α, 1 + ξ)
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where B (x, y) is the beta function.
When we compare E (Xw) with E(X) = α/(α− 1), α > 1, we have that:

R =
E (Xw)

E(X)
= (1 + ξ)

(α− 1)

α
B (1− 1/α, 1 + ξ) .

For instance, when ξ = 0.05263, so that P(IX = 1) = 95%, we have E(Xw)
E(X)

= 1.053, meaning,
the expected value of a recorded loss is 5.3% larger than the original loss.
We have, α̂ = 939/(939 − 1) = 1.0011 e vs α̂w = 1.00112 e. The individual losses V@R1% is
F−1
β̂

(99%) = 99.49 e vs F−1
β̂w

(99%) = 99.49 e.
Estimating the true total operational losses the bank incurred, we have

E

(
N∑
i=1

Xi

)
= (1 + ξ0)× 4 700× 893.86 = 4 422 254.74 e

estimating an increase of 8 254.74 e (0.19%).

3.3. COMPARATIVE RESULTS
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Figure 1: Ratio between the expected value of a recorded loss and the original loss.
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Figure 2: Quantiles 99% to 100% for Exponential and Pareto.

Figure 1 shows the relative increase in the expected value for ξ ∈ [0, 1].

Figure 2 shows the difference in the quantiles (greater than 99%). If we consider an exponential
model we have for a dashed line the individual losses reported and for the black line the true
operational individual losses. For the Pareto model we don’t have a substantial difference between
the reported losses and the true losses.

4. CONCLUSIONS

What we learn from these two examples, considering the Exponential and Pareto distributions is
that for a relatively high rate of success in reporting operational risk losses, 95% in our example,
the heavy tail Pareto distribution is much less affected by the bias when estimating the parameters
than the light tail Exponential distribution. Since our sampling scheme originates a bias towards
the larger observations the parametric estimation is less affected in case of a right heavy tail dis-
tribution for the underlying data, as the observations that will not be considered have a bigger
probability to be closer to values in the right tail. This can help to explain why the heavy tails are
usually accepted as good (or not so bad) fits to operational risk loss data.
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Based on Solvency II principles, the Quantitative Impact Study (QIS-5) provides a Standard Model
to estimate an amount to ensure the stability against non expected adverse fluctuations, the sol-
vency capital requirement (SRC). We focus on the non-life premium and reserves risk module.
Non-life premium and reserves’ SCR is mainly given by some parameters established by the
CEIOPS. To apply the Standard Model, an insurance company can choose between using the
standard parameters provided in QIS-5 or to estimate its own parameters based on its portfolio.

1. INTRODUCTION AND AIM

Our aim is to estimate the correlation matrix between lines of business given there is a lack of such
estimator or methodology in QIS-5.

We propose the use of a Bayesian approach in order to fulfill this gap. We estimate the corre-
lation matrix between lines of business mixing the information about correlations provided by the
regulator and the one coming from the historical data through the use of a Bayesian model. The
model is extensible to the correlation between premiums and reserve.

In the standard formula, the SCR corresponding to the risk premiums and reserves is calculated
by means of a closed formula, which depends on a measure of volume, V , and an approximation
of the mean-value-at-risk with a significance level of 99.5% at a one-year horizon, assuming a
log-normal distribution of the underlying random variable, ρ (σ):

SCR = V · ρ (σ) .

The expression ρ (σ) depends on the combined standard deviation (σ) parameter. In the standard
formula the combined standard deviation is obtained by, first, aggregating the corresponding stan-
dard deviation of premiums and standard deviation of reserves by lines of business, taking into
account the existing correlation between them, thereby providing us with the standard deviation
by line of business. Subsequently, by aggregating these and by taking into account the existing
correlation between lines of business, the combined standard deviation is obtained.
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The expression ρ (σ), according to Gisler (2009), can be derived by considering a random
variable, Zi, which is the implicit random variable in the standard formula for the premium and
reserve risk:

Zi =
Xi · Pi + Yi ·Ri

Vi +Ri

,

where Xi represents the loss ratio, Pi is a premium volume measure, Yi represents the reserves
ratio and Pi is a reserves volume measure, each time for the i-th line of business.

While Solvency II refers to the correlation matrix between lines of business, the approach here
refers to the correlation matrix between the random variables Zi for all pairs of lines of business.
Different methodologies may be used to estimate this correlation matrix:

• Qualitative estimation:

– Advantage: Stability over time.
– Disadvantage: The estimations are subject to a high degree of subjectivity so the esti-

mate is poor and suffers from a high degree of error.

• Quantitative estimation:

– Advantage: Known estimators.
– Disadvantage: Non-stability over time. The estimations are highly dependent on the

number of observations and on its values.

• Credibility estimation:

– Advantage: Take advantages of both qualitative and quantitative criteria.
– Disadvantage: Needs to be hypothetized about variability of each one of the estimates,

the qualitative and the quantitative.

In order to obtain a credibility formula, we propose to use a Bayesian approach allowing to find
new correlation estimations mixing the information provided by the supervisor and the information
obtained from the portfolio experience.

2. BAYESIAN MODEL

Following the notation stated in Lee (1998), the random variable considered here is the correlation
coefficient ρ between two random variables X and Y (Zi and Zj for lines of business i and j
respectively). According to Fisher (1915), using standard reference priors for µX , µY , σ2

X and σ2
Y ,

a reasonable approximation to the posterior probability of ρ is given by

p (ρ|x, y) ∝ p (ρ) · (1− ρ
2)

n−1
2

(1− ρ r)n−
3
2

where p (ρ) is its prior density, x and y represent the random variables considered, r is the sample
correlation coefficient between random variables x and y, and n is the number of observations used
to calculate r.
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Making the substitution ρ = tanh(ζ) and r = tanh(z) and after another approximation, the
random variable ζ follows a normal distribution with mean z and variance 1

n
, ζ ∼ N

(
z, 1

n

)
. As-

suming a normal prior distribution for z, we are into the situation of a normal prior and likelihood
resulting in a normal posterior for z with mean

zpost =
nprior

nprior + nlikelihood

× tanh−1(rprior) +
nlikelihood

nprior + nlikelihood

× tanh−1(rlikelihood)

and variance
1

nprior + nlikelihood

.

From zpost, we shall obtain a posterior point estimate for the coefficient correlation ρ by rpost =
tanh(zpost). The posterior estimate depends on the number of observations that we previously
have, nprior, and those incorporated from new information, nlikelihood; as well as of the previous
estimate of the correlation coefficient, rprior, and that obtained with the new information, rlikelihood.

3. APPLICATION

The data correspond to the historical aggregate volumes series for the period 2000 to 2010 of
Spain’s non-life market, see Ferri et al. (2012). Given the information available, only the first nine
lines of business presented in the latest QIS have been considered. All the parameters necessary
to obtain the SCR estimation, except the correlation matrix between lines of business, are those
presented by the regulator as a proxy.

Table 1 shows the SCR estimation derived from three different methodologies for the estima-
tion of the correlation matrix between lines of business, the qualitative one (QIS), the quantitative
one (Empirical), and a credibility one (Bayesian) assuming several numbers of observations for
the prior information, nprior.

As can be seen, as higher numbers of observations for prior information are assumed, the
SCR estimation tends to the value derived from the qualitative estimation of the correlation matrix
between lines of business (6.66). This is due to the higher importance of the qualitative information
through the credibility factor implicit in the Bayesian model.

Correlation Matrix between LoB number of observations SCR∗

QIS 6.66
Empirical 6.45

nemp = 11 ; nqis = 11 6.48
Bayesian nemp = 11 ; nqis = 50 6.61

nemp = 11 ; nqis = 100 6.64
∗ thousand million euro

Table 1: 2010 non-life underwriting SCR for Spanish aggregated market
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4. DISCUSSION

The Bayesian Model examined here was proposed by Fisher (1915). In this model, it is assumed
that prior and likelihood distributions are normally distributed, so the posterior estimate results in
a normal distributed function with parameters, mean and variance, depending on the variability
of the prior and the likelihood functions. In the case of the likelihood function, the variability
can be easily determined since it comes from the number of observations of the historical data
set. However, in order to determine the variability of the prior, we need to make an assumption
on the number of observations needed by the regulator to form his judgment. It is clear that this
assumption will determine the weights to obtain the posterior estimates of correlation coefficients.
The merge of the criteria of the regulator and the criteria of insurers is a nice way to obtain estimates
that allow certain flexibility. Nonetheless, further analysis on Bayesian models is needed in order
to improve the estimations.
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1. INTRODUCTION

Before the 80’s, a policyholder who wanted to stop his life insurance contract had two options: to
lapse the policy or to surrender the policy. The creation of the secondary market for life insurance
policies gave a third option to the policyholder: to sell the contract to a third party for an amount
greater than the cash surrender value (CSV ) but lower than the policy face amount.
Secondary markets for life insurance policies started in the United States in the late 80’s with the
emergence of the viatical settlement. This product is only focused on insureds with terminally
diseases that reduce their life expectancies to two years or less. During the 90’s, the market ex-
panded into another product, the life settlement, that allows impaired policyholders over 65 years
and expected to die between the next two and fifteen years to sell the policy.
In both cases, the policy is sold to a viatical/life settlement provider for an amount that provides
the seller with an immediate cash amount: the viatical settlement value (V SV ) or the life settle-
ment value (LSV ). Then, the original policyholder transfers all the rights of the life policy and
the provider shall pay all the remaining premiums and receives the death benefit when the insured
dies. See Bhuyan (2009) or Aspinwall et al. (2009) for more information about viaticals and life
settlement contracts.

In this extended abstract, we present two economic models within the framework of the utility
theory that determine the optimal strategy for a policyholder who has to decide between to sell or
not to sell his life policy in order to maximize his expected utility. The first model is focused on the
viatical market and can be obtained in a discrete setting as the horizon planning is two years. The
second model concerns a policyholder who wants to sell his policy in the life settlement market
and should be treated in continuous time as the horizon planning is greater than two years. In both
cases, we consider a decision maker of age x with a whole life insurance policy. Let M denote the
death benefit and P the corresponding constant annual premiums. We denote by tpx the probability
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that an individual age x is alive at age x + t while t/qx denotes the probability of a person age x
dying between age x+ t and x+ t+1. The cash surrender value of the whole life insurance policy
at the beginning of year t is:

CSVt = φ

[
M

tx−x−1∑
s=t

s/qx · (1 + r)−(s+1) − P
tx−x−1∑
s=t

spx · (1 + r)−s

]
> 0,

where 0 < φ < 1 and tx − x is the remaining lifetime for population of actual age x.

For the viatical model we assume that the decision maker has a maximum lifetime such that t̂x −
x = 2, where t̂x is the maximum age he can reach. For the life settlement model we consider
he has a remaining life time such that 2 < êx < 15, where êx is the life expectancy. Henceforth
the circumflex accent represents that probabilities have been adjusted. The insurance company
does not take into account the illness of the insured while the viatical/life settlement provider does.
Then, we can assume that:

V SVt = γ1

[
M

1∑
s=t

s/q̂x · (1 + r)−(s+1) − P
1∑
s=t

sp̂x · (1 + r)−s

]
, 0 < γ1 < 1.

LSVt = γ2

M t̂x−x−1∑
s=t

s/q̂x · (1 + r)−(s+1) − P
t̂x−x−1∑
s=t

sp̂x · (1 + r)−s

 , 0 < γ2 < 1.

where γ1 and γ2 are chosen such that γ1 > γ2 > φ. Hence: 0 < CSVt < LSVt < V SVt < M .
With respect to the utility functions, we consider:

U (Ci) = lnCi,

V (Hi+1) = α lnHi+1, α > 0,

where U (Ci) and V (Hi+1) are the utility functions with respect to consumption and bequest re-
spectively and α indicates how the consumer values bequests in relation to consumption. The
logarithmic utility functions are a particular case of potential utility functions. Logarithmic utility
functions are also considered in Bhattacharya et al. (2004) and Yang (2012).

2. SELLING THE LIFE POLICY IN THE VIATICAL MARKET

At the beginning of the first period, t = 0, the decision maker has an initial wealth W and a whole
life insurance policy. He consumes an amountC0 > 0 during the first period and an amountC1 > 0
during the second one. If he dies in the first period, he leaves to his beneficiaries an amountH1 > 0
at t = 1, and if he survives the first period, then he dies for sure in the second period and leaves
to his beneficiaries an amount H2 > 0, at t = 2. The expected utility of the policyholder depends
on the utilities of the consumption and the bequests for both periods that will be represented by
U(Ci) and V (Hi); i = 0, 1. The objective of the policyholder who wants to sell his life policy in
the viatical market is:

max
C0,C1

EU0 = U(C0) + β · q̂x · V (H1) + β · p̂x · U(C1) + β2 · p̂x · q̂x+1 · V (H2) (1)
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where β ∈ (0, 1] is the yearly intertemporal discount factor. This individual presents a very high
death probability for the first period q̂x (i.e., very low p̂x). Should he survive the first period, then
we know for certain that he will die in the second period, i.e., q̂x+1 = 1.

Assuming that the policyholder can sell parts of his life policy at the beginning of each year, we
find five possible strategies. Viaticate δ% at t = 0 and then at t = 1: viaticate the (1 − δ)% (case
1) or viaticate the ρ(1 − δ)% (case 2) or not viaticate (case 3). Not viaticate at t = 0 and then at
t = 1: viaticate δ% (case 4) or not viaticate (case 5).
The optimal strategy will be the one that maximizes the utility in (1) subject to the budget constraint
derived from each case. The solution to the problem is found by using dynamic programming (see
e.g. Bertsekas (2000)) and the Kuhn-Tucker technique. For each case, we first compute the optima
at t = 1 and then update this optima to t = 0. The analytical results can be summarized as in the
following.

For the case 1, 2 and 3:
Let

V SV ∗1 =


V SV 1−δ

1 if case 1
V SV

ρ(1−δ)
1 if case 2

0 if case 3
A∗ =


0 if case 1
A

′′ if case 2
A

′ if case 3
P ∗ =


0 if case 1
P

′′ if case 2
P

′ if case 3
and let

A = αβ[(W + V SV δ
0 − P ′ − C0)(1 + r)2 + (V SV ∗1 − P ∗)(1 + r)],

then:

• For A∗ < A , the solutions are

C∗0 =
−b±

√
b2 − 4ac

2a
,

with:
a = (1 + r)2[1 + αβqx + βpx · (1 + αβ)],
b = (−1)(1+ r)[(W + V SV δ

0 −P
′
)(1+ r)(2+αβqx+ βpx(1+αβ)) + (V SV ∗1 −P ∗)(1+

αβqx) + A
′
(1 + βpx(1 + αβ)) + A∗(1 + r)−1(1 + αβqx)],

c = [(W +V SV δ
0 −P

′
)(1+ r)+A′][(W +V SV δ

0 −P
′
)(1+ r)(1+ r)∗+V SV ∗1 (1+ r)∗−

P ∗(1 + r) + A∗],

H∗1 = (W + V SV δ
0 − P ′ − C∗0)(1 + r) + A′,

C∗1 =
(W + V SV δ

0 − P ′ − C0)(1 + r) + V SV ∗1 − P ∗ + A∗(1 + r)−1

(1 + αβ)
,

H∗2 =
αβ

1 + αβ
[(W + V SV δ

0 − P ′ − C0)(1 + r)2 + (V SV ∗1 − P ∗)(1 + r) + A∗].

• For A∗ ≥ A , the solutions are

C∗0 =
−b±

√
b2 − 4ac

2a
,
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with:

a = (1 + r)2(1 + αβqx + βpx),
b = (−1)(1+ r)[(W + V SV δ

0 −P
′
)(1+ r)(2+αβqx+ βpx)+ (V SV ∗1 −P ∗)(1+αβqx)+

A
′
(1 + βpx)],

c = [(W + V SV δ
0 − P

′
)(1 + r) + A

′
][(W + V SV δ

0 − P
′
)(1 + r) + V SV ∗1 − P ∗].

H∗1 = (W + V SV δ
0 − P ′ − C∗0)(1 + r) + A′,

C∗1 = (W + V SV δ
0 − P ′ − C0)(1 + r) + V SV ∗1 − P ∗,

H∗2 = A∗.

In case C∗0 ≥ W + V SV δ
0 − P ′ − P ∗(1 + r)−1, then C∗(2)0 = W + V SV δ

0 − P ′ − P ∗(1 + r)−1

For the case 4 and 5:
Let

V SV ∗1 =

{
V SV δ

1 if case 4
0 if case 5 A∗ =

{
A

′ if case 4
A if case 5

P ∗ =

{
P

′ if case 4
P if case 5

and let

A = αβ[(W − P − C0)(1 + r)2 + (V SV ∗1 − P ∗)(1 + r)],

then:

• If A∗ < A, the optimal solutions are

C∗0 =
−b−

√
b2 − 4ac

2a

with:
a = (1 + r)2[1 + αβqx + βpx(1 + αβ)],
b = (−1)(1 + r)[(W − P )(1 + r)(2 + αβqx + βpx(1 + αβ)) + (V SV ∗1 − P ∗)(1 + r)(1 +
αβqx) + A(1 + βpx(1 + αβ)) + A∗(1 + αβ · qx)(1 + r)−1],
c = [(W − P ) + A(1 + r)−1][(W − P )(1 + r) + V SV ∗1 − P ∗ + A∗(1 + r)−1].

H∗1 = (W − P − C∗0)(1 + r) + A,

C∗1 =
(W − P − C0)(1 + r) + V SV ∗1 − P ∗ + A∗(1 + r)−1

(1 + αβ)
,

H∗2 =
αβ

1 + αβ
[(W − P − C0)(1 + r)2 + (V SV ∗1 − P ∗)(1 + r) + A∗].

• If A∗ ≥ A, the optimal solutions are

C∗0 =
−b−

√
b2 − 4ac

2a
,
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with:
a = (1 + r)2(1 + αβqx + βpx),
b = (−1)(1 + r)[(W − P )(1 + r)(2 + αβqx + βpx) + (V SV ∗1 − P ∗)(1 + r)(1 + αβqx) +
A(1 + βpx),
c = [(W − P )(1 + r) + A][(W − P )(1 + r) + V SV ∗1 − P ∗].

H∗1 = (W − P − C∗0)(1 + r) + A,

C∗1 = (W − P − C0)(1 + r) + V SV ∗1 − P ∗,
H∗2 = A∗.

In case C∗0 ≥ W − P − P ∗(1 + r)−1, then C∗(2)0 = W − P − P ∗(1 + r)−1.

By substituting the results in 1, we find all the EU0 corresponding with each case. The optimal
strategy will be the one that gives rise to a higher optimal value for EU0.

3. SELLING THE LIFE POLICY IN THE LIFE SETTLEMENT MARKET

The objective of the policyholder who wants to sell his life policy in the life settlement market is:

max EU0 = E [

∫ s∧T

0

e−ρj·U [C1(j)] dj + e−ρT · V [H1(T )] · 1{T≤s}

+

[∫ T

s

e−ρu · U [C2(u)] du+ e−ρT · V [H2(T )]

]
· 1{T>s} ]

The expectancy is due to the randomness of the moment of death T . After some arrangements, the
problem of the uncertain lifetime can be simplified (Pliska and Ye (2007)):

max EU0 =

∫ s

0

Ŝ(j) · e−ρj·U [C1(j)] + f̂(j) · e−ρj · V [H1(j)] dj

+

∫ t̂x−x

s

Ŝs(u) · e−ρu · U [C2(u)] + f̂s(u) · e−ρu · V [H2(u)] du, (2)

where Ŝ(t) is the survival function and f̂(t) is the density function for an impaired insured.

To solve this optimization problem, the horizon planning is divided in two parts: [0, s[, i.e., the
period before the sale of the policy, and [s, t̂x − x[, i.e., the period after the sale of the life policy.
For t ∈ [0, s[, the consumer generates utility for consumption U [C1(t)] and in case of death at
T < s, there is utility from bequest V [H1(T )] where H1(T ) = WT +M . For t ∈ [s, t̂x − x[, the
consumer generates utility for consumption U [C2(t)] and in case of death at T > s, there is utility
from bequest V [H2(T )] where H2(T ) = WT + LSVT . At s, as the policyholder sells his policy,
he receives the amount LSVs and hence, there is a jump in the state variable W .
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We consider also logarithmic utility functions. The optimal strategy corresponds with the maxi-
mum expected utility subject to the state equation Ẇ = Wr − C and assuming that W (0) = W0.
The solution to the problem is found by solving first the problem for [s, t̂x − x[ using Dynamic
Programmimg (Hamilton-Jacobi-Bellman equation). The value function obtained and updated at
s is then replaced in (2) (instead of the second integral) as a final state for the problem [0, s]. This
new problem is solved by using the Maximum Principle of Pontryagin.

The optimal consumption is:

c∗(t) =
e−ρt · Ŝ(t)

er(s−t) · λ∗(s) +
∫ s
t
er(τ−t) · e−ρτ · f̂(τ) · β · 1

w(τ)+M
dτ
,

where w∗(t) is the solution of the following integro differential equation:

ẇ = wr − e−ρt · Ŝ(t)
er(s−t) · λ∗(s) +

∫ s
t
er(τ−t) · e−ρτ · f̂(τ) · β · 1

w(τ)+M
dτ

where λ∗(s) = e−ρs · Ŝ(s) · A∗(s) · 1
ws+LSVs

and A∗(s) =
∫ t̂x−x
s

e−ρ·(τ−s) · (Ŝ(τ) + f̂(τ) · α) dτ .

For both models, we find the optimal solution (not selling or selling at some time unit) which will
depend on some personal parameters of the agent and on the value paid for the policy, V SV or
LSV . We also make a sensitivity analysis to see the influence on the optimal solution.
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The worldwide market of variable annuities (VAs) has been rapidly growing since their intro-
duction in the mid-1980s in the United States. These fund-linked annuity products, which have
become an essential part of the retirement plans in many countries, are often combined with addi-
tional living and death benefits. Since they are usually of a complex nature, consistent pricing of
variable annuities becomes a difficult task. As there is often a tradeoff between a realistic model
and analytical tractability, several studies in the literature either focus on closed-form solutions -
by simplifying the contract setups and the modeling assumptions - or propose numerical methods
for the multi-factor models. This work aims to fill this gap by showing how the explicit represen-
tations for prices of some of the VA products can be derived in a hybrid model for insurance and
market risks.

1. INTRODUCTION

Over the years the guarantees provided on VA products have evolved as the market has adapted
to meet customer needs. Depending on the benefit type, different GMxBs can now be seen on
the market. Some of the most common examples include: Guaranteed Minimum Death Benefit
(GMDB), Guaranteed Minimum Income Benefit (GMIB) and Guaranteed Minimum Withdrawal
Benefit (GMWB). These products can differ in the way the guaranteed amount is determined.
In some products only initial premiums are guaranteed, others guarantee all premiums paid plus
accumulated interest (roll-up) or include the so-called ratchet options that raise the guaranteed
amount depending on the underlying fund performance. We refer the reader to (Brunner and
Krayzler 2009) for more information on different types of guarantees.

Since the introduction of variable annuities in the US, these products have been gaining special
attention not only by practitioners, but also by researchers. Several papers had appeared over the
last decade concerned with the pricing issues for different types of guaranteed minimum benefits
embedded in variable annuities. Examples of these studies include the work of (Milevsky and
Posner 2001) for GMDBs; (Milevsky and Salisbury 2006), (Dai et al. 2008) for GMWB contracts.

89



90 M. Krayzler et al.

There seems, however, to be relatively little academic literature on GMIBs. A similar product, the
so-called Guaranteed Annuity Option (GAO) was examined by, among others, (Boyle and Hardy
2003) and (Biffis and Millossovich 2006). GMIB in its actual form has been recently analyzed
by (Marshall et al. 2010). Most of the papers dedicated to the pricing of variable annuities can be
divided into two categories. The first group is interested in finding some analytical approximation
and thus simplifying the models used or the products themselves. The others are focused on the
numerical solutions within a more comprehensive and realistic pricing framework.

This paper aims to bridge this gap and provides a hybrid model (Hull-White-Black-Scholes
with time-dependent volatility) within a general setup for pricing guarantees included in VAs.
Furthermore, we extend the model to account for stochastic mortality. In the presented paper we
focus on the Guaranteed Minimum Income Benefit and provide closed-form pricing formulae for
this guarantee in the suggested hybrid model. Finally, we give an example of a GMIB contract,
evaluate it in the proposed framework and analyze its price sensitivities with respect to the selected
contract parameters.

2. VALUATION MODEL

In the following we extend the model of (Marshall et al. 2010) by introducing time-dependent
volatility as well as stochastic mortality, independent from the financial market. Combined model
is defined similar to the work of (Biffis and Millossovich 2006). Furthermore, we provide closed-
form pricing formulae for Guaranteed Minimum Income Benefit in the presented framework.

Financial Market Model Let (Ω,F ,F,P) be a filtered probability space. We assume the exis-
tence of an adapted short-rate process r as well as a risk-neutral pricing measure Q. We describe
the financial market under this measure via a Hull-White-Black-Scholes hybrid model with time-
dependent volatility (HWBStdv)1:

r(t) = φ(t) + x(t), r(0) = r0,

dx(t) = −arx(t)dt+ σrdW
Q
r (t), x(0) = 0,

dS(t) = r(t)S(t)dt+ σS(t)S(t)dWQ
S (t), S(0) = S0,

dWQ
S (t)dWQ

r (t) = ρSrdt. (1)

where ar (mean reversion) and σr (volatility) are positive constants, φ(t), σS(t) are two determin-
istic functions, which can be calibrated to the term structures of interest rates and implied volatil-
ities. Let QS denote the equity price measure, with equity price S used as a numeraire. Using the
multi-dimensional version of Girsanov’s theorem and rewriting the equity dynamics in terms of
the log-return Y = ln(S) we obtain under QS:

dx(t) = (−arx(t) + σrσS(t)ρSr)dt+ σrdW
QS
r (t),

dY (t) =

(
r(t) +

1

2
σ2
S(t)

)
dt+ σS(t)dWQS

S (t). (2)

1We denote by x the stochastic part of the interest rate process and by S the equity price process.
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After some calculations it can be shown that, conditional on the current filtration Ft, both x(T )
and Y (T ) are normally distributed with some mean and variance denoted by µx(T ), σx(T ) and
µY (T ), σY (T ) respectively.

Insurance Market Model We work on the same probability space and model a random lifetime
of a person aged x at t = 0 as a stopping time τ(x) of a counting process Nx+t(t) with correspond-
ing mortality intensity λx+t(t). We introduce two subfiltrations G = (Gt)t≥0 and H = (Ht)t≥0 of
F by

Gt = σ(λx+s(s) : s ≤ t), Ht = σ(1{τ(x)≤s} : s ≤ t).

In this setup, the survival probability can be defined as the probability that a person at the age of
x+ t at time t survives at least up to time T:

px+t(t, T |Gt) := P(τ(x) > T |Gt ∨Ht) = E
[
e−

∫ T
t λx+s(s)ds|Gt ∨Ht

]
.

Comparing the mortality intensity at time 0 with mortality intensity at time t, we introduce mor-
tality improvement ratio as

ξx+t(t) =
λx+t(t)

λx+t(0)
.

Figure 1 gives an example of one simulated path of the mortality improvement ratio:
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Figure 1: Mortality improvement ratio of a cohort aged 30 at time 0, ξ30+t(t).

Similar to (Dahl 2004) we use a two-step approach to model mortality intensity. In the first
step we use a Gompertz model to describe the initial mortality intensity

λx+t(0) = bcx+t,

which can be calibrated to the current life table. In the second step we propose an extended Vasicek
process to model ξ(t):

dξ(t) = k(e−γξt − ξ(t))dt+ σξdWξ(t).

The survival probabilities can then be expressed as

px+t(t, T |Gt) = Cλ(t, T )e−Dλ(t,T )λx+t(t), (3)
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where Cλ(t, T ) and Dλ(t, T ) satisfy two ordinary differential equations, which can be solved an-
alytically. Analogously to the financial market model, it can be shown, that mortality intensity at
time T , λ(T ) 2 , is normally distributed with mean µλ(T ) and variance σ2

λ(T ).

3. PRICING

Guaranteed Minimum Income Benefit (GMIB) is a type of variable annuity that gives the policy-
holder an option at the retirement date T to obtain the account value A(T ) (without guarantee)
or to annuitize the guaranteed amount G(T ) at some predefined annuitization rate g (the ratio be-
tween annual income and guaranteed amount). In other words, the policyholder can convert A(T )
into an annuity with fixed payments of g · G(T ) at times Ti > T , i = 1 . . . n. The guaranteed
amount G(T ) depends on the contract specification. In this work we consider a single premium
GMIB with two common options for G(T ): return of premium, i.e. G(T ) = P and roll-up, i.e.
G(T ) = PeδT , where δ is the so-called roll-up rate. 3

The value of GMIB at maturity T , conditioned on the policyholder survival until time T , can
be written as:

V (T ) = 1{τ>T}max(A(T ), G(T ) · g · an(T )),

where an(T ) is the value at time T of an annuity paying one unit at times T1, . . . , Tn. We assume
that the policyholder’s account is to 100% invested in the underlying equity fund and, thus, has the
same dynamics as S with initial value equal to the single premium P , i.e.

dA(t) = A(t)
dS(t)

S(t)
, A(0) = P.

The time 0 fair value of GMIB can be written as 4

V (0) = EQ

[
e−

∫ T
0 r(s)ds

1{τ>T}max(A(T ), G(T ) · g · an(T ))
]
. (4)

Theorem 3.1 The price at time 0 of the GMIB for a person at the age of x is

V (0) = PCλ(0, T )e−Dλ(0,T )λ(0)

(
1 + eδTg

n∑
i=1

[
FiN(h1i )−KiN(h2i )

])

2From now on, for convenience, we skip the subindex denoting the person’s age.
3It should be mentioned that the first option is a particular case of the second one, for δ = 0.
4In the following we omit the initial filtration F0.
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where

Fi = eMi+
1
2
Vi ,

h1i =
ln
(
Fi
Ki

)
+ 1

2
Vi

√
Vi

,

h2i = h1i −
√
Vi,

Mi = ln(C̃i) = ln
(
P−1Cλ(T, Ti)Cr(T, Ti)e

−Dλ(T,Ti)µλ(T )

×e−Dx(T,Ti)µx(T )−µY (T )
)
,

Vi = D̃2
i = D2

λ(T, Ti)σ
2
λ(T ) +D2

x(T, Ti)σ
2
x(T ) + σ2

Y (T )

+2Dx(T, Ti)σx(T )σY (T )ρx(T ),Y (T )

Ki is defined as Ki := C̃ie
−D̃iz∗ , where z∗ is a solution of

n∑
i=1

C̃ie
−D̃iz∗ = K, K = (geδT )−1.

4. EXAMPLE

In this part we specify a GMIB product and show its price sensitivities to different annuity ma-
turities and different predefined annuitization rates (see Figure 2). We consider the following VA
contract:

• Type of the guarantee: single premium GMIB

• Guaranteed annuitization rate g: 7.5%; roll-up rate δ: 2%

• Maturity of the guarantee T : 10 years; of the annuity n: 20 years, annual payments

• Policyholder: male, 55 year old
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Figure 2: GMIB prices for different annuitization rates and maturities. Source: own calculations,
models calibrated to the data from Federal Statistical Office of Germany and Bloomberg.
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5. CONCLUSION

In this work we presented a hybrid model for financial and insurance markets in which closed-
form formulae for the pricing of Guaranteed Minimum Income Benefits are derived. This work
can be seen as an extension to some widespread models in the literature, e.g. inclusion of stochastic
interest rates and stochastic mortality compared to (Bauer et al. 2008) and (Milevsky and Salisbury
2006), time-dependent volatility as well as explicit incorporation of mortality modeling in the
framework of (Marshall et al. 2010). Furthermore, as opposed to several papers on the valuation of
equity-linked products, where numerical pricing of the guarantees is suggested, analytical closed-
form expressions are provided in the presented framework. In the next steps an extension of the
2-factor model for interest rates, incorporation of policyholder behavior risk as well as the analysis
of further guarantees should deserve special attention.
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This paper analyzes optimal asset-allocation strategies over the life cycle of an individual by taking
into account both the labor income risk profile of the individual, and the macroeconomic dynamics
of the assets included in the portfolio. Changes of the states of the economy are characterized
by a discrete time, discrete space Markov chain aiming to capture the dynamics of the market
(expansion and recession states). Since the dynamics of the financial market affects the labor
income of the individual, labor income risk is characterized by a correlation level between the
market and the labor income process. Under this model, optimal asset-allocation strategies are
characterized.

1. INTRODUCTION

This paper analyzes the optimal asset-allocation over the life cycle of an individual when his labor
income is uncertain during his working life period due to the nature of his profession or due to the
economic prevailing conditions. Workers with same individual characteristics such as age, educa-
tion level, geographical location and same labor income on average, still may be exposed to very
different labor income risks: individuals with safe jobs are less sensitive to market movements
and macroeconomic conditions, while individuals with uncertain wages are much more sensitive
to them. There exists a huge literature upon optimal asset-allocation over the life cycle1. The sem-
inal work of Merton (1969) analyzes optimal asset-allocation under uncertainty by assuming that
labor income follows a stochastic process that is perfectly correlated to the stock process. If the
individual is allowed to take short positions, the individual can hedge his labor income risk with
the available financial assets. Bodie et al. (1992) extend the optimal porfolio analysis by including
labor flexibility, that is, the individual faces the decision about the amount of hours he allocates to
work and to leisure. El Karoui and Jeanblanc-Picqué (1998) and Koo (1999) derive properties of

1See Bodie et al. (2009) for a review of the recent scientific literature.
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optimal asset-allocation by incorporating the fact that individuals can not borrow against future la-
bor income, so liquidity constraints are imposed into the model. Henderson (2005) studies optimal
asset-allocation when market and labor income are imperfectly correlated. The contribution of this
paper is to characterize optimal asset-allocation over the life cycle of an individual that is liquid
constrained while incorporating both the correlation of the labor income with the market, and the
change of states or macroeconomic conditions on the market (regime-switching). The next section
describes the model, Section 3 states the optimal asset-allocation problem, Section 4 provides the
numerical implementation and results, while Section 5 concludes.

2. THE MODEL

The states of the economy. Assume that the economy activities take place on discrete time in-
stants. Let T be the time index set {0, 1, 2, . . . , T}, where T < ∞. Let (Ω,F , P ) be a complete
probability space and m = {mt |t ∈ T } be a discrete time finite-state hidden Markov chain on
(Ω,F , P ) that describes the evolution of the different states of the economy s = {s1, s2, . . . , sK}.
The states are identified by standard unit vectors {e1, e2, . . . , eK}, where ei = (0, . . . , 1, . . . , 0)′

and ′ denotes the transpose. Assume the Markov chain m is time homogeneous. Let pi,j =
Pr(mt+1 = ej |mt = ei) for i, j = 1, . . . , K be the transition probabilities and denote by A the
transition probability matrix [pi,j]i,j=1,...,K of the chain m under P . Let π = (π1, π2, . . . , πK)′ be
the initial distribution of the chain, where πi = Pr(m0 = ei). Assume that the process is sta-
tionary. Elliott et al. (1994) proved that the chain m admits the following decomposition under
P :

mt+1 = Amt + Mt+1

where Mt+1 is a martingale with respect to the filtration generated by m under P .
The financial assets. Assume there are two financial assets available on the economy: a risk-

free asset or bond traded at price Bt and a risky asset or stock traded at price St at time t. Let
ri be the return of the risk-free asset when the economy is in state i and let r = (r1, . . . , rK).
The return of the risk-free asset at time t depends on the state of the economy at time t − 1, then
rt =< r,mt−1 >, where <,> denotes the product of vectors. The evolution of the price of the
risk-free asset over time is Bt+1 = Bt exp(rt+1). Assume that the dynamics of the price of the
risky asset is given by

St+1 = St exp(µSt −
1

2

(
σSt
)2

+ σSt ε
S
t+1) (1)

where µSt and σSt denote, respectively, the return and the volatility of the risky asset and εSt+1 follows
a standard normal distribution. The parameters vary across the regimes (i = 1, . . . , K) driven by
the chain process m. The vectors containing the return and the volatility of the risky asset for the
K states of the economy are, respectively, µS = (µS1 , . . . , µ

S
K) and σS = (σS1 , . . . , σ

S
K). Then, the

parameters of the equation (1) can be rewritten as

µSt =< µS,mt−1 >;σSt =< σS,mt−1 > . (2)

Labor income. Assume that individuals live until date T and they receive a labor income
amount Lt > 0 during their working life period for the years {0, 1, 2, . . . , T ∗}, where T ∗ < T
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denotes the retirement date 2.
Let µL be the annual growth rate of the labor income and σL be its deviation. Assume that the

dynamics of the labor income process are given by

Lt+1 = Lt exp(µLt + σLt ε
L
t+1) (3)

where εLt+1 follows a standard normal distribution and the parameters of the equation (3) may
switch across the K different states of the economy over time, thus

µLt =< µL,mt−1 >;σLt =< σL,mt−1 > . (4)

where µL = (µL1 , . . . , µ
L
K) and σL = (σL1 , . . . , σ

L
K). The processes given in equations (1) and (3)

are correlated, reflecting the fact that the dynamics of the financial market affects the labor income
of the individual. Thus,

εLt+1 = ρεSt+1 +
√

1− ρ2εt+1 (5)

where ρ denotes the correlation between the labor income process and the risky asset price process
and εt+1 follows a standard normal distribution independent of εSt+1.

Equations (3) and (5) capture the labor income risk profiles across individuals that may share
the same personal characteristics but that differ on their labor income risk. If σL = 0 the labor
income of the individual behaves as a risk-free bond, while if ρ = 1 the labor income behaves as a
stock. Section 4 will compare optimal asset-allocation results for different labor risk profiles.

Human capital. Let Ht be the value of human capital at time t, that is, the present value of the
future labor income of the individual during his remaining working life period {t+ 1, t+ 2, . . . , T ∗}.
Ht is calculated by3

Ht =
T ∗∑

i=t+1

Li exp(−
i∑

j=t+1

dj) (6)

where dj denotes the stochastic rate at which labor income is discounted at each period j = t +
1, t + 2, . . . , T ∗. The discount rate includes the risk-free rate rj plus the risk premium for the
labor income process κj , i.e. dj = rj + κj . According to the CAPM, κj can be evaluated as
κj = ρσLj /σ

S
j (µSj − rj).

Individual preferences. Let U(c) be the utility function of the individual over his whole life
period. The utility function U can be written as

U(c) ≡ E

[
T∑
t=0

exp(−βt)u(ct)

]
(7)

where u(ct) is the utility of the individual at each period discounted at a constant subjective rate
β. For numerical purposes assume that the individual has a CRRA utility function that takes the
form u(y) = y1−γ

1−γ for y > 0, γ 6= 1 and u(y) = ln(y) for y > 0, γ = 1; where γ denotes the risk
aversion parameter.

2In a more realistic framework, survival probabilities can be incorporated in the model to allow T to be stochastic.
See for example Blake et al. (2003). For simplicity, this paper assumes that T ∗ and T are known in advance to isolate
the effect that labor income risk and change of states in the economy have upon optimal asset-allocation.

3For K = 1 and ρ = 1, i.e. no regime switching and perfect correlation between market and labor income, Ht

is the present value of an annuity that increases as a geometric progression with initial payment Lt and growth rate
µL − σL(µS − r)/σS .
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3. THE OPTIMAL ASSET-ALLOCATION PROBLEM

During the accumulation period, at each period t, the individual works and receives in exchange a
labor income amount Lt and he has to decide: how much to consume ct > 0; the proportion αt of
his remaining wealth that he will allocate to stocks, and the proportion (1−αt) that he will allocate
to bonds, where 0 ≤ αt ≤ 1. The evolution of wealth is given by

Wt+1 = (Wt + Lt − ct)[αt exp(µSt −
1

2

(
σSt
)2

+ σSt ε
S
t+1) + (1− αt) exp(rt)] (8)

The problem is to find optimal αt and ct that maximize the individual’s utility of total wealth
Wt and human capital Ht over his life period. The Bellman equation is written as

V (Wt +Ht) = max [U(ct) + EtVt+1(Wt+1 +Ht+1)] (9)

where Vt is the value function, Wt is the state variable described in equation (8) and {ct, αt} are
the control variables of the dynamic optimization problem.

Equation (9) has no analytical solution so it will be solved numerically by backwards induction.

4. NUMERICAL IMPLEMENTATION AND RESULTS

The numerical procedure is the following: first, generate the discrete Markov chain mt that de-
scribes the different states of the economy by using the initial probability distribution of the chain
π and the transition probability matrix A. Then simulate the values of the financial assets by using
equations (1) and (2). Then compute εLt+1 by using equation (5) and simulate the labor income
process Lt by using equation (3). Calculate the human capital Ht by using equation (6). Simulate
this procedure N times and evaluate the objective function as an average of equation (7). Solve
equation (9) by backwards induction.

The benchmark parameters for the numerical simulations are the following: N = 10 000
simulations; K = 2 states of the economy; T ∗ = 40; T = 65 years4; annual risk-free rate
r = (0.04, 0.02); annual mean of the stock return µS = (0.10, 0.06); standard deviation of the
stock return σS = (0.12, 0.20); annual growth rate of the labor income5 µL = (0.01, 0.01); stan-
dard deviation of the labor income σL = (0.03, 0.03); correlation between market and labor in-
come ρ = {0, 0.2, 0.5, 0.8, 1}.

Optimal asset-allocation for individuals that exhibit different labor income risk profiles are
analyzed. Although labor income parameters remain the same over the two states of the economy,
the regime switching on the market evolution affects the dynamics of the labor income by the
correlation parameter. Human capital for different levels of correlation is depicted in Figure 1. It is
clear that human capital decreases with the age, but when two states of the economy are considered,
human capital may decrease faster or slower according to the prevalent state of the economy.

4It corresponds, for example, to an individual that starts working at age 25, retires at age 65 and dies at age 90.
5For simplicity, assume that labor income parameters are the same across states. However, different safety vs. risky

labor profiles are analized according to their labor-market correlation.
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Figure 1: Human capital for different correlation levels: (left) market mostly on expansion; (right)
market on recession followed by expansion periods

Figure 2: Optimal asset-allocation: (left) safety labor income profile, market mostly on expansion;
(right) risky labor income profile, market on recession followed by expansion periods

Figure 2 (left) depicts optimal asset-allocation results when the labor income is not correlated to
the market and the market is mostly in an expansion state. In the early years, the individual invests
mostly in stocks because his labor income is bond-likely, afterwards he reduces it gradually as his
human capital also decreases.

If the economy is in a recession state during the period the individual is young, and if his labor
income is highly correlated with the market, a very different optimal portfolio is derived as it is
depicted in Figure 2 (right): in the early years, since his labor income is highly correlated with the
market and the market is mostly in recession, it is optimal for him to hold mostly bonds. Then,
when the economy switches to an expansion state, he is better off by holding mostly stocks, but
later, as his human capital decreases with the age, he will hold mostly bonds before his retirement
date.

5. CONCLUSIONS

By considering a Markov regime-switching model, this paper analyzes optimal asset-allocation
over the life cycle of an individual considering both the evolution of the macroeconomic con-
ditions that affect financial assets and the evolution of the labor income the individual receives.
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Numerical simulations show that the traditional advice of holding stocks during the early years
and gradually change them to bonds as the individual gets older, is not optimal if the labor in-
come of the individual is imperfectly correlated to the market and the economy exhibits change of
regimes. These results should be considered when designing pension plans.
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1. INTRODUCTION

Longevity risk is the risk associated to the uncertainty about the mortality intensity of the insured sample.
The traditional actuarial practice uses deterministic models to describe the evolution of the mortality pat-
tern. More recently, stochastic models for mortality intensity have been introduced, in order to account for
unexpected changes in the force of mortality of insured people, given the evidence that, in the last decades,
life expectancy of individuals increased more than predicted. Both discrete-time models like the Lee-Carter
and its modifications and continuous-time ones (Dahl (2004), Biffis (2005)) have been proposed to price
and hedge insurance contracts in the presence of longevity risk. In this paper I provide dynamic hedging
strategies for pure endowments in complete and incomplete markets when longevity risk, modelled through
a continuous-time and generation-dependent stochastic mortality process, is present.
The topic of hedging in the presence of longevity risk has been addressed in particular in the last ten years,
focusing (e.g. Dahl and Møller (2006)) on indifference pricing and risk-minimizing hedging strategies. In
a recent paper, Luciano et al. (2012a) derived closed-form expressions for Delta-Gamma neutral hedging
strategies under no-arbitrage for the reserves of pure endowment contracts subject to both longevity and
financial risk. The paper showed how to assess the risk exposure and to hedge it using either:

1. pure endowments written on the same generation, but with different maturity,

2. mortality-linked products such as longevity bonds also written on the same generation.

In another paper, Luciano et al. (2012b) focus on annuities and term assurances pricing and hedging in
the same framework, highlighting the natural hedging opportunities of a life-insurance portfolio within and
across cohorts. In this paper we focus again on the hedging of the liability associated with a pure endowment:

1. in a continuous-time dynamic setting;

2. in the presence of longevity risk;

3. accounting for the existence of a source of market incompleteness, namely the absence of hedging
instruments whose dynamics is perfectly correlated with the one of the pure endowment we want to
hedge. In such case we use pure endowments or longevity bonds written on a different cohort as
hedging instruments, i.e, we hedge in the presence of basis risk.
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The aim of this paper is to derive closed-form optimal dynamic hedging strategies, which are either perfect
hedges when the market is complete or which minimize the variance of the hedging error when basis risk
is present. We derive these expressions and we highlight, following Basak and Chabakauri (2012) that the
difference between complete and incomplete market hedges is crucially related to the cost of hedging.

2. LONGEVITY RISK MODEL

We consider the following generation-dependent purely diffusive stochastic process for the evolution of the
mortality intensity:

dλx(t) = axλx(t)dt+ σxdW
M
x (t) (1)

where ax, σx > 0 and the subscript x highlights that the intensity has a different dynamics depending on
a cohort. This is an Ornstein-Uhlenbeck process without mean-reversion, particularly appropriate to model
human mortality.1 It is an affine process which is endowed with the nice analytical properties we highlight in
the next section. For pricing purposes, we perform a change of measure selecting a measure - with constant
risk premium such that a′x = ax+q - which preserves the affine form of the processes involved.2 Under this
measure, no-arbitrage in the market for mortality-linked contracts is guaranteed. Without loss of generality,
from now on we consider q = 0 and we let our pricing measure coincide with the historical one.

3. DYNAMICS OF THE SURVIVAL PROBABILITY

Since (1) is an affine model, we recall that the survival probability of an individual of cohort x at time t can
be written as

Sx(t, T ) = eα(T−t)+β(T−t)λx(t)

where

α(T − t) = σ2

2a2x
(T − t)− σ2x

a3x
eax(T−t) +

σ2

4a3x
eax(T−t) +

3σ2x
4a3x

β(T − t) = 1− eax(T−t)

ax

Notice that we can also provide a convenient closed-form representation of the survival probability at each
point in time t < T :

Sx(t, T ) =
Sx(0, T )

Sx(0, t)
e−X(t,T )I(t)−Y (t,T ) (2)

where I(t) = λx(t)− fx(0, t) is the risk factor against which we hedge. The coefficients have closed-form
expressions depending on the parameters of the λ process. The risk factor has an intuitive interpretation,
since it is the difference between the actual mortality intensity and its best forecast, which is the so-called
forward mortality rate. Applying Ito’s lemma, we get the dynamics of the survival probability from time t

1See Luciano and Vigna (2008) for an empirical investigation of the appropriateness of non mean reverting affine
models for mortality.

2See Luciano et al. (2012a) for the details.
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to T :

dSx(t, T ) =
∂S

∂t
dt+

∂S

∂λ
dλx +

1

2

∂2S

∂λ2
dλdλ

= Sx(t, T )
(
−α′(T − t)− β′(T − t)λ(t)

)
dt+ β(T − t)Sx(t, T )axλxdt

+β(T − t)S(t, T )σxdWM
x +

1

2
β2(T − t)S(t, T )σ2xdt

= S(t, T )λ(t)dt+ σxS(t, T )β(T − t)dWM
x (t),

where α′(·), β′(·) denote first order derivatives with respect to time and the last equality follows from{
β(t) = −1 + axβ(t),

α(t) = 1
2σ

2
xβ

2(t).

Summarizing, the dynamics of the survival probability, which coincides with the time-t reserve of the
pure endowment, can be written as

dSx(t, T )

Sx(t, T )
= λx(t)dt+ σx

1− eax(T−t)

ax
dWM

x . (3)

We can derive a similar expression for the reserves of pure endowments written on another cohort i.
Assuming correlation between the Brownian motions involved, we can write:

dSi(t, T )

Si(t, T )
= λi(t)dt+ σi

1− eai(T−t)

ai
dWM

i , (4)

with 〈dWM
x , dWM

i 〉 = ρdt.

4. OPTIMAL DYNAMIC HEDGING STRATEGIES

In Luciano et al. (2012a) we provided closed-form Delta-Gamma hedges for the static problem of covering
the reserves of a pure endowment written on a generation of insureds. The hedging strategies described in
the paper involve the use of mortality-linked contracts (longevity bonds) and are perfect dynamic hedges
provided that the market is complete, in the sense that

1. the hedges are continuously derived and implemented;

2. a sufficient number of hedging instruments written on the same cohort is present.

In this paper we analyze the departure from this second hypothesis. We consider an insurer who has issued
a pure endowment written on cohort x and hedges it using as an instrument a pure endowment on another
generation. For simplicity, we neglect at this stage the effect of financial risk and consider longevity risk
only. The deterministic interest rate is assumed constant and equal to r. We consider then that the reserve
Sx(t, T ) associated to the pure endowment issued by the insurer is a non-tradable liability, whose associated
longevity risk can be partially hedged using pure endowments on another cohort y, which are traded on
the market. This is of course a way of dealing with basis risk. If θt denotes the dollar amount invested in
Sy(t, T ), the dynamics of the wealth Rt invested in the money market account and in the pure endowment
written on generation y follows the stochastic process:

dRt = [rRt + θt(λy(t)− r)] dt+ θtσy
1− eay(T−t)

ay
dWM

y . (5)
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Our aim is to find the hedging strategy, i.e. the optimal dollar amount θ∗ invested in the pure endowment on
generation y which minimizes the variance of the hedging error. Formalizing, we solve

min
θt

Vart
[
−1{τx>T} −RT

]
s.t.(5).

Notice that, in a complete market, in which the risk-neutral measure is unique, the optimal policy would be:

θ∗t = −ρ
σx
ax

(
1− eax(T−t)

)
σy
ay

(
1− eay(T−t)

)Sx(t, T )e−r(T−t). (6)

Notice that the negative sign is due to the fact that we are hedging a negative position on Sx(t, T ). In such
case, i.e. when |ρ| = 1, the hedging would be perfect and we would have no hedging error. Moreover,
this strategy coincides coincides with a delta-hedging strategy which covers against the common risk factor
across cohorts when |ρ| 6= 1 (see Luciano et al. (2012b)).
Following Basak and Chabakauri (2012) we can express the optimal hedging policy in a compact form also
when the market is incomplete:

θ∗t = −

(
ρ
σx
ax

(
1− eax(T−t)

)
σy
ay

(
1− eay(T−t)

)Sx(t, T )e−r(T−t)∂E∗t [1{τx>T}]
∂Sx(t, T )

+ Sy(t, T )
∂E∗t

[
1{τy>T}

]
∂Sy(t, T )

)
(7)

where τx and τy represent the death arrival time for the individuals belonging to generations x and y respec-
tively. The probability measure P∗ involved in the calculation is a “hedge-neutral” measure under which the
two dynamics of Sx(t, T ) and Sy(t, T ) are still driven by correlated Brownian motions, but the dynamic of
the hedging instrument has drift coefficient r. The hedge neutral measure and the risk neutral measure we
defined above coincide only in the very special case when λy(t)− r = 0. In that case the hedging strategy
coincides with (6).
In more general cases, the computation of the Greeks appearing in (7) is not an easy task, since under the
hedge neutral measure the λx and λy processes are not affine anymore. However, Basak and Chabakauri
(2012) provide us with the following enlightening link between the two expected values of the payoffs at
time t under the different measures:

Et[1{τx>T}e
−r(T−t)]− E∗t [1{τx>T}e

−r(T−t)] = Et[R
∗
T e
−r(T−t) −Rt],

which shows that the difference between the complete market hedge and the incomplete market one is due
to the expected difference between discounted terminal and actual wealth, i.e. to the cost of hedging from
time t to maturity. It is also possible to compute the hedging error variance:

Vart[1{τx>T} −R
∗
T ] =

(
1− ρ2

)
Et

[∫ T

t

[
σx
ax

(
1− eax(T−s)

)]2
Sx(s, T )

2

(
∂E∗s [1{τx>T}]

∂Sx(s, T )

)2

ds

]
.

5. CONCLUSIONS

Using a cohort-based stochastic mortality model we derived complete market dynamic hedges of a pure
endowment reserve, when the hedging instrument is a pure endowment written on a cohort whose mortality
intensity is perfectly correlated with the original one. Following Basak and Chabakauri (2012) we derived
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also the hedges when the market is incomplete, i.e. when basis risk arise. We highlighted that the difference
between the hedges is related to the expected cost of hedging by means of the correlated instrument. Appli-
cations of these results to a market in which both longevity and financial risks are present is in the agenda
for future research.
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1. INTRODUCTION

Under Brazilian law, managers of insurance companies and pension funds are allowed to purchase
shares of investment funds for the purposes of easing their operations, avoiding liquidity risks
and reducing transaction costs. This allowance sped the establishment of several investment funds
(commonly known as actuarial), the main purpose of which is to offer protection against their
primary risk, a mismatch between the real values of their assets and liabilities. Given that the lia-
bilities of pension funds are usually inflation-indexed in the Brazilian market, that most securities
do not offer direct protection against inflation and that actuarial funds promise to maintain the real
value of their portfolios, the demand for the services offered by actuarial funds has surged. This
naturally calls for the development of tools to understand, measure and control their activities and
strategies to achieve their goals.

The main objective of this work is to use dynamic style analysis to uncover the strategies fol-
lowed by Brazilian actuarial funds from January 2004 to August 2008 and to investigate whether
manager’s decisions were compatible with the goal of protecting the investor against the negative
effects of inflation. The methodology is compatible with time-varying exposures and selectivity
skills, which are essential to show how resources have been allocated to the various asset classes
available in the Brazilian market during the aforementioned period, and to analyse and judge the
performances of fund managers. An important part of the paper discusses how to build and/or
choose market indexes capable of characterizing the returns provided by the main securities avail-
able because the results depend upon the quality of these indicators. This effort can also be seen
as a contribution to the literature, as Pizzinga and Fernandes (2006) assert that such indicators are
not easily calculated or readily available. We propose to use a set of indexes throughout this pa-
per that essentially reflect the returns provided by certain representative portfolios, namely those
comprising assets that have some common attributes and the returns of which behave similarly.
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The models considered in this paper are embedded within a linear state space modelling ap-
proach under restrictions, and consequently, their estimations are carried out by way of a restricted
Kalman filter under exact initialization combined with (quasi) maximum likelihood estimation.
This seems to be the natural solution for the problem at hand, given the time-varying nature of the
quantities of interest, i.e., the exposures and the selectivity of the actuarial funds. However, the
restriction considered in this paper is that the time-varying exposures must sum-up to 1 (one) for
each time instant, commonly termed the portfolio restriction. Imposing this restriction, whenever
the data provide evidence that it is appropriate, yields two advantages: (i) a more parsimonious
model is considered, and therefore the numerical difficulties of the estimation are minimized and
(ii) it tends to create negative correlations between exposures, which is to be expected because
fund managers have to decrease the amount invested in some markets (and hence their associ-
ated exposures) to increase the amount invested in the preferred markets. Regarding the exact
initialization, this method for starting the Kalman filter imparts a greater numerical stability in the
estimation (see details in Koopman (1997)).

2. THE METHODOLOGICAL APPROACH

We shall consider the following version of the linear state space model, which does not account for
regression and/or intervention effects and is defined by its system matrices {Zt, Tt, Ht, Qt}, which
must evolve deterministically:

Yt = Ztγt + εt
γt+1 = Ttγt + ηt

(1)

for t = 1, 2, . . . , n. The first equation is know as the measurement equation, and the second is the
state equation. The latter describes the dynamics of the state vector γt, which is an unobservable
m-variate stochastic process and is such that the initial state vector has a finite unconditional mean
and covariance matrix, denoted by a1 and P1, respectively. If γ1 is a Gaussian random vector
independent of (ε′t γ

′
t) and, additionally,

[
εt
γt

]
∼ NID

([
0
0

]
,

[
Ht 0
0 Qt

])
(2)

the model (1) is termed the Gausssian version state space model. For several well-established time
series models, there is at least one linear state space representation. A set of recursive formula for
obtaining of the state vector, for each time instant and sharing good statistical properties, is the
Kalman filter. Before discussing such equations, consider a time series of size n of (1) and denote
by Fj the σ-field generated by the measurements until time j: Fj ≡ σ(Y1, Y2, . . . , Yj) . Consider
also the second-order conditional moments γ̂t|j ≡ E(γt|Fj) and Pt|j ≡ E[(γt− γ̂t|j)(γt− γ̂t|j)′|Fj].
The Kalman recursions for the cases of prediction (j = t − 1), updating (j = t) and smoothing
(j = n) are:
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• Prediction
γ̂t+1|t = Ttγ̂t|t
Pt+1|t = TtPt|tT

′
t +Qt

(3)

• Updating

γ̂t|t = γ̂t|t−1 + Pt|t−1Z
′
tF
−1
t υt

Pt|t = Pt|t−1 − Pt|t−1Z
′
tF
−1
t Pt|t−1

(4)

• Smoothing

γ̂t|n = γ̂t|t−1 + Pt|t−1rt−1
rt−1 = Z ′tF

−1
t υt + (Tt − TtPt|t−1Z

′
tF
−1
t Zt)

′rt
Pt|n = Pt|t−1 − Pt|t−1Nt−1Pt|t−1
Nt−1 = Z ′tF

−1
t Zt + (Tt − TtPt|t−1Z

′
tF
−1
t Zt)

′Nt(Tt − TtPt|t−1Z
′
tF
−1
t Zt)

rn = 0, Nn = 0 and t = n, . . . , 1

(5)

Notice that (3), (4) and (5) require the innovation vectors and their covariance matrices, which
are υt ≡ Yt − E(γt|Fj−1) = Yt − Ztγ̂t|t−1 and Ft = ZtPt|t−1Z

′
t + Ht. Finally, even though

the Gaussian hypothesis is somewhat restrictive, everything here applies in generality because, for
linear non-Gaussian state space models, expressions of the Kalman filter represent optimal linear
estimators of the state vector and their corresponding mean square error matrices.

According to (Pizzinga 2010), the reduced restricted Kalman filter is the most natural way of
imposing the portfolio restriction on the dynamic asset class factor model (to be discussed later
on) properly converted into a linear state space model. Briefly, this method of implementing the
Kalman filter under linear restrictions consists of rephrasing some coordinates of the state vector as
appropriate affine functions (that is, linear functions plus an intercept term) of the others, placing
the result in the measurement equation, and applying the usual Kalman filter with the modified (i.e.,
reduced) model. Formally, suppose that for some time indices t ∈ 1, 2, . . . , n, the corresponding
state vectors satisfy linear restrictions; that is, Atγt = qt, where At is a deterministic k×m matrix
and qt is a (possibly random) observable vector, which is Ft-measurable. The reduced restricted
Kalman filter is given in the form of an algorithm:

1. Rewrite the linear restriction as

A1,tγ1,t + A2,tγ2,t = qt (6)

where γ1,t = (γt1, . . . , γtk)
′ and A1,t has full rank.

2. Solve (6) for γ1,t and obtain

γ1,t = A−11,t qt − A−11,tA2,tγ2,t (7)

3. Take (7) and place it in the measurement equation in (1)

Ỹt = Yt − Z1,tA
−1
1,t qt = (Z2,t − Zt,1A

−1
1,tA2,t)γ2,t + εt = Z̃2,tγ2,t + εt (8)
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4. Postulate a transition matrix equation for the unrestricted state vector γ2,t to obtain a reduced
linear state space model

γ2,t+1 = T2,tγ2,t + η2,t (9)

5. For the model defined by (8) and (9), apply the usual kalman filter to obtain estimates for
γ2,t and use them to estimate γ1,t

γ̂1,t = A−11,t qt − A−11,tA2,tγ̂2,t ∀t ≤ j (10)

2.1. Dynamic Asset Class Factor Model

Style analyses are implemented through the estimation of asset class factor models, the static
version (that is, exposures are time-invariant and propose by Sharpe (1988)) of which, equipped
with an intercept term (the Jensen’s alpha), is

Rf
t = α + β1R1,t + β2R2,t + · · ·+ βkRk,t + εt t = 1, 2, . . . , n (11)

where Rf
t is the fund’s return, Rk,j is the return of the class index j and εt is a random shock that

should be viewed as an idiosyncratic part of the fund’s return. For (11), the restrictions generally
considered on the exposures β1R1,t, β2, . . . , βk are the following: (i)

∑k
j=1 βj = 1 (this is the ac-

counting portfolio restriction) and (ii) βj ≥ 0, j = 1, 2, . . . , k (this is the short sale restriction).
Sharpe (1992) tackles the estimation of (1) under the enunciated restrictions, minimizing the resid-
ual variance, or the sum of squares. Finally, the Jensen’s alpha is intended to measure how much
the fund manager gains or looses because of his selectivity skills.

A convenient way of incorporating a time-varying structure into a style analysis is to formulate
appropriate dynamics for the coefficients featured in model (11). Strictly speaking, one could
recognize that the exposures and the Jensen’s alpha are unobserved, stochastic processes that may
be estimated under a linear state space model using the information obtained from the time series
of the returns of the fund and asset class indexes. This represents a dynamic style analysis, and the
resulting model could be called a dynamic asset class factor model (see Swinkels and Van Der Sluis
(2006) and Pizzinga and Fernandes (2006)). For the weak dynamic style analyses (no restriction is
imposed on the exposures) and for the semi-strong dynamic style analyses (the portfolio restriction
is assumed) seen in this paper, we assume a random walk evolution for the Jensen’s alpha and a
stationary vector autoregressive model for the exposures, that is, βj,t+1 = φjβj,t + ηj,t, where
|φj| < 1 for each j and for t = 1, 2, . . . , n. The portfolio restriction can be implemented by
the reduced restricted Kalman filter. The final state space equations derived from the algorithm
proposed in (6) to (10) for the dynamic asset class factor model for a semi-strong style analysis are
displayed below:

Rf
t −R1,t = [R2,t −R1,t · · ·Rk,t −R1,t 1]γ2,t + εt ε ∼ NID(0, σ2)
γ2,t+1 = diag(φ2, φ3, . . . , φ3, 1) + η2,t η2,t ∼MVN(0, Q)

(12)

where γ2,t ≡ (β2,t, . . . βk,t, αt)
′ and γ1,t ≡ β1,t = 1 − [1 · · · 1 0]γ2,t. The covariance matrix Q is

considered full, and the Choleski decomposition Q = CC ′, where C is a triangular matrix with
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strictly positive diagonal entries cii, will be used in the empirical examples to guarantee its positive
definiteness condition.

3. RESULTS

We presents the results of the estimation of model (19) with the returns of a Brazilian actuarial
fund. The asset class indexes should be indicators that reflect the returns of the most basic securities
transacted in Brazilian markets (exhaustiveness) without being excessively correlated.

Figure 1: Time plot of the smoothed exposures for CAIXA fund with 95% CI

Figure 1 depicts time plots for the Kalman smoother estimates (with the respective 95% con-
fidence intervals) of Jensen’s alpha and the exposures associated with indexes IMA-C5, IRF-M
and IMA-S.Visual inspection suggests that its managers assumed a significant long position in
IMA-C5 over time, which makes sense because the main objective of any actuarial fund is to offer
protection against inflation. Concerning liquidity, however, they operated primarily with bonds of
less than 5 years until maturity. The monetary authorities in Brazil eased monetary policy between
July 2005 and July 2007, which explains why CAIXA’s managers decided to hold a strong long
position in IRF-M (this means that they increased the share of conventional bonds in their portfo-
lio) and a strong short position in IMA-S (in other words, they substantially reduced the share of
SELIC-indexed bonds) between observations 100 and 150 which pertain mostly to 2006.
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