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PREFACE 
 
In 2013, our two-day international “Actuarial and Financial Mathematics Conference” was 
organized in Brussels for the sixth time. As for the previous editions, we could use the 
facilities of the Royal Flemish Academy of Belgium for Science and Arts.  The organizing 
committee consisted of colleagues from 6 Belgian universities, i.e. the University of Antwerp, 
Ghent University, the KU Leuven and the Vrije Universiteit Brussel on the one hand, and the 
Université Libre de Bruxelles and the Université Catholique de Louvain on the other hand. 
Next to 9 invited lectures, there were 7 selected contributions as well as an extensive poster 
session. Just as in the previous years, we could welcome renowned international speakers, 
both from academia and from practice, and we could rely on leading international researchers 
in the scientific committee. 
 
There were 124 registrations in total, with 71 participants from Belgium, and 53 participants 
from 17 other countries from all continents. The population was mixed, with 71% of the 
participants associated with a university (PhD students, post doc researchers and professors), 
and with 29% working in the banking and insurance industry. 
 
On the first day, February 7, we had 8 speakers, among them 5 international and eminent 
invited speakers, alternated with 3 contributions selected by the scientific committee.  
In de morning, the first speaker was Prof.dr. Fred Espen Benth, from the University of Oslo 
(Norway), on “Pricing and hedging average-based options in energy markets”; afterwards 
Prof.dr. Klaus Reiner Schenk-Hoppé, University of Leeds (UK) gave an interesting talk about 
“Costs and benefits of speculation: On the equilibrium effects of financial regulation”. These 
two lectures were followed by 2 presentations by researchers from Germany and France. 
In the afternoon, we heard Prof.dr. Martino Grasselli, Università degli Studi di Padova 
(Italy), who presented new research results about “Smiles all around: FX joint calibration with 
and without risk neutral measure”, Prof.dr. Emmanuel Gobet, Ecole Polytechnique (France), 
with a paper “Almost sure optimal hedging strategy”, and Prof.dr. Dilip Madan, Robert H. 
Smith School of Business, University of Maryland (USA), with a clear review lecture entitled 
“A theory of risk for two price market equilibria”. In addition, there was an extra selected 
contribution by a young Belgian researcher.  
 
During the lunch break, we organized a poster session, preceded by a poster storm session, 
where the 17 different posters were introduced very briefly by the researchers. The posters 
attracted a great deal of interest, judging by the lively interaction between the participants and 



 
 

the posters’ authors. The posters remained in the central hall during the whole conference, so 
that they could be consulted and discussed during the coffee breaks. 
 
Also on the second day, February 8, we had 8 lectures, with 4 keynote speakers and 4 selected 
contributions. The first speaker was Prof.dr. Antoon Pelsser, Maastricht University & 
Kleynen Consultants (the Netherlands), with a paper on “Convergence results for replicating 
portfolios”. Afterwards,  Prof.dr. Claudia Czado, Technische Universität München 
(Germany) presented her newest results on “Vine copulas and their applications to Financial 
data”. In the afternoon, we could listen to Prof.dr. Antje Mahayni, Universität Duisburg-Essen 
(Germany), about “Evaluation of optimized proportional portfolio insurance strategies”. 
Finally, Prof.dr. Uwe Schmock, Vienna University of Technology (Austria) had the floor, with 
a well-received lecture “Approximation and aggregation of risks by variants of Panjer’s 
recursion”. The other 4 presentations were again selected from a large number of submissions 
by the scientific committee; the speakers came from Canada, the Netherlands, Great Britain 
and Germany. 
 
The proceedings contain two articles related to invited and contributed talks, and nine 
extended abstracts of poster presenters of the poster sessions, giving an overview of the topics 
and activities at the conference. 
 
We are much indebted to the members of the scientific committee, Hansjoerg Albrecher 
(University of Lausanne, Switzerland), Freddy Delbaen (ETH Zürich, Switzerland), Michel 
Denuit (Université Catholique de Louvain, Belgium), Jan Dhaene (Katholieke Universiteit 
Leuven, Belgium), Ernst Eberlein (University of Freiburg, Germany), Monique Jeanblanc 
(Université d'Evry Val d'Essonne, France), Ragnar Norberg (SAF, Université Lyon 1, 
France), Steven Vanduffel (Vrije Universiteit Brussel, Belgium), Michel Vellekoop (University 
of Amsterdam, The Netherlands), Noel Veraverbeke (University Hasselt, Belgium) and the 
chair Griselda Deelstra (Université Libre de Bruxelles, Belgium). We appreciate their 
excellent scientific support, their presence at the meeting and their chairing of sessions. We 
also thank Wouter Dewolf (Ghent University, Belgium), for the administrative work. 
We are very grateful to our sponsors, namely the Royal Flemish Academy of Belgium for 
Science and Arts, the Research Foundation ─ Flanders (FWO), the Scientific Research 
Network (WOG) “Stochastic modelling with applications in finance”, le Fonds de la 
Recherche Scientifique (FNRS), Cambridge Springer,  KBC Bank en Verzekeringen, and the 
BNP Paribas Fortis Chair in Banking at the Vrije Universiteit Brussel and Université Libre 
de Bruxelles. Without them it would not have been possible to organize this event in this very 
enjoyable and inspiring environment. 
 
The continuing success of the meeting encourages us to go on with the organization of this 
contact-forum, in order to create future opportunities for exchanging ideas and results in this 
fascinating research field of actuarial and financial mathematics. 
 

The editors: 
Griselda Deelstra 
Ann De Schepper 
Jan Dhaene 
Wim Schoutens 
Steven Vanduffel 
Michèle Vanmaele 
David Vyncke 

 
 
 
 
 
The other members of the organising committee: 
Jan Annaert 
Pierre Devolder 



INVITED TALK





STOCHASTIC MODELLING OF POWER PRICES BY VOLTERRA PROCESSES

Fred Espen Benth

Center of Mathematics for Applications (CMA), University of Oslo, PO Box 1053 Blindern, N-
0316 Oslo, Norway
Email: fredb@math.uio.no

Abstract

We propose a Volterra process driven by an independent increment process as the basic model
for the spot price dynamics of power. This class will encompass most of the existing mod-
els, like Lévy-driven Ornstein-Uhlenbeck and continuous-time autoregressive moving average
processes. The rich structure of the model will allow for explaining most of the stylized facts
of power prices like seasonality, mean reversion and spikes. We derive the forward price dy-
namics for contracts with delivery of power over a period, using the Esscher transform to
construct a pricing measure. Finally, the risk premium is discussed, and we show that the
time-inhomogeneity together with a time-varying market price of risk can yield a change in
sign in the risk premium.

1. INTRODUCTION

Power markets have been liberalized world-wide in the recent decades, and there is a demand
for sophisticated modelling tools for pricing and risk management purposes. The power markets
have their distinct characteristics, making modelling and pricing challenging tasks. In this paper
we develop further some modelling concepts that have proven fruitful in electricity and related
markets like weather and gas.

Stationarity is the key property of prices in power markets, at least after explaining the seasonal
trends and long-term effects. Barndorff-Nielsen et al. (2013) suggest the class of Lévy semistation-
ary models for the power spot price dynamics. We develop this class further, and consider Volterra
dynamics driven by a so-called independent increment process. An independent increment pro-
cess can be viewed as a time-inhomogeneous Lévy process, that is, a process where the increments
are independent but not necessarily stationary. This opens for modelling seasonally varying spike
intensities, for example.

We apply the Esscher transform to construct a pricing measure when analysing the problem
of deriving forward prices. The spot price of power is not tradeable in the usual sense, as one
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4 F.E. Benth

cannot store this commodity. Hence, any pricing measure is only required to be equivalent to the
market probability, and not turning the discounted spot into a martingale. The forward price is
defined as the conditional expectation of the spot under this pricing measure, yielding arbitrage-
free martingale dynamics.

We analyse the risk premium defined as the difference between the forward price and the ex-
pected spot at delivery in this context. In classical commodity markets, the risk premium is negative
since producers have hedging needs to insure their future revenues. However, in power markets
there are ample reasons for the occurrence of a positive premium, stemming from the fact that the
opposite side of the producers, the retailers, also have hedging needs, in particular when there is a
high chance for excessive prices resulting from spikes. We show that it is possible to accommodate
for this in our set-up, due to the time-inhomogeneity of the driving noise process and the possibility
to have a time-varying market price of risk being the parameter in the Esscher transform.

2. THE SPOT PRICE DYNAMICS

Let (Ω,F , {Ft}t∈[0,T ∗], P ) be a complete filtered probability space, where T ∗ <∞ is a finite time
horizon for the market we model. We introduce the class of independent increment (II) processes
as follows:

Definition 2.1 An adapted RCLL1 process I(t) starting in zero is called an II-process if it satisfies
the following two conditions:

1. The increments I(t0), I(t1)− I(t0), . . . , I(tn)− I(tn−1) are independent random variables
for any partition 0 ≤ t0 < t1 < . . . < tn ≤ T ∗, and n ≥ 1 a natural number.

2. It is continuous in probability.

If an II-process I(t) satisfies stationarity of the increments, that is, if I(t) − I(s) has the same
distribution as I(s) for any 0 ≤ s < t ≤ T ∗, then I is a Lévy process (see Cont and Tankov
(2004)).

The characteristic function of an increment of the II-process I(t) can be expressed as

ψ(s, t; θ) = lnE [exp (iθ(I(t)− I(s)))] , (1)

for 0 ≤ s < t ≤ T ∗, θ ∈ R, and

ψ(s, t; θ) = iθ(γ(t)− γ(s))− 1

2
θ2(C(t)− C(s)) +

∫ t

s

∫
R

(
eiθz − 1− iθz1|z|≤1

)
`(dz, du) . (2)

Here,

1. γ : [0, T ∗] 7→ [0, T ∗] is a continuous function with γ(0) = 0,

2. C : [0, T ∗] 7→ [0, T ∗] is a non-decreasing and continuous function with C(0) = 0,

1RCLL is short-hand for right-continuous with left-limits.
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3. ` is a σ-finite measure on the Borel σ-algebra of [0, T ∗]× R, with the properties

`(A× {0}) = 0 , `({t} × R) = 0 , for t ∈ [0, T ∗] and A ∈ B([0, T ∗])

and ∫ t

0

∫
R

min(1, z2) `(dz, ds) <∞ .

We call ψ the cumulant function of I , and (γ, C, `) the generating triplet, where γ is the drift, C
is the variance process and ` is the compensator measure. If I(t) is a Lévy process, we have that
ψ(s, t; θ) = ψ̃(θ)(t− s), γ(t) = γt, C(t) = ct, c ≥ 0 and `(dz, ds) = ds˜̀(dz). In this case, ˜̀(dz)

is called the Lévy measure and ψ̃(θ) is known as the Lévy exponent. We restrict our attention to
the case when I is a square-integrable semimartingale, that is, when

∫ t
0

∫
R z

2 `(dz, ds) <∞ for all
t ∈ [0, T ∗] and γ is of bounded variation.

For a given II-process I we define the spot price dynamics as

S(t) = Λ(t) +X(t) , (3)

where Λ : [0, T ∗] 7→ R+ is a bounded deterministic function modelling the seasonal mean, while
X is the Volterra process

X(t) =

∫ t

0

g(s, t) dI(s) . (4)

Here we have g given as a deterministic function defined on the half-space {(s, t) ∈ [0, T ∗]2 : s ≤
t} and being square integrable with respect to C and `, i.e., for every t ∈ [0, T ∗],∫ t

0

g2(s, t) dC(s) <∞
∫ t

0

∫
R
g2(s, t)z2`(dz, ds) <∞ .

This integrability condition ensures that X is well-defined as a stochastic integral with respect to
the square-integrable semimartingale I (see Protter (1990)).

The spot dynamics S in (3) with X as in (4) covers many of the classical models. First of all,
choosing a so-called arithmetic structure is reasonable in energy markets as argued empirically by
Bernhardt et al. (2008). For example, in the German power market EEX one observes frequently
negative prices in the spot market explained by unexpectedly high production of unregulated wind
power. Geometric models will not manage to explain such price behaviour, while an arithmetic
structure can account for this if X can turn negative. The seasonality function Λ models the mean
level of prices, which typically vary over the year with high prices in the winter due to added
demand for heating, and lower prices in the warmer seasons. Also, there are weekend and intra-
day effects in the power market, with higher prices during the day than in the night time, and in
the working week compared to the weekend. Such deterministic mean effects are explained by the
function Λ.

Coming back to the factor X describing the stochastic evolution of the prices S, the simplest
case is I = B, a Brownian motion, and g(s, t) = exp(−α(t − s)). In this case, X is a classical
Ornstein-Uhlenbeck process which is the standard choice of modelling the dynamics of a com-
modity (see Benth et al. (2008)). As this choice leads to prices which are normally distributed,
we will not be able to explain the observed heavy tails in power prices (see Benth et al. (2008)),
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which calls for Lévy processes as the modelling device for the stochastic drivers. However, one of
the reasons for non-Gaussian spot price dynamics is the price spikes commonly observed in power
markets. These spikes occur in periods with imbalances between supply and demand for power,
for example arising when there is a sudden drop in temperature leading to an unexpected high
demand for heating. A spike is characterized by a huge price increase of several magnitudes over
a short period of time (within a day, say), followed by a rapid reversion back to ”normal levels”.
The reversion is due to the market’s immediate reaction to high prices by reducing the demand. In
the Nordic power market NordPool, such spikes are mostly occurring during the cold season, and
almost never in the summer period. Hence, it is reasonable to imagine a stochastic driver I which
can jump depending on the season, with a high probability of a price spike in the winter, and low
in the summer. This can be achieved by choosing I to be an II-process. The function g takes care
of the reversion, with α in the Ornstein-Uhlenbeck case being directly interpretable as the speed
of mean reversion. Combined with such a choice of g, we could for example choose I to be a
compound Poisson process with time-dependent jump intensity, that is

I(t) =

N(t)∑
i=1

Ji ,

where Ji are iid random variables and N is a time-inhomogeneous Poisson process with jump
intensity described by λ(t). Here, λ is a positive continuous function on [0, T ∗]. In Geman and
Roncoroni (2006) such a jump process is applied to a jump-diffusion spot price model estimated
by data from several power markets.

In Barndorff-Nielsen et al. (2013) so-called Lévy (semi-)stationary processes are suggested for
the spot price dynamics. By selecting I to be a Lévy process and g(s, t) = g(t − s), we obtain
a class of processes X which are stationary (under some mild additional technical assumption on
the Lévy measure of I , see Sato (1999)). Note that in the Ornstein-Uhlenbeck case, g has the
required structure to ensure stationarity. Empirical analysis of spot prices at the German EEX
market reveals that other choices of g are more reasonable. For example, in the papers Benth
et al. (2011) and Bernhardt et al. (2008) it is argued that choosing g from the class of CARMA
processes is preferable from a statistical point of view. CARMA is short-hand for continuous time
autoregressive moving average, and yields a g(s, t) = g(t− s) where

g(x) = bTeAxep

for x ≥ 0 and ep is the pth unit vector in Rp, p ∈ N. Here, A is a p× p matrix of the form

A =

[
0p−1 Ip−1
−αp... −α1

]
with αp, αp1 , . . . , α1 being positive constants, 0p−1 the p− 1-dimensional vector of zeros and Ip−1
the (p − 1) × (p − 1) identity matrix. Finally, b = (b0, b1, . . . , bp−1)

T ∈ Rp is the vector with
coordinates such that bq = 1 and bj = 0 for q < j ≤ p. We say that p is the autoregressive order
while q is the moving average order. As it turns out, p = 2, q = 1 is a good choice in the case
of EEX daily spot data. The empirical analysis in Barndorff-Nielsen et al. (2013) suggests other
choices of g as well, including the model of Bjerksund et al. (2010) which corresponds to choosing

g(x) =
a

b+ x
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for positive constants a and b.
As suggested in Benth et al. (2011), it might be reasonable to consider a model with several

factors and not only one modelling the stochasticity of the spot price. For example, one may have
a non-stationary term X1(t) with a constant g(s, t) and a stationary X2(t) with a kernel function g
being of CARMA-form. Letting the driving II processes be of Lévy type, we are in the situation
studied by Benth et al. (2011).

In this paper we propose a general one-factor model with the flexibility to account for time-
inhomogeneous stochastic drivers I and general specifications of g. We want to derive forward
prices for this general model, and analyse the implied risk premium.

3. FORWARD PRICING

In power markets, the spot is a physical commodity in the sense that if you have entered a long or
short position, there will be a physical transmission of electricity over a given hour. Hence, by the
very nature of electricity, it cannot be stored and therefore not traded as a classical commodity or
financial asset. Thus, when pricing forwards on power, we cannot resort to the classical buy-and-
hold strategy, which prescribes the forward price to be the cost of carrying the spot forward (see
Geman (2005)). On the other hand, the forward contracts are typically financial, that is, one pays
or receives the money-equivalent of the spot over a given period. If, for example, one has bought
a forward on power with delivery in the time period [T1, T2], being a specific month, say, then one
receives ∫ T2

T1

S(T ) dT

in return of paying the agreed forward price at time T2. From this example we see another charac-
teristic feature of power markets, namely that forward contracts do not deliver at fixed times, but
over a specific period. In the market, these delivery periods are typically specific weeks, months,
quarters of years. As the forwards are financial contracts, one may use them for speculation, and
they can be traded in a portfolio. Hence, the arbitrage theory of mathematical finance says that the
forward price must be a (local) martingale with respect to some pricing measure Q being equiva-
lent to P . Observe that Q is not an equivalent martingale measure, in the sense that the discounted
spot price becomes a (local) Q martingale. If we denote the forward price at time t for a contract
with delivery over the period [T1, T2], T1 < T2, t ≤ T2 by F (t, T1, T2), then we have

F (t, T1, T2) = EQ
[

1

T2 − T1

∫ T2

T1

S(T ) dT | Ft
]
. (5)

The reason for taking the conditional expectation of the average spot price is that the forward price
is denominated in terms of currency per mega Watt hours (Euro/MWh, say).

Entering forward agreements can be viewed as an insurance on the underlying commodity
price. A producer, say, locks in the price of her production by selling it in the forward market.
When the underlying commodity is power, it cannot as already discussed be traded. Hence, we are
in a situation where we want to assign a premium on an ”insurance” on the price of power, which
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cannot be hedged. It is customary to choose a class of pricing probabilities based on the so-called
Esscher transform, a technique adopted from insurance mathematics (see Gerber and Shiu (1994)).

To this end, let θ : [0, T ∗] 7→ R be a function which is integrable with respect to I , and suppose
that

φ(s, t; θ) = lnE
[
exp

(∫ t

s

θ(u) dI(u)

)]
, (6)

is well-defined for all 0 ≤ s < t ≤ T ∗. Define the martingale process Z(t) for 0 ≤ t ≤ T ∗ by

Z(t) = exp

(∫ t

0

θ(u) dI(u)− φ(0, t, θ)

)
. (7)

Introduce a probability measure Q where the Radon-Nikodym derivative has a density given by
Z(t), that is,

dQ

dP

∣∣∣
Ft

= Z(t) . (8)

The probability Q is parametric in θ, which is often referred to as the market price of risk. This
construction of a probability Q is called the Esscher transform of the process I .

From Prop. 3.1 in Benth and Sgarra (2012) it holds that I is an II-process under Q, with
characteristic triplet (γθ, C, `θ), where

γθ(t) = γ(t) +

∫ t

0

∫
|z|<1

z
(
eθ(u)z − 1

)
`(dz, du) +

∫ t

0

θ(u) dC(u) ,

and
`θ(dz, dt) = exp(θ(t)z)`(dz, dt) .

Thus, the drift γ is shifted and the compensator measure ` is exponentially tilted.2

As φ in (6) is the log-moment generating function of I(t) − I(s) when θ = x is chosen as a
constant, we find that

E[I(t)] =
∂

∂x
φ(0, t; 0) .

But from the cumulant function, for which we have the relationship φ(s, t;x) = ψ(s, t;−ix), we
find,

∂

∂x
φ(s, t;x) = γ(t)− γ(s) + x(C(t)− C(s)) +

∫ t

s

∫
R
z
(
exz − 1|z|<1

)
`(dz, du) ,

and therefore

E[I(t)] = γ(t) +

∫ t

0

∫
|z|≥1

z `(dz, ds) . (9)

Thus, we can restate the spot price dynamics as

S(t) = Λ(t) +

∫ t

0

g(s, t) dE[I(s)] +

∫ t

0

g(s, t) dĨ(s) (10)

2Note that there is a typo in Benth and Sgarra (2012) concerning the drift.
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where Ĩ(t) = I(t)−E[I(t)] is a martingale. Analogously, we find by referring to the characteristic
triplet of I(t) with respect to Q

Eθ[I(t)] = γθ(t) +

∫ t

0

∫
|z|≥1

z `θ(dz, ds)

= γ(t) +

∫ t

0

θ(u) dC(u) +

∫ t

0

∫
R
z
(
eθ(u)z − 1|z|≤1

)
`(dz, du) . (11)

Here, Eθ[·] denotes the expectation operator with respect to the probability Q. But then after
defining the Q-martingale Ĩθ(t) = I(t)− Eθ[I(t)] we find

S(t) = Λ(t) +

∫ t

0

g(s, t) dEθ[I(s)] +

∫ t

0

g(s, t) dĨθ(s) . (12)

In both the P and Q dynamics of S we see that we have the representation of a deterministic term
and a stochastic factor driven by a martingale. The seasonality function can be modified to take
into account the trend imposed by I in both cases.

The computation of forward prices implied by the choice of Q by the Esscher transform now
becomes particularly simple. We present the result in the following proposition:

Proposition 3.1 The forward price F (t, T1, T2) of a contract with delivery period [T1, T2], where
t ≤ T2 and T1 < T2 ≤ T ∗, is

F (t, T1, T2) =
1

T2 − T1

∫ max(t,T1)

T1

S(T ) dT +
1

T2 − T1

∫ T2

max(t,T1)

Λ(T ) dT

+
1

T2 − T1

∫ T2

max(t,T1)

∫ T

0

g(s, T ) dEθ[I(s)] dT

+

∫ t

0

{
1

T2 − T1

∫ T2

max(t,T1)

g(s, T ) dT

}
dĨθ(s) .

Proof. We must calculate

F (t, T1, T2) = Eθ
[

1

T2 − T1

∫ T2

T1

S(T ) dT | Ft
]
.

By measurability, we find for t ≤ T2 that

F (t, T1, T2) =
1

T2 − T1

∫ max(t,T1)

T1

S(T ) dT + Eθ
[

1

T2 − T1

∫ T2

max(t,T1)

S(T ) dT | Ft
]

=
1

T2 − T1

∫ max(t,T1)

T1

S(T ) dT +
1

T2 − T1

∫ T2

max(t,T1)

Eθ [S(T ) | Ft] dT .

In the last equality we applied the Fubini-Tonelli Theorem. From the Q dynamics of S in (12), we
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find for t ≤ T

Eθ[S(T ) | Ft] = Λ(T ) +

∫ T

0

g(s, T ) dEθ[I(s)] + Eθ[
∫ T

0

g(s, T ) dĨθ(s) | Ft]

= Λ(T ) +

∫ T

0

g(s, T ) dEθ[I(s)] +

∫ t

0

g(s, T ) dĨθ(s) + Eθ[
∫ T

t

g(s, T ) dĨθ(s)]

= Λ(T ) +

∫ T

0

g(s, T ) dEθ[I(s)] +

∫ t

0

g(s, T ) dĨθ(s) .

Here we applied adaptedness and independent increment property of the II-process Ĩθ, as well as
its martingale property with respect to Q. After applying the Fubini-Tonelli Theorem once more,
this concludes the proof.

We observe that in general the forward price is not expressible in terms of the spot. We must
in fact recover the path of I(t) from the spot in order to obtain the forward price. In the case of the
Ornstein-Uhlenbeck process g(s, t) = exp(−α(t− s)) for α > 0, we find

1

T2 − T1

∫ T2

max(t,T1)

g(s, T ) dT =
1

α(T2 − T1)
(
e−α(max(t,T1)−t) − e−α(T2−t)

)
e−α(t−s) ,

and hence we can represent the forward price in terms of the current spot price S(t). In general,
we find that the forward price is a Volterra process as the spot, except with a different function g.

In some energy markets one can trade forwards within the delivery period, that is, the exchange
organizes the trade for t ∈ [T1, T2]. This is not always the situation, where the trade is closed after
time T1, and from there on the parties with positions in the forwards have the wait until time T2 for
settlement. Of course, one can do trade over-the-counter.

4. RISK PREMIUM

The risk premium is defined as the difference between the forward price and the predicted average
spot price over the delivery period:

R(t, T1, T2) = F (t, T2, T2)− E
[

1

T2 − T1

∫ T2

T1

S(T ) dT | Ft
]
. (13)

If we multiply this by the length of the delivery period, (T2 − T1)×R(t, T1, T2) gives the amount
of money that the producer will loose in entering the forward compared to the expected revenue
by selling the production on the spot market. Interpreted as such, (T2 − T1) × R(t, T1, T2) is a
negative number, and can be assigned as the premium paid by the producer to insure (hedge) her
production revenue by locking in the price by entering a forward contract.

The amazing fact in power markets is that the risk premium might be positive. This comes
from the fact that the retailer operating on the other side of the table of the producers might also
be interested in hedging. A retailer sits in a position where prices are fixed against the end-users,
and they would like to hedge the possibility of excessively high prices. They can do this by buying
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power in the forward market, thus creating a price pressure leading to a potentially positive risk
premium. This is then the premium paid by the retailers for insuring the price risk. In this case the
producers (or speculators) are the ones that collect the premium and act as the insurers.

We observe from the definition of the forward price and the Fubini-Tonelli Theorem that

R(t, T1, T2) =
1

T2 − T1

∫ T2

max(t,T1)

(Eθ[S(T ) | Ft]− E[S(T ) | Ft]) dT . (14)

To analyse the risk premium, it is sufficient to study the difference

r(t, T ) = Eθ[S(T ) | Ft]− E[S(T ) | Ft] , (15)

for t ≤ T , which, by inspecting Prop. 3.1, can be computed as

r(t, T ) =

∫ T

0

g(s, T ) d (Eθ[I(s)]− E[I(s)]) +

∫ t

0

g(s, T ) d
(
Ĩθ(s)− Ĩ(s)

)
=

∫ T

t

g(s, T ) d (Eθ[I(s)]− E[I(s)]) .

Here we used that Ĩθ(s) − Ĩ(s) = E[I(s)] − Eθ[I(s)]. But by a direct computation using the
expression of the expectations in (9) and (11),

Eθ[I(s)]− E[I(s)] =

∫ s

0

θ(u) dC(u) +

∫ s

0

∫
R
z
(
eθ(u)z − 1

)
`(dz, du) .

Hence, we conclude that

r(t, T ) =

∫ T

t

g(s, T )θ(u) dC(u) +

∫ T

t

∫
R
g(s, T )z

(
eθ(u)z − 1

)
`(dz, du) . (16)

To obtain the full risk premium for a power contractR(t, T1, T2), one must integrate the expression
r(t, T ) with respect to T over the interval max(t, T1) and T2, and divide by the length of delivery.

We next discuss the sign of r(t, T ). In most relevant situations, g is a positive function and we
restrict our attention to this case. Let us simplify the situation further, and consider θ(u) ≡ θ, a
constant. If θ > 0, then we know that z(exp(θz)− 1) is positive for all z ∈ R, and together with g
being positive, we obtain that∫ T

t

∫
R
g(s, T )z

(
eθ(u)z − 1

)
`(dz, du) > 0 .

Moreover, C is an increasing function, so the first term in r(t, T ) is positive as well. Hence, we
find that r(t, T ) is positive. In conclusion, a positive market price of risk θ leads to a positive risk
premium. If θ < 0, we find similarly∫ T

t

∫
R
g(s, T )z

(
eθ(u)z − 1

)
`(dz, du) < 0 .

Moreover, the first term becomes negative as well, and thus a negative market price of risk leads to
a negative risk premium. For constant market prices of risk we see therefore that the risk premium
becomes either positive or negative for all delivery periods [T1, T2].
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We may accommodate a change in sign of the risk premium in the following stylized situation:
If we consider an II process I(t) which does not have any jump component but a covariance given
by dC(t) = σ2(t) dt for some positive-valued function σ : [0, T ∗] 7→ R+. This function is scaling
the noise driving the factor X , and we can imagine a situation where this is seasonal. For example,
we could mimic volatile prices in the winter, and more stable prices in the summer which is the
situation in the Nordic power market, say, by letting σ be big in the winter, and small in the
summer. Since the seasonal function Λ is low for summer as well, the prices will have a relatively
small variation around the mean, and one could imagine that the producers in this case would
impact the market with a hedging pressure as the retailers are relatively certain about their prices.
Hence, choosing θ as a function with negative values in the summer seems reasonable. On the
other hand, during winter one may choose θ to be positive as high volatility may yield excessively
high prices, that the retailers want to avoid by hedging in forwards. As in this situation we have
chosen `(dz, ds) = 0, the risk premium r(t, T ) becomes

r(t, T ) =

∫ T

t

g(s, T )θ(s)σ2(s) ds .

We find this to be negative when t and T are times during summer, while t, T in the winter would
yield positive values of r. However, if t is in the summer, and T goes into the winter period, we
might get a situation where the premium r is changing sign from negative to positive.

Another example of a similar situation, which might be more relevant, is when C = 0 and
we have a pure-jump II process I(t). Imagine that I(t) is a compound Poisson process with a
time-inhomogeneous jump intensity. We find that

`(dz, ds) = λ(s)FJ(dz) ds ,

where FJ is the distribution of the jump size J , and λ : [0, T ∗] 7→ R+ is the jump intensity. Recall
that in the NordPool market, it is more likely to have big price spikes during winter time than in the
summer time. Hence, we could have λ small in the summer and big during winter. By choosing
θ as a function being negative during summer and positive during winter, we can obtain the same
situation as for the case of no jumps above. For this example, we mimic a market where retailers
take into account the excessive jump risk during winter. It is to be noted that this model probably
would require more factors to describe the price dynamics during summer more accurately, since
low λ implies few jumps, and therefore essentially a deterministic price path. We refer to Benth
and Sgarra (2012) for more on the change of sign of the risk premium in power markets. Note that
we manage to achieve such a sign change due to the time-inhomogeneity of I .

5. CONCLUSIONS AND OUTLOOK

We have discussed the basic models for the spot price dynamics in power markets. Considering the
stylized facts of power spot prices, Volterra processes driven by independent increment processes
provide a natural modelling class. Based on such a class, which encompasses many of the classical
models like Lévy-driven Ornstein-Uhlenbeck and continuous-time autoregressive moving average
processes, we derive the forward price dynamics for contracts delivering over a period. This is the
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situation for forward contracts written on electricity, which naturally cannot be settled at a fixed
delivery time. As the situation in power is similar to an insurance context, since the underlying
spot cannot be traded in a financial sense, we apply the Esscher transform to construct a pricing
measure when analysing the forwards. Finally, we showed that the spot model can accommodate
a change in sign of the risk premium in the forward market, a result achieved by appealing to the
time-inhomogeneity of the driving noise and a time-varying market price of risk. We explained
such a change from the opposite hedging needs of retailers and producers in the power market.

We show that the forward price dynamics are expressible in terms of a Volterra process driven
by the same independent increment process as the spot, however, with a different integrand func-
tion. In general it is not possible to express the forward in terms of the current spot. However, in
some situations one may recover the forward as a function of the path of the spot, see Benth and
Solanilla Blanco (2012).

European call and put options are traded in the power exchanges in the Nordic NordPool mar-
ket and the German EEX market. These are written on the forwards as underlying. Furthermore,
spread options between different power markets, and also between different commodities like gas
and power, coal and power are traded over-the-counter. By appealing to transform-based pric-
ing methods, using the explicit knowledge of the cumulant function of I , one can derive pricing
formulas which can be calculated efficiently on a computer (see Benth and Zdanowicz (2013)).
Other relevant derivatives include Asian-style options on the spot, which actually were traded at
NordPool around the year 2000. Benth et al. (2013) have developped an efficient algorithm for
pathwise simulation of Lévy semistationary processes, an interesting subclass of the Volterra pro-
cesses studied here. Such simulation algorithms have clear applications to Monte Carlo pricing of
path-dependent options in power markets.

Finally, the issue of hedging these derivatives is of course relevant. In a forthcoming paper by
Benth and Dethering (2013) quadratic hedging has been analysed in situations where you cannot
trade the underlying all the way up to the exercise date. This is the relevant situation in power
markets when hedging an Asian option on the spot, using electricity forwards to hedge.
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§Center of Mathematics for Applications, University of Oslo, PO Box 1053 Blindern, N-0316 Oslo,
Norway
†Chair of Mathematical Finance, Technische Universität München, Parkring 11, D-85748 Garching-
Hochbruck, Germany
‡Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgs-
laan 281 S9, 9000 Gent, Belgium
Email: giulian@math.uio.no, asma.khedher@tum.de, michele.vanmaele@UGent.be

1. INTRODUCTION

Since Bismut (1973) introduced the theory of backward stochastic differential equations (BSDEs),
there has been a wide range of literature about this topic. Researchers have kept on developing
results on these equations and recently, many papers have studied BSDEs driven by Lévy processes
(see, e.g., Carbone et al. (2008) and Øksendal and Zhang (2009)).

In Di Nunno et al. (2013) we consider a BSDE which is driven by a Brownian motion and a
Poisson random measure (BSDEJ). We present two candidate-approximations to this BSDEJ and
we prove that the solution of each candidate-approximation converges to the solution of the BSDEJ
in a space which we specify. Here we will discuss one of these two approximations.

Our aim from considering such approximations is to investigate the effect of the small jumps
of the Lévy process in quadratic hedging strategies in incomplete markets in finance (see, e.g.,
Föllmer and Schweizer (1991) and Vandaele and Vanmaele (2008) for more about quadratic hedg-
ing strategies in incomplete markets). These strategies are related to the study of the Föllmer-
Schweizer decomposition (FS) or/and the Galtchouk-Kunita-Watanabe (GKW) decomposition which
are both backward stochastic differential equations (see Choulli et al. (2010) for more about these
decompositions).

The two most popular types of quadratic hedging strategies are the locally risk-minimizing
strategies and the mean-variance hedging strategies. Let us consider a market in which the risky
asset is modelled by a jump-diffusion process S(t)t≥0. Let ξ be a contingent claim. A locally risk-
minimizing strategy is a non self-financing strategy that allows a small cost process C(t)t≥0 and

17
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insists on the fact that the terminal condition of the value of the portfolio is equal to the contingent
claim (see Schweizer (2001)). Translating this into conditions on the contingent claim ξ shows
that there exists a locally risk-minimizing strategy for ξ if ¡textcolorredand only if ξ admits a
decomposition of the form

ξ = ξ(0) +

∫ T

0

χFS(s)dS(s) + φFS(T ), (1)

where χFS(t)t≥0 is a process such that the integral in (1) exists and φFS(t)t≥0 is a martingale
which has to satisfy certain conditions that we will show in the next sections of the paper. The
decomposition (1) is called the FS decomposition. Its financial importance lies in the fact that it
directly provides the locally risk-minimizing strategy for ξ. In fact at each time t the number of
risky assets is given by χFS(t) and the cost C(t) is given by φFS(t) + ξ(0).
The mean-variance hedging strategy is a self-financing strategy which minimizes the hedging error
in mean square sense (see Föllmer and Sondermann (1986) ). In Di Nunno et al. (2013) we study
the robustness of these two latter hedging strategies toward the model choice. Here, we report
about the locally risk-minimizing strategy.

Hereto we assume that the process S(t)t≥0 is a jump-diffusion driven by a pure jump term
with infinite activity and a Brownian motion W (t)t≥0. We consider an approximation Sε(t)t≥0 to
S(t)t≥0 in which we truncate the small jumps and replace them by a Brownian motion B(t)t≥0
independent of W (t)t≥0 and scaled with the standard deviation of the small jumps.
This idea of shifting from a model with small jumps to another where those variations are modeled
by some appropriately scaled continuous component goes back to Asmussen and Rosinski (2001)
who proved that the second model approximates the first one. This result is interesting from
modelling point of view since the underlying model and the approximating models have the same
distribution for ε very small. It is also interesting from a simulation point of view. In fact no
easy algorithms are available for simulating general Lévy processes. However the approximating
processes we obtain contain a compound Poisson process and a Brownian motion which are both
easy to simulate (see Cont and Tankov (2004)).

In this paper we show that the value of the portfolio, the amount of wealth, and the cost process
in a locally risk-minimizing strategy are robust to the choice of the model. In Di Nunno et al.
(2013) we also show the robustness of the mean-variance hedging strategy. To prove these results
we use the existence of the FS decomposition (1) and the convergence results on BSDEJs.

2. SOME MATHEMATICAL PRELIMINARIES

Let (Ω,F ,P) be a complete probability space. We fix T > 0. Let W = W (t) and B = B(t),
t ∈ [0, T ], be two independent standard Wiener processes and Ñ = Ñ(dt, dz), t, z ∈ [0, T ] × R0

(R0 := R \ {0}) be a centered Poisson random measure, i.e. Ñ(dt, dz) = N(dt, dz) − `(dz)dt,
where `(dz) is the jump measure and N(dt, dz) is the Poisson random measure independent of the
Brownian motions W and B and such that E[N(dt, dz)] = `(dz)dt. Define B(R0) as the σ-algebra
generated by the Borel sets Ū ⊂ R0.

We assume that the jump measure has a finite second moment. Namely
∫
R0
z2`(dz) < ∞.

We introduce the P-augmented filtrations F = (Ft)0≤t≤T , G = (Gt)0≤t≤T , Gε = (Gεt )0≤t≤T ,
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respectively by

Ft = σ
{
W (s),

∫ s

0

∫
A

Ñ(du, dz), s ≤ t, A ∈ B(R0)
}
∨N ,

Gt = σ
{
W (s), B(s),

∫ s

0

∫
A

Ñ(du, dz), s ≤ t, A ∈ B(R0)
}
∨N ,

Gεt = σ
{
W (s), B(s),

∫ s

0

∫
A

Ñ(du, dz), s ≤ t, A ∈ B({|z| > ε})
}
∨N ,

whereN represents the set of P-null events in F . We introduce the notation H = (Ht)0≤t≤T , such
thatHt will be given either by the σ-algebra Ft, Gt, or Gεt depending on our analysis later.
Define the following spaces for all β ≥ 0;

• L2
T,β: the space of allHT -measurable random variables X : Ω→ R such that

‖X‖2β = E[eβTX2] <∞.

• H2
T,β: the space of all H-predictable processes φ : Ω× [0, T ]→ R, such that

‖φ‖2H2
T,β

= E
[ ∫ T

0

eβt|φ(t)|2dt
]
<∞.

• H̃2
T,β: the space of all H-adapted, càdlàg processes ψ : Ω× [0, T ]→ R such that

‖ψ‖2
H̃2
T,β

= E
[ ∫ T

0

eβt|ψ2(t)dt|
]
<∞.

• Ĥ2
T,β: the space of all H-predictable mappings θ : Ω× [0, T ]× R0 → R, such that

‖θ‖2
Ĥ2
T,β

= E
[ ∫ T

0

∫
R0

eβt|θ(t, z)|2`(dz)dt
]
<∞.

• S2
T,β: the space of all H-adapted, càdlàg processes γ : Ω× [0, T ]→ R such that

‖γ‖2S2
T,β

= E[eβT sup
0≤t≤T

|γ2(t)|] <∞.

• νβ = S2
T,β ×H2

T,β × Ĥ2
T,β .

• ν̃β = S2
T,β ×H2

T,β × Ĥ2
T,β ×H2

T,β .

• L̂2
T (R0,B(R0), `): the space of all B(R0)-measurable mappings ψ : R0 → R such that

‖ψ‖2
L̂2
T (R0,B(R0),`)

=

∫
R0

|ψ(z)|2`(dz) <∞.
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For notational simplicity, when β = 0, we skip the β in the notation.
The following result is an application of the Kunita-Watanabe decomposition of a random

variable ξ ∈ L2
T with respect to orthogonal martingale random fields as integrators. See Kunita

and Watanabe (1967) for the essential ideas.

Theorem 2.1 Let H = G. Every GT -measurable random variable ξ ∈ L2
T has a unique represen-

tation of the form

ξ = ξ(0) +
3∑

k=1

∫ T

0

∫
R
ϕk(t, z)µk(dt, dz), (2)

where the stochastic integrators

µ1(dt, dz) = W (dt)× δ0(dz), µ2(dt, dz) = B(dt)× δ0(dz),

µ3(dt, dz) = Ñ(dt, dz)1[0,T ]×R0(t, z),

are orthogonal martingale random fields on [0, T ] × R0 and the stochastic integrands are ϕ1,
ϕ2 ∈ H2

T and ϕ3 ∈ Ĥ2
T . Moreover ξ(0) = E[ξ].

Let H = Gε. Then for every GεT -measurable random variable ξ ∈ L2
T , (2) holds with µ3(dt, dz) =

Ñ(dt, dz)1[0,T ]×{|z|>ε}(t, z).
Let H = F. Then for everyFT -measurable random variable ξ ∈ L2

T , (2) holds with µ2(dt, dz) = 0.

The above result plays a central role in the analysis. Let us now consider a pair (ξ, f), where ξ is
called the terminal condition and f the driver such that

Assumptions 2.2
(A) ξ ∈ L2

T isHT -measurable
(B) f : Ω× [0, T ]× R× R× R→ R such that

• f(·, x, y, z) is H-progressively measurable for all x, y, z,

• f(·, 0, 0, 0) ∈ H2
T ,

• f(·, x, y, z) satisfies a uniform Lipschitz condition in (x, y, z), i.e. there exists a constant C
such that for all (xi, yi, zi) ∈ R× R× L̂2

T (R0,B(R0), `), i = 1, 2, we have

|f(t, x1, y1, z1)− f(t, x2, y2, z2)| ≤ C
(
|x1 − x2|+ |y1 − y2|+ ‖z1 − z2‖

)
, for all t.

We consider the following backward stochastic differential equation with jumps (in short BSDEJ) −dX(t) = f(t,X(t), Y (t), Z(t, ·))dt− Y (t)dW (t)−
∫
R0

Z(t, z)Ñ(dt, dz),

X(T ) = ξ.
(3)
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Definition 2.1 A solution to the BSDEJ (3) is a triplet of H-adapted or predictable processes
(X, Y, Z) ∈ ν satisfying

X(t) = ξ +

∫ T

t

f(s,X(s), Y (s), Z(s, ·))ds−
∫ T

t

Y (s)dW (s)

−
∫ T

t

∫
R0

Z(s, z)Ñ(ds, dz), 0 ≤ t ≤ T.

The existence and uniqueness result for the solution of the BSDEJ (3) is guaranteed by the follow-
ing result proved in Tang and Li (1994).

Theorem 2.3 Given a pair (ξ, f) satisfying Assumptions 2.2(A) and (B), there exists a unique
solution (X, Y, Z) ∈ ν to the BSDEJ (3).

3. A CANDIDATE-APPROXIMATING BSDEJ AND ROBUSTNESS

In this section we present a candidate approximation to the BSDEJ (3). Let H = G. We introduce
a sequence of random variables GT -measurable ξε ∈ L2

T such that

lim
ε→0

ξε = ξ

and a function f 1 satisfying

Assumptions 3.1 f 1 : Ω× [0, T ]× R× R× R× R→ R is such that

• f 1(·, x, y, z, ζ) is H-progressively measurable for all x, y, z, ζ ,

• f 1(·, 0, 0, 0, 0) ∈ H2
T ,

• f 1(·, x, y, z, ζ) satisfies a uniform Lipschitz condition in (x, y, z, ζ).

Besides Assumptions 3.1 which we impose on f 1, we need moreover to assume the following
condition in the robustness analysis later on. For all (xi, yi, zi, ζ) ∈ R×R× L̂2

T (R0,B(R0), `)×R,
i = 1, 2, and for a positive constant C we have

|f(t, x1, y1, z1)− f 1(t, x2, y2, z2, ζ)| ≤ C
(
|x1−x2|+ |y1− y2|+ ‖z1− z2‖+ |ζ|

)
, for all t. (4)

We introduce the candidate BSDEJ approximation to (3) as follows
−dXε(t) = f 1(t,Xε(t), Yε(t), Zε(t, ·), ζε(t))dt− Yε(t)dW (t)−

∫
R0

Zε(t, z)Ñ(dt, dz)

−ζε(t)dB(t),
Xε(T ) = ξε,

(5)

where B is a Brownian motion independent of W . Because of the presence of the additional noise
B the solution processes are expected to be G-adapted (or predictable). Notice that the solution
of such equation is given by (Xε, Yε, Zε, ζε) ∈ ν̃. In the next theorem we state the existence and
uniqueness of the solution of the equation (5).
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Theorem 3.2 Let H = G. Given a pair (ξε, f
1) such that ξε ∈ L2

T is GT -measurable and f 1

satisfies Assumptions 3.1, then there exists a unique solution (Xε, Yε, Zε, ζε) ∈ ν̃ to the BSDEJ
(5).

In the following theorem we state the convergence of the BSDEJ (5) to the BSDEJ (3).

Theorem 3.3 Assume that f 1 satisfies (4). Let (X, Y, Z) be the solution of (3) and (Xε, Yε, Zε, ζε)
be the solution of (5). Then we have for t ∈ [0, T ],

E
[ ∫ T

t

|X(s)−Xε(s)|2ds
]

+ E
[ ∫ T

t

|Y (s)− Yε(s)|2ds
]

+ E
[ ∫ T

t

∫
R0

|Z(s, z)− Zε(s, z)|2`(dz)ds
]

+ E
[ ∫ T

t

|ζε(s)|2ds
]

≤ KE[|ξ − ξε|2],

where K is a positive constant. It also holds that for some constant C > 0

E
[

sup
t∈[0,T ]

|X(t)−Xε(t)|2
]
≤ CE[|ξ − ξε|2].

The proofs can be found in Di Nunno et al. (2013).

4. ROBUSTNESS OF THE FÖLLMER-SCHWEIZER DECOMPOSITION WITH APPLI-
CATIONS TO PARTIAL-HEDGING IN FINANCE

We assume we have two assets. One of them is a riskless asset with price S(0) given by

dS(0)(t) = S(0)(t)r(t)dt,

where r(t) = r(t, ω) ∈ R is the short rate. The dynamics of the risky asset are given by dS(1)(t) = S(1)(t)
{
a(t)dt+ b(t)dW (t) +

∫
R0

γ(t, z)Ñ(dt, dz)
}
,

S(1)(0) = x ∈ R+ ,

where a(t) = a(t, ω) ∈ R, b(t) = b(t, ω) ∈ R, and γ(t, z) = γ(t, z, ω) ∈ R for t ≥ 0, z ∈ R0 are
adapted processes. We assume that γ(t, z, ω) = g(z)γ̃(t, ω), such that

G2(ε) :=

∫
|z|≤ε

g2(z)`(dz) <∞. (6)

The dynamics of the discounted price process S̃ = S(1)

S(0) are given by

dS̃(t) = S̃(t)
[
(a(t)− r(t))dt+ b(t)dW (t) +

∫
R0

γ(t, z)Ñ(dt, dz)
]
. (7)
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Since S̃ is a semimartingale, we can decompose it into a local martingaleM starting at zero in zero
and a finite variation process A, with A(0) = 0, where M and A have the following expressions

M(t) =

∫ t

0

b(s)S̃(s)dW (s) +

∫ t

0

∫
R0

γ(s, z)S̃(s)Ñ(ds, dz), (8)

A(t) =

∫ t

0

(a(s)− r(s))S̃(s)ds.

We denote by 〈X〉(t) the predictable compensator of the processX , i.e. X(t)−〈X〉(t), 0 ≤ t ≤ T ,
is a local martingale. Then we can represent the process A as follows

A(t) =

∫ t

0

a(s)− r(s)
S̃(s)

(
b2(s) +

∫
R0
γ2(s, z)`(dz)

)d〈M〉(s). (9)

Let α be the integrand in equation (9), that is the process given by

α(t) :=
a(t)− r(t)

S̃(t)
(
b2(t) +

∫
R0
γ2(t, z)`(dz)

) , 0 ≤ t ≤ T. (10)

We define a process K by means of α as follows

K(t) =

∫ t

0

α2(s)d〈M〉(s) =

∫ t

0

(a(s)− r(s))2

b2(s) +
∫
R0
γ2(s, z)`(dz)

ds. (11)

The process K is called the mean-variance-trade-off (MVT) process.
In order to formulate our robustness study for the quadratic hedging strategies, we present

the definition of the FS decomposition. We first introduce the following notations. Let S be a
semimartingale. Then S can be decomposed as follows S = S(0) +M + A, where S(0) is finite-
valued and F0-measurable, M is a local martingale with M(0) = 0, and A is a finite variation
process with A(0) = 0. We denote by L(S) the class of predictable processes for which we can
determine the stochastic integral with respect to S. We define the space Θ by

Θ :=
{
θ ∈ L(S) |E

[ ∫ T

0

θ2(s)d〈M〉(s) +
( ∫ T

0

|θ(s)dA(s)|
)2]

<∞
}
.

Now we give the definition of the FS decomposition.

Definition 4.1 Let S be a semimartingale. AnFT -measurable and square integrable random vari-
able H admits a Föllmer-Schweizer decomposition if there exist a constant H0, an S-integrable
process χFS ∈ Θ, and a square integrable martingale φFS such that φFS is orthogonal to M and

H = H0 +

∫ T

0

χFS(s)dS(s) + φFS(T ).
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Monat and Stricker (1995) show that a sufficient condition for the existence of the FS decomposi-
tion is to assume that the MVT process K given by (11) is uniformly bounded. The most general
result concerning the existence and uniqueness of the FS decomposition is given by Choulli et al.
(1998). In our case we assume that the process K is uniformly bounded in t by a constant C.
Under this condition we can define the minimal martingale density by

E
(∫ .

0

α(s)dM(s)
)
t
, (12)

where M and α are respectively given by (8) and (10) and E(X) is the exponential martingale
for X (see Theorem II, 37 in Protter (2005) for a general formula for exponential martingales).
Notice that (12) defines a signed minimal martingale measure. For this martingale to exist as a
probability martingale measure we have to assume that E

( ∫ .
0
α(s)dM(s)

)
t
> 0 (see, e.g., Choulli

et al. (2010)). This latter condition is equivalent to (see Proposition 3.1 in Arai (2001))

S̃(t)α(t)γ(t, z) > −1, a.e. in (t, z, ω). (13)

In the following we assume that (13) holds. Let ξ be a square integrable contingent claim and
ξ̃ = ξ

S(0)(T )
its discounted value. Let dQ̃

dP

∣∣
Ft

= E
( ∫ .

0
α(s)dM(s)

)
t

be the minimal martingale

measure. Define Ṽ (t) = EQ̃[ξ̃|Ft]. Then from Proposition 4.2 in Choulli et al. (2010), we have the
following FS decomposition for Ṽ written under the world measure P

Ṽ (t) = EQ̃[ξ̃] +

∫ t

0

χFS(s)dS̃(s) + φFS(t), (14)

where φFS is a P-martingale orthogonal to M and χFS ∈ Θ. Replacing S̃ by its value (7) in (14)
we get dṼ (t) = π̃(t)(a(t)− r(t))dt+ π̃(t)b(t)dW (t) +

∫
R0

π̃(t)γ(t, z)Ñ(dt, dz) + dφFS(t),

Ṽ (T ) = ξ̃,
(15)

where π̃ = χFSS̃.
Since φFS(T ) is a FT -measurable square integrable martingale then applying Theorem 2.1 with

H = F and the martingale property of φFS(T ) we know that there exist stochastic integrands Y FS ,
ZFS , such that

φFS(t) = E[φFS(T )] +

∫ t

0

Y FS(s)dW (s) +

∫ t

0

∫
R0

ZFS(s, z)Ñ(ds, dz). (16)

Since φFS is a martingale then we have E[φFS(T )] = E[φFS(0)] = 0. In that case, the set of
equations (15) are equivalent to

dṼ (t) = π̃(t)(a(t)− r(t))dt+
(
π̃(t)b(t) + Y FS(t)

)
dW (t)

+

∫
R0

(
π̃(t)γ(t, z) + ZFS(t, z)

)
Ñ(dt, dz),

Ṽ (T ) = ξ̃.

(17)
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Now we assume we have another model for the price of the risky asset. In this model we
approximate the small jumps by a Brownian motion B which is independent of W and which we
scale with the standard deviation of the small jumps, see (6). That is dS

(1)
ε (t) = S

(1)
ε (t)

{
a(t)dt+ b(t)dW (t) +

∫
|z|>ε

γ(t, z)Ñ(dt, dz) +G(ε)γ̃(t)dB(t)
}
,

S
(1)
ε (0) = S(1)(0) = x .

The discounted price process is given by

dS̃ε(t) = S̃ε(t)
{

(a(t)− r(t))dt+ b(t)dW (t) +

∫
|z|>ε

γ(t, z)Ñ(dt, dz) +G(ε)γ̃(t)dB(t)
}
.

It was proven in Benth et al. (2013), that the process S̃ε(t)t≥0 converges to S̃(t)t≥0 in L2 when ε
goes to 0 with rate of convergence G(ε).

In the following we study the robustness of the locally risk-minimizing hedging strategy toward
the model choice where the price processes are modeled by S̃ and S̃ε.

The local martingale Mε in the semimartingale decomposition of S̃ε is given by

Mε(t) =

∫ t

0

b(s)S̃ε(s)dW (s) +

∫ t

0

∫
|z|>ε

γ(t, z)S̃ε(s)Ñ(dt, dz)

+G(ε)

∫ t

0

γ̃(s)S̃ε(s)dB(s) (18)

and the finite variation process Aε is given by

Aε(t) =

∫ t

0

a(s)− r(s)
S̃ε(s)

(
b2(s) +

∫
|z|≥ε γ

2(s, z)`(dz)
)d〈Mε〉(s).

We define the process αε by

αε(t) :=
a(t)− r(t)

S̃ε(t)
(
b2(t) +G2(ε)γ̃2(t) +

∫
|z|>ε γ

2(t, z)`(dz)
) , 0 ≤ t ≤ T. (19)

Thus the mean-variance trade-off process Kε is given by

Kε(t) =

∫ t

0

α2
ε(s)d〈Mε〉(s) =

∫ t

0

(a(s)− r(s))2

b2(s) +G2(ε)γ̃2(s) +
∫
|z|>ε γ

2(s, z)`(dz)
ds

= K(t), (20)

in view of the definition of G(ε), equation (6). Hence the boundedness of K ensures the exis-
tence of the FS decomposition with respect to S̃ε for any square integrable GT -measurable random
variable.

Let ξε be a square integrable contingent claim. We denote by ξ̃ε = ξε
S(0)(T )

the discounted

pay-off of the contingent claim with S̃ε as underlying. As we have seen before, for the minimal
measure to be a probability martingale measure, we have to assume that

E
(∫ .

0

αε(s)dMε(s)
)
t
> 0,
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which is equivalent to

S̃ε(t)αε(t)γ(t, z) > −1, a.e. in (t, z, ω). (21)

Define dQ̃ε
dP

∣∣
Gt

:= E
( ∫ .

0
αε(s)dMε(s)

)
t

and Ṽε(t) := EQ̃ε [ξ̃ε|Gt]. Then from Proposition 4.2 in

Choulli et al. (2010), we have the following FS decomposition for Ṽε written under the world
measure P

Ṽε(t) = EQ̃ε [ξ̃ε] +

∫ t

0

χFSε (s)dS̃ε(s) + φFSε (t), (22)

where φFSε is a P-martingale orthogonal to Mε and χFSε ∈ Θ. Replacing S̃ε by its expression in
(22), we get

dṼε(t) = π̃ε(t)(a(t)− r(t))dt+ π̃ε(t)b(t)dW (t) + π̃ε(t)G(ε)γ̃(t)dB(t)

+

∫
|z|>ε

π̃ε(t)γ(t, z)Ñ(dt, dz) + dφFSε (t),

Ṽε(T ) = ξ̃ε,

where π̃ε = χFSε S̃ε. Notice that φFSε (T ) is a GεT -measurable square integrable P-martingale. thus
applying Theorem 2.1 with H = Gε and using the martingale property of φFSε (T ) we know that
there exist stochastic integrands Y FS

1,ε , Y FS
2,ε , and ZFS

ε , such that

φFSε (t) = E[φFSε (T )] +

∫ t

0

Y FS
1,ε (s)dW (s) +

∫ t

0

Y FS
2,ε (s)dB(s)

+

∫ t

0

∫
|z|>ε

ZFS
ε (s, z)Ñ(ds, dz). (23)

Using the martingale property of φFSε and equation (22), we get E[φFSε (T )] = E[φFSε (0)] = 0. The
equation we obtain for the approximating problem is thus given by

dṼε(t) = π̃ε(t)(a(t)− r(t))dt+ (π̃ε(t)b(t) + Y FS
1,ε (t))dW (t)

+(π̃ε(t)G(ε)γ̃(t) + Y FS
2,ε (t))dB(t)

+

∫
|z|>ε

(
π̃ε(t)γ(t, z) + ZFS

ε (t, z)
)
Ñ(dt, dz),

Ṽε(T ) = ξ̃ε.

(24)

In order to apply the robustness results studied in Section 3, we have to prove that Ṽ and Ṽε are
respectively equations of type (3) and (5). That’s the purpose of the next lemma. Notice that here
above Ṽε, π̃ε, and φFSε are all Gεt -measurable. However since Gεt ⊂ Gt, then Ṽε, π̃ε, and φFSε are
also Gt-measurable.

Lemma 4.1 Let κ(t) = b2(t) +
∫
R0
γ2(t, z)`(dz). Assume that for all t ∈ [0, T ],

|a(t)− r(t)|√
κ(t)

≤ C, P-a.s., (25)

for a positive constant C. Let Ṽ , Ṽε be given by (17), (24), respectively. Then Ṽ satisfies a BSDEJ
of type (3) and Ṽε satisfies a BSDEJ of type (5).
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Now we present the following main result in which we prove the robustness of the value of
the portfolio, the robustness result for the amount of wealth to invest in the stock in a locally
risk-minimizing strategy, and the robustness of the process φFS defined in (16)

Theorem 4.2 Assume that (25) holds. Let Ṽ , Ṽε be given by (17), (24), respectively. Then it holds
that

E
[

sup
0≤t≤T

|Ṽ (t)− Ṽε(t)|2
]
≤ CE[|ξ̃ − ξ̃ε|2].

Assume that (25) holds and that for all t ∈ [0, T ]

inf
t≤s≤T

κ(s) ≥ K, P-a.s., (26)

where K is a strictly positive constant. Let π̃ = χFSS̃ and π̃ε = χFSε S̃ε. Then for all t ∈ [0, T ],

E
[ ∫ T

t

|π̃(s)− π̃ε(s)|2ds
]
≤ CE[|ξ̃ − ξ̃ε|2],

where C is a positive constant. Assume that (25) and (26) hold and for all t ∈ [0, T ]

sup
t≤s≤T

γ̃2(s) ≤ K̃, sup
t≤s≤T

κ(s) ≤ K̂ <∞, P-a.s.

Let φFS , φFSε be given by (16), (23), respectively. Then for all t ∈ [0, T ], we have

E
[
|φFS(t)− φFSε (t)|2

]
≤ CE[|ξ̃ − ξ̃ε|2] + C ′G(ε),

where C and C ′ are positive constants.

The processes C and Cε with C(t) = φFS(t) + Ṽ (0) and Cε(t) = φFSε (t) + Ṽε(0), are the cost
processes in a locally risk-minimizing strategy for ξ̃ and ξ̃ε. Using the last theorem it is easy to
show that for all t ∈ [0, T ], we have

E[|C(t)− Cε(t)|2] ≤ K̃E[|ξ̃ − ξ̃ε|2] +K ′G(ε),

where K̃ and K ′ are two positive constants.
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P. Monat and C. Stricker. Föllmer-Schweizer decomposition and mean-variance hedging for gen-
eral claims. Annals of Probability, 23:605–628, 1995.

B. Øksendal and T. Zhang. Backward stochastic differential equations with respect to general
filtrations and applications to insider finance. Preprint No. 19, September, Department of Math-
ematics, University of Oslo, Norway, 2009.

P. Protter. Stochastic integration and differential equations, Second Edition, Version 2.1. Num-
ber 21 in Stochastic Modelling and Applied Probability. Springer, Berlin, 2005.

M. Schweizer. A guided tour through quadratic hedging approaches. In E. Jouini, J. Cvitanić,
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1. INTRODUCTION

The application of Fourier transform gives us a convenient method for modelling with general
stochastic processes and distributions. Here, we discuss a comprehensive treatment of the Fourier
transform in option valuation covering most of the stochastic factors such as stochastic volatilities,
stochastic interest rates and Poisson jumps. These are considered risk factors which influence op-
tion prices. We start with the general framework of asset pricing and characteristic functions and
Fourier transforms which play an important role to incorporate risk factors in the option pricing
framework.

We discuss the Heston (1993) model and the Schöbel and Zhu (1999) model and the characteristic
functions for these processes. Also, we review two short term stochastic interest rate models, Cox
et al. (1985) model and Vasicek (1977) model. We describe the model properties and correspond-
ing characteristic functions. The Fourier transform is an elegant and efficient technique which
incorporates discontinuous jump events in an asset process. Here, we deal with traditional jump
models where the jump mechanism is governed by a compound Poisson process. We use simple
jumps and jumps governed by a lognormal distribution. Finally, we describe our findings and sug-
gest future directions of research. Among the models, we find that the Heston (1993) model and
the Scḧobel and Zhu (1999) model better explain the smile effects.
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2. GENERAL FRAMEWORK FOR ASSET PRICING

If the returns of an assetS(t) follow a fixed quantity plus a Brownian motion, then the assetS(t)
follows a Geometric Brownian motion

dS(t) = µ(t)dt+ σ(t)dW (t)

In the Black and Scholes (1973) framework the parametersµ(t) andσ(t) are constant. In this
paper, we relax this assumption and consider that they follow some stochastic process.

Black-Scholes Framework
The pay-off of a European Call optionC(T ) at maturity dateT with strike priceK is given by

C(T ) = max[S(T )−K, 0]

which depends on the underlyingS(T ). The fundamental question is, what is the fair price of
the call option? The question is answered by Black and Scholes (1973) as the fair price of an
option must be an arbitrage free price in the sense that a risk-less portfolio comprising of options
and underlying stocks must reward a risk-free return. Using this idea, they derived the following
formula

C0 = S0N(d1)−Ke−rTN(d2)

The above formula is known as the famous Black and Scholes (1973) formula and it is derived
using partial differential equations. Another approach to find the fair call price is risk-neutral
valuation. In this method, the fair value of a call is the discounted present value of its expecta-
tion at maturity. Instead of solving a partial differential equation, we can calculate the expected
valueE[C(T )] and discount with the risk free interest rater to obtain a call price. Therefore,
C0 = e−rTE[C(T )]. The Feynman-Kac Theorem plays an important role to establish the equiva-
lence between these two approaches.

Pricing Via Fourier Transform
Under the risk-neutral valuation, the process forX(t) is given by

dX(t) =

(

r(t)− 1

2
b2(v(t), t)

)

dt+ b(v(t), t)dW1(t)

In a general setting, the dynamics of the stock pricesS(t) are driven by a pure diffusiondW (t) as
in the simple Black and Scholes (1973) model. The essential extensions are a stochastic interest
rater(t) and a stochastic volatility termb(., t), that will be specified in the appropriate modelling.
Also, we extend this setting by introducing different types of jumps which will improve the model
accuracy.

By considering the above discussion, in this extended framework the exercise probabilities are
no longer strictly normally distributed. However, they can be expressed by Fourier inversion of
the associated characteristic functions which may often have closed form solutions with different
specifications of stochastic factors. We can express the option pricing formula in the following
form

C(T,K) = S0F
Q1

1 [X(T ) > lnK]−B(0, T )KFQ2

2 [X(T ) > lnK]



Factors Affecting the Smile and Implied Volatility 33

whereQ1 denotes the delta measure andQ2 denotes the forwardT -measure at timeT . The proba-
bilities FQ1

1 andFQ2

2 are two standard normal distributions. We can express these probabilities by
Fourier Transform. The characteristic function ofFQ1

1 andFQ2

2 is given by

φ1(u) = EQ1 [exp(iuX(T )] = EQ[g1(T ) exp(iuX(T )]

φ2(u) = EQ2 [exp(iuX(T )] = EQ[g2(T ) exp(iuX(T )]

whereg1(T ) andg2(T ) are two risk-neutral densities at time T. The closed form formula for the
probabilitiesFj, j = 1, 2, is given by (Iacus 2011)

Fj =
1

2
+

1

π

∫ T

0

Re(φj(u))
exp(−iu lnK)

iu
du, j = 1, 2. (1)

Writing probability through the characteristic function is equivalent to writing through its density
function. The one to one correspondence between a characteristic function and its distribution
guarantees a unique form of the option pricing formula (Zhu 2010).

3. STOCHASTIC VOLATILITY MODELS

Stochastic volatility models provide a natural way to capture the volatility smile by assuming that
volatility follows a stochastic process. The stochastic process to model volatility should be station-
ary with some possible features such as mean reverting, correlation and stock dynamics.

Heston Model
Model Description
The Heston (1993) model is the first stochastic volatility model with the utilization of characteristic
functions. It models stochastic variance rather than stochastic volatility. The risk-neutral dynamics
is given by following the stochastic differential equations

dS(t)

S(t)
= rdt+

√

V (t)dW1(t)

dV (t) = κ(θ − V (t))dt+ σ
√

V (t)dW2(t)

dW1(t)dW2(t) = ρdt

The parameterθ is the long-term level variance which gradually converges toV (t). The parameter
κ is the speed of variance reverting toθ. The parameterσ is referred to as the volatility of variance.
If κ, θ andσ satisfy the following condition2κθ > σ2, whereV0 > 0, then the varianceV (t) is
always positive and the variance process is well defined. This condition is referred to as the Feller
condition for a square root process.
Characteristic Functions

φ1(u) = exp[iu(X0 + rT )− s21(V0 + κθT ) + A1(T )V0 + A2(T )]

φ2(u) = exp[iu(X0 + rT )− s22(V0 + κθT ) + A3(T )V0 + A4(T )]
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Schöbel and Zhu Model
Model Description
Scḧobel and Zhu (1999) extended the Stein-Stein stochastic volatility model in more general case
using a mean reverting Ornstein-Uhlenbeck process. The advantage of a OU-process is that it is a
Gaussian process and has nice analytical tractability. They provide analytical option prices using
the following stochastic differential equations

dS(t)

S(t)
= rdt+ ν(t)dW1(t)

dν(t) = κ(θ − ν(t))dt+ σdW2(t)

dW1(t)dW2(t) = ρdt

Here, we model the volatility, not the variance. The volatility process is mean-reverting with mean
level θ and reverting parameterκ. The parameterσ is the volatility of volatility and controls the
variationν(t).
Characteristic Functions

φ1(u) = exp[iu(X0 + rT )− ρ

2σ
(1 + iu)ν2

0 −
1

2
(1 + iu)ρσT +

1

2
A5(T )ν02 + A6(T )ν0 + A7(T )]

φ2(u) = exp[iu(X0 + rT )− ρ

2σ
(1 + iu)ν2

0 −
1

2
(1 + iu)ρσT +

1

2
A8(T )ν02 + A9(T )ν0 + A10(T )]

4. STOCHASTIC INTEREST RATE MODELS

In this section, we discuss two stochastic interest rate models that follow the same stochastic pro-
cess as the stochastic volatility models in the previous section. These stochastic interest rate models
are directly incorporated in the option pricing framework using characteristic functions. Here, we
focus on only single factor short rate models, the Cox et al. (1985) model and the Vasicek (1977)
model which are again specified by a mean reverting square root process and the mean reverting
Ornstein-Uhlenbeck process respectively.

The Cox-Ingersoll-Ross Model
Model Description
The Cox et al. (1985) model first time modelled interest rate using a square root process. The
model is described by the following stochastic differential equations

dS(t)

S(t)
= r(t)

(

1− 1

2
ν2

)

dt+ ν
√

r(t)dW1(t)

dr(t) = κ[θ − r(t)] + σ
√

r(t)dW3(t)

dW1(t)dW3(t) = ρdt

Characteristic Functions

φ1(u) = E

[

exp

(

iuX0 − s11

∫ T

0

r(t)dt+ s12r(T )− s12(r0 + κθT )

)]
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φ2(u) = E

[

exp

(

X0 − lnB(0, T, r0)− s21

∫ T

0

r(t)dt+ s22r(T )− s22(r0 + κθT )

)]

Vasicek Model
Model Description
The drawback of modelling interest rate as a square root process in option pricing is that we need an
alternative stock price process if the correlation between stock prices and interest rate is available.
The Vasicek (1977) model where short rates are governed by mean reverting Ornstein-Uhlenbeck
process overcomes this drawback. The pricing dynamics is governed by the following stochastic
differential equations

dS(t)

S(t)
= r(t)dt+ ν

√

r(t)dW1(t)

dr(t) = κ[θ − r(t)] + σdW3(t)

dW1(t)dW3(t) = ρdt

Characteristic Functions

φ1(u) = exp

(

iuX0 −
iu+ 1

2
ν2T − (iu+ 1)νρ

σ
(r0 + κθT ) +

1

2
(iu+ 1)2ν2(1− ρ2)T

)

×E

[

exp

(

−s11

∫ T

0

r(t)dt+ s12r(t)

)]

φ2(u) = exp

(

iuX0 −
iu

2
ν2T − s22(r0 + κθT )− 1

2
u2ν2(1− ρ2)T − lnB(0, T )

)

×E

[

exp

(

−s21

∫ T

0

r(t)dt+ s22r(T )

)]

5. POISSON PROCESS JUMP MODELS

To model jump events in the market, we need two quantities: jump frequency and jump size. The
former specifies how many times jumps happen in a given time period and the latter determines
how large a jump is if it occurs. Here we discuss option pricing models with simple jumps and
lognormal.

Simple Jump Model
Model Description
The dynamics of a stock price with pure jumps is given by

dS(t)

S(t)
= [r(t)− λJ ]dt+ ν(t)dW1(t) + JdY (t)

whereλ denotes the jump intensity andJ is the jump size. Our concern is to show what the
jump contributes to the characteristic function. Here, we assume that volatility and interest rate are
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constant. IfX(t) = ln(S(t)) then,

dX(t) =

(

r − 1

2
ν2 − λJ

)

dt+ νdW1 + ln(1 + J)dY (t)

Characteristic Functions

φ1(u) = exp(iu(X0 + rT )− (1 + iu)(
1

2
ν2 + λJ)T +

1

2
(1 + iu)2ν2T + λTe(1+iu) ln(1+J) − λT )

φ2(u) = exp(iurT + iuX0 − iu(
1

2
ν2 + λJ)T +

1

2
(1 + iu)2ν2T + λTeiu ln(1+J) − λT )

Lognormal Jump Model
Model Description
The stock price dynamics is given by

dX(t) =

[

r(t)− λµJ − 1

2
ν2(t)

]

+ ν(t)dW1 + ln(1 + J)dY (t)

If jump sizeJ is lognormally distributed and Brownian motionW1, the Poisson processY and
jump sizeJ are mutually stochastically independent, then

ln(1 + J) ∼ N

[

ln(1 + µJ)−
1

2
σ2
J , σ

2
J

]

, µJ ≥ −1

whereµJ is the mean ofJ andσ2
J is variance ofln(1 + J).

Characteristic Functions

φ1(u) = exp(iu(rt+X0)− (1 + iu)λTµJ +
1

2
iu(1 + iu)ν2T + λT [(1 + µJ)

(1+iu)e
1

2
iu(iu+1)σ2

J − 1])

φ2(u) = exp(iu(rt+X0)− iuλTµJ +
1

2
iu(1 + iu)ν2T + λT [(1 + µJ)

iue
1

2
iu(iu−1)σ2

J − 1])

The probabilitiesFj can be calculated using formula (1) and we calculate option prices for each
affine model by using the following formula (Iacus 2011):

C(K,T ) = SF1 −Ke−rTF2 (2)

6. DATA DESCRIPTION AND PARAMETER ESTIMATION

We use data from the India VIX, MIBOR and NIFTY Index to estimate model parameters. The
source of the data is the National Stock Exchange (NSE), India and the data period is from March
1, 2009 to March 31, 2012. The method of parameter estimation is taken from Iacus (2008) and
the model parameters are estimated using R-Packages SDE (Iacus 2009) and Yuima (Iacus 2010).
Table 1 describes the estimated model parameters. Theoretical option prices are calculated using
the method described in Carr and Madan (1999) and numerical values are obtained using the
modified and extended Matlab codes given by Kienitz and Wetterau (2012). Table 2 explains the
calculated option prices for different strike prices.
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Models S = 4000 T = 1 r0 = 0.051 ν0 = 0.43
Heston κ = 3.12 θ = 0.041 σ = 0.11 ρ = −0.81
Shobel-Zhu κ = 3.09 θ = 0.211 σ = 0.10 ρ = −0.81
CIR κ = 2.01 θ = 0.051 σ = 0.10 ρ = 0
Vasicek κ = 2.04 θ = 0.052 σ = 0.10 ρ = 0
Simple λ = 0.25 µ = 0.19 σ = 0.09 -
Lognormal λ = 0.20 µ = 0.19 σ = 0.08 -

Table 1: Estimated model parameters

Models K = 3800 K = 3900 K = 4000 K = 4100 K = 4200
BS 318.18 257.23 205.55 159.81 122.71
Heston 318.51 257.91 205.84 159.19 122.01
Schobel-Zhu 319.17 258.18 206.19 159.17 121.81
CIR 319.07 258.03 205.55 159.81 121.71
Vasicek 319.15 258.11 205.64 159.71 122.11
Simple 318.28 258.36 206.53 158.24 121.17
Lognormal 318.17 258.48 206.71 159.21 122.80

Table 2: Theoretical option prices

7. CONCLUSIONS

We incorporate each stochastic factor like stochastic volatility, stochastic interest rate and jumps
in stock prices individually as a risk factors in the traditional Black-Scholes framework. Further,
we estimate the model parameters on real data and calculate the theoretical option prices for our
analysis. The option prices using the above discussed models are calculated with the estimated
parameters. Now, we can conclude which models are able to generate more skewness than the
Black and Scholes (1973) model. Both the Heston (1993) model and Schöbel and Zhu (1999)
model with negative correlation (stock prices and volatility) produces higher prices for ITM options
and lower prices for OTM options. This implies that both stochastic models can generate a down
sloping smile. Also, we can see that adding a stochastic factor to the Black and Scholes (1973)
model produces higher prices in most of the cases. This can be seen as adding an additional
risk factor in the model implies more premium. This approach can be extended to more complex
options as long as the characteristic function is known.
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Abstract

The pension rules link the amount of the future pension to the contributions during the working
period. So, in case the pension rules are not actuarial, they induce an implicit tax. In this paper,
we evaluate the implicit marginal tax resulting from the legislation on pensions in France. We
formulate the analytical expressions of this tax and estimate them as a benchmarking example
for a single man, born in 1952 with a full career.

1. INTRODUCTION

Contributions to Pay-As-You-Go pension schemes are included in the tax burden along with VAT
or income tax. However, the computation rules of pensions rely on contributory principles (De-
volder (2005)) that tend to make the benefits received conditional on contributions paid. Hence,
considering pension contributions as pure taxes is excessive. Following the study by Feldstein
and Samwick (1992) for the United States, we evaluate the fiscal nature of pension contributions
for France, by calculating the induced net marginal rate. Explicitly, it consists in using actuarial
methods to measure the future amount of additional pension induced by each euro of additional
wage.

First, we derive an analytical expression for the implicit marginal tax rate resulting from the
specific computation rules of pensions for private employees.

Second, we estimate the implicit marginal tax rate for a man, single, born in 1952 with a
complete career, who started working at 21 and retires now at 61.
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2. ANALYTICAL EXPRESSIONS

We use actuarial methods, likely present value (LPV) and mortality tables, to estimate the tax
consequences of a marginal and instantaneous wage increase. The consequences are twofold:

• In the short run, the contribution is the marginal cost.
At age x, this marginal cost τx can be obtained by taking the derivative of the LPV of payroll
taxes with respect to the current wage:

∆LPVx (payroll taxes)
∆wx

=
∆

∆wx

(
R−1∑
y=x

qy,x
Ry,x

· τy · wy

)
= τx ,

where wx is the wage at age x, qy,x is the survival probability between age x and y (y ≥ x),
Ry,x is the factor of interest between age x and y (y ≥ x), and R denotes the age of the start
of the pension.

• In the long run, the gain is the increase of anticipated pensions.
At age x, this marginal gain can be obtained by taking the derivative of the LPV of pensions
with respect to the current wage:

∆LPVx (pensions)
∆wx

=
∆

∆wx

(
120∑
y=R

qy,x
Ry,x

· py (W, Iy)

)
,

where py(W, Iy) is the pension rule with W a vector of the wages, and Iy is a vector of
institutional parameters prevailing at age y.

The French Pension System relies on two pillars.

1. The first pillar is a defined benefit paid by the CNAV (Caisse Nationale d’Assurance Vieil-
lesse). CNAV’s computation formula is given by Legros (2006), Bozio (2006):

pR (w, IR) = ρ (R, d, dpro., dcl.) ·

 1

N
·

∑
wx∈Nbest years

λx,R · min (wx, SSCx)

 , (1)

where

ρ (R, d, dpro., dcl.) = 0.5 × min
(

1, d
dpro.

)
×
(
1 − α1 × max

(
0,min

(
(65 −R) × 4, db/m − d

))
+α2 × max

(
0,min

(
(R− 60) × 4, d− db/m

)))
.

Here, d is the number of quarters validated, “N best years” denotes the set of the N highest
discounted wages, SSCx is the ceiling basis for social security, λx,R is an updating coefficient of
past wages, dpro. and db/m are the durations used for pro rata computation and bonus/malus rates,
respectively, N = 25 years is the number of best wage-earning years set for the computation of the
average wage, α1 is a penalty (malus) discount factor and α2 is a reward (bonus) discount factor,
equal to 1.25% for each exceeding quarter from January 1st, 2009.
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The marginal tax rate for a single worker (no reversion pension) can be obtained as

τmarg,x = τx − ρ (.) · qR,x

RR,x

·
1best years · 1wx<SSCx

1 + τ emp
x

· λx,R
N

· äR , (2)

with τx = τSSCx · 1wx<SSCx + τ totwag
x , where τ emp

x is the payroll tax rate paid by the employer
and τSSCx and τ totwag

x are the contribution rates applying to the fraction of wage lying below the
CNAV ceiling (SSCx) and the whole wage, with äR the value of 1 euro pension annuity perceived
from age R, indexed by legal factor Ipy,R, and with ρ (.) the replacement rate. The expression also
contains two dummies: the dummy 1best years takes the value 1 if the wage belongs to the 25 “best
wage-earning years”, and the dummy 1wx<SSCx takes the value 1 if the wage lies below the ceiling.

2. The second pillar is a defined contribution —notional (point) accounts— paid by the ARRCO
and/or the AGIRC1. All workers of the private sector pay a contribution to ARRCO for the part
of their wage below the SSC. The blue collars (resp. white collars) pay a contribution to ARRCO
(resp. AGIRC) for the part of their wage beyond the SSC. The amount of pension depends on the
number of points accumulated at the date of the liquidation of the pension plan, see Legros (2006):

pR(W, IR) = ρ (.) ·
R−1∑
y=D

τy · wy

vbuyx

· vannx . (3)

with vbuyx the buying price of one point and vannx the annuity value of one point. The coefficient ρ(.)
depends on the number of missing quarters compared either to the legal insurance period defined
by the CNAV or to the age for which the length of insurance is not taken into account. The marginal
tax rate can be written as

τmarg,x = τx ·
(

1 − ρ(.) · qR,x

RR,x

· v
ann
R

vbuyx

· äR
)
. (4)

3. COMPUTATION

The benchmark case is a single man born in 1952 with a complete career, who started working at
21 and retires now at 61. Notice that, obviously, no benefits accruing from the reversion pension
need to be considered here. People born in 1952 will retire when they are 60 years and 8 months.
People born in January 1952 will be allowed to retire from September 2012. Full pension will
require 41 years of activity. In our computations, we consider an occupational activity starting at
21 and going on without interruption for 41 years. Retirement age is then reached on the 62nd
birthday, which is on January 1st, 2014.

For our prospective analysis, we assume the contribution rates to be constant. To calculate
the future values of the points of the supplementary pension plans, we impose that the ratio buying
value / liquidation value keeps its trend value. The updating rate of wages and pensions is supposed
to be 2% (i.e. long term inflation rate). The discount rate is 4%. We use the TGH/TGF05 mortality
tables, which are the prescribed tables for annuities in France.

1Association pour le régime de retraite complémentaire des salariés (ARRCO), Association générale des institu-
tions de retraite des cadres (AGIRC).
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Figure 1: Marginal tax rate of pension contribution for each pillar, with the age on the horizontal
axis and the tax rate as a percentage on the vertical axis.

For wages that both lie below the CNAV ceiling (fraction A) and belong to the set of the 25 best
wage-earning years, the marginal rate induced by the basic pension regime follows an increasing
trajectory with age, from age 21 (−1.45%) to 28 (3.3%). As shown in Figure 1a, the marginal rate
is nil about age 38 and rapidly decreases afterwards to reach −17.2% at 61. For wages that lie
below the CNAV ceiling without belonging to the 25 best wage-earning years, the marginal rate is
exactly equal to the contribution rate. It keeps on increasing until age 39, reaching 11.8%, whereas
it is 6.3% at 21. The setting, in 1990, of a CNAV contribution rate on the overall gross wage has
a very moderate effect because the contribution rate for the fraction under the CNAV ceiling was
lowered. For the basic pension regime, the range of the marginal rate is wide, since the latter can
reach 11.8% for the wages of the “bad years” and drop as low as −17.2% for the wages of the “25
best years”. As to the wages that are above the CNAV ceiling, the marginal rate is zero until age
38. It is slightly above 1% at age 39 and reaches 1.2% about age 53.

Regarding the supplementary pension plan ARRCO (fraction A of wage), the profile of the
marginal rate is slightly modified (Figure 1b). The additional marginal rate is stable and positive
at the beginning of the career, where it fluctuates around 1.3% until age 31. This stability is due
to the increase of the contribution rate. Afterwards, the marginal rate decreases to stabilize again
around 0.1% from age 43 on. This new period of stability is a direct effect of the “repurchase
rate” on the contributions, which considerably reduces the purchasing power of points through the
contribution. From age 49 on, the marginal rate decreases to reach −1.8% at age 61.

To simplify the presentation of the results, the graph does not show the profile for AGIRC’s
fraction C (between 4 and 8 times the SSCx), because it is very similar to that of fraction B
(between SSCx and 4 times SSCx). Beyond the CNAV ceiling (fraction B of the supplementary
pension plans ARRCO and AGIRC), the contribution profiles are rather stable until age 31, because
of the historical increase of the ARRCO and AGIRC’s contribution rates. Afterwards, the marginal
rate decreases until 38. As for the ARRCO’s fraction A of the wage, the effect of the repurchase
rate applies and the marginal rate stabilizes around 1.5% for ARRCO and 2.6% for AGIRC. This
stabilization results in a decrease of the marginal rate with age such that it becomes negative after
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age 49. The range of fluctuation is less than for the ARRCO’s fraction A: between −2% and 2%
for the AGIRC and between −2% and 1.5% for the ARRCO. The two plans progressively align
with the fraction B with time, which explains why the profiles of the marginal rates are very similar
from age 50 on.

The computation rule applying to the supplementary pensions results in a narrower variation in-
terval for the marginal rates:[−1.8%, 1.5%] for ARRCO (fraction A), [−4.8%, 1.5%] for ARRCO
(fraction B), [−4.8%, 2.9%] for AGIRC (fraction B).
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Figure 2: Marginal tax rate of pension contribution - summary for each wage fraction, with the age
on the horizontal axis and the tax rate as a percentage on the vertical axis.

To summarize the implicit marginal rates for each fraction of wage, we must add all the
marginal rates (Figure 2): rates for the fractions of wage below and beyond the CNAV ceiling,
rates for the ARRCO’s and AGIRC’s fractions A and B. For fraction A (Figure 2a), the ranges are:
[−19%, 4.8%] for the 25 best wage-earning years and [7.1%, 12.6%] otherwise. For fraction B
(Figure 2b), the amplitudes are [−3.5%, 1.8%] for the ARRCO contributors and [−3.6%, 2.9%]
for the AGIRC contributors. A significant increase of all the rates of the B fraction occurs at age
39 due to the setting of a CNAV contribution rate (about 1%) applied to the overall wage without
any right to retirement attached to it.

4. CONCLUSION

Our computations show that pension contributions in France induce distortions, expressed by an
implicit marginal positive or negative taxation of labor, whose amplitude and profile depend on the
pension’s rules parameters and individual characteristics. Unsurprisingly, the implicit marginal tax
rate depends on the computation rules of pensions. The defined benefit system (CNAV) is affected
by a greater distortion than the defined contribution system (ARRCO and AGIRC), because the
former does not take into account all the wages in the computation of the pension.

Among many possible extensions, we suggest the following four:
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1. Our sensitivity analysis would be more accurate if we could use other mortality tables than
the TGH/TGF05, which, being too prudential, underestimates future mortality rates.

2. Another way to assess the heterogeneity among individual careers is to rely on samples of
historical (Koubi (2002)) or prospective (dynamic microsimulation) career histories. The
marginal tax rates could be evaluated according to age and generation, by means of a distri-
bution.

3. Our study focuses on single workers, which restricts the analysis, since the reversion pen-
sions are not taken into account.

4. It could be useful to estimate the likely present value of the costs and benefits induced by an
earlier or later retirement, see Hairault et al. (2005).
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M. Koubi. Eléments de caractérisation des carrières salariales des générations nées entre 1908 et
1980. INSEE Working Paper, F0205, 2002.

F. Legros. NDCs: A Comparison of the French and German Point Systems. In R. Holzmann and
E. Palmer, editors, Pension Reform: Issues and Prospects for Non-Financial Defined Contribu-
tion (NDC) Schemes. The World Bank, 2006.

M.A. Milevsky. The Calculus of Retirement Income: Financial Models for Pension Annuities and
Life Insurance. Cambridge University Press, 2006.

44



FAST ORTHOGONAL TRANSFORMS FOR MULTILEVEL QUASI-MONTE CARLO
SIMULATION IN COMPUTATIONAL FINANCE

Christian Irrgeher†§ and Gunther Leobacher†

†Institute of Financial Mathematics, Johannes Kepler University Linz, Altenbergerstraße 69, 4040
Linz, Austria.
§This author is supported by the Austrian Science Fund (FWF) Project P21943.
Email: christian.irrgeher@jku.at, gunther.leobacher@jku.at

1. INTRODUCTION

Many areas of computational finance, e.g. derivative pricing in a Gaussian model, require the
approximation of the expected value of some functionf depending on ann-dimensional Gaussian
vectorX, i.e.E(f(X)). It is a trivial observation that for every orthogonal transformU : Rn → R

n

the identity

E (f (X)) = E (f (UX))

holds. While this does not change the problem from the probabilistic point of view, it does make a
difference for quasi-Monte Carlo methods.

Introducing an orthogonal matrix is closely related to the construction of discrete Brownian
paths. Assume we are interested inE(g(B)), whereg is some function of a standard Brownian
motionB with index set[0, T ]. To apply simulation methods we have to discretize the problem
such that

E (g (B)) ≈ E (g̃ (Bτ , B2τ , . . . , Bnτ ))

with n ∈ N, τ = T/n and a suitable functioñg : Rn → R. The discrete Brownian path with
covariance matrixΣ = τ (min(j, k))nj,k=1 can be constructed from an standard Gaussian vector by
using ann× n-matrixA with AAt = Σ. Papageorgiou (2002) observed thatAAt = Σ if and only
if A = SU for some orthogonal matrixU and matrixS given by

S = τ
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Thus, every linear construction of(Bτ , . . . , Bnτ ) given byA corresponds to an orthogonal trans-
formU .

There are three classical and well-known methods to construct a Brownian path. The forward
method is given byU = I, the Brownian bridge construction corresponds to the inverse Haar
transform, i.e.U = H−1 withH denoting the matrix of the Haar transform, and the principalcom-
ponent analysis (PCA) construction is related to the singular value decomposition of the covariance
matrixΣ = V D2V t with U = S−1VD. More recent construction methods try to determine an or-
thogonal transform that is tailored to the underlying integration problem, see Imai and Tan (2007)
or Irrgeher and Leobacher (2012).

There are some theories that explain why a suitable orthogonal transform might increase the
efficiency of quasi-Monte Carlo methods, see e.g. Caflisch et al. (1997). However, there is also
a drawback of this approach. In general, the computation of an orthogonal transform requires
O(n2) floating point operations. Therefore we concentrate on fastorthogonal transforms, which are
orthogonal transforms with cost of the orderO(n log(n)). In Leobacher (2012) various examples
of fast orthogonal transforms are studied including the discrete sine and cosine transform as well
as Walsh and Haar transform.

2. MULTILEVEL QUASI-MONTE CARLO INTEGRATION AND THE REGRESSION
ALGORITHM

The expected value can be approximated by an equally weighted quadrature rule

E(f(X)) ≈ 1

N

N
∑

i=1

f(Φ−1(xi)) (1)

whereΦ is the cumulative distribution function of the standard normal distribution and with sample
points{x1, . . . , xN} ⊂ [0, 1)n. If the sample points are elements of a low-discrepancy sequence
(e.g. a Halton sequence or a Sobol sequence), the quadraturerule of (1) is called a quasi-Monte
Carlo method. The efficiency of (quasi-)Monte Carlo methods can be improved both in accuracy
and in computing time by combining different discretization levels, see Giles (2008) and Giles and
Waterhouse (2009).

For ℓ ∈ N0, Xℓ denotes an2ℓ-dimensional Gaussian vector andCℓ is an operator such that
CℓX

ℓ is an2ℓ−1-dimensional Gaussian vector. Assume that we want to compute the expected value
of a functionfL : R2L → R with L ∈ N0. Furthermore, we assume that at each discretization level
ℓ = 0, . . . , L−1 there exists a functionf ℓ : R2ℓ → R with E(fL(XL)) ≈ E(f ℓ(Xℓ)). The main
idea of multilevel quasi-Monte Carlo methods is to use the identity

E
(

fL
(

XL
))

= E
(

f 0
(

X0
))

+
L
∑

ℓ=1

E
(

f ℓ
(

Xℓ
)

− f ℓ−1
(

CℓX
ℓ
))

(2)

and compute each of these expected values of the right hand side with quasi-Monte Carlo sepa-
rately. This approach becomes useful if the expected valuescan be approximated to the required
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level of accuracy using less function evaluations for bigger ℓwhile the costs per function evaluation
increases.

In Irrgeher and Leobacher (2012) a method to determine a fastorthogonal transform tailored
to the underlying integration problem is presented for square-integrable functionsf of the form
f(X) = g(h1(X), . . . , hm(X)) with g : Rm → R, hk : Rn → R, k = 1, . . . ,m andm ≪ n.
Every functionhk is approximated by an affine function using a “linear regression” approach. For
that we minimize the functional

E

(

(

hk(X)− atkX − bk
)2
)

,

whereak ∈ R
n and bk ∈ R. The first order conditions are given byak,j = E (Xjhk(X))

and bk = E (hk(X)) with j = 1, . . . , n and k = 1, . . . ,m. So we get the approximation
f(X) ≈ ḡ(X) := ¯̄g (at1X, . . . , a

t
mX) and Wang and Sloan (2011) noted that there exists an or-

thogonal transformU such that̄g ◦ U is at mostm-dimensional. This orthogonal transformU can
be determined as a product of at mostm Householder reflections and each Householder reflection
can be applied inO(n).

Regression Algorithm: Let f be of the formf(X) = g(h1(X), . . . , hm(X)) whereX is a stan-
dard Gaussian vector.

1. Start withk, ℓ = 1 andU = I;

2. ak,j := E(Xjhk(UX)) for j = k, . . . , n;

3. ak,j := 0 for j = 1, . . . , k − 1;

4. if ‖ak‖ = 0 go to 7;

5. else letUℓ be a Householder reflection that mapseℓ to ak/‖ak‖;

6. U = UUℓ; ℓ = ℓ+ 1;

7. k = k + 1;

8. whilek ≤ m, go back to 2;

9. ComputeE(f(UX)) using QMC.

Note that the algorithm is practicable if theak,j can be computed efficiently. Moreover, it
can be applied to multilevel quasi-Monte Carlo quite well. Therefore, we assume thatf ℓ(X) =
ψℓ(hℓ(X)) for all ℓ = 1, . . . , L. Rewriting identity (2) gives

E
(

fL
(

XL
))

= E
(

f 0
(

X0
))

+
L
∑

ℓ=1

E
(

gℓ
(

hℓ1
(

Xℓ
)

, hℓ2
(

Xℓ
)))

with hℓ1 = hℓ, hℓ2 = hℓ−1 ◦ Cℓ and gℓ(y1, y2) = ψℓ(y1) − ψℓ−1(y2). If we apply orthogonal
transformsU ℓ : R2ℓ → R

2ℓ at each level, we get

E
(

fL
(

XL
))

= E
(

f 0
(

X0
))

+
L
∑

ℓ=1

E
(

gℓ
(

hℓ1
(

U ℓXℓ
)

, hℓ2
(

U ℓXℓ
)))

.

Applying the regression algorithm we obtain for each levelℓ a suitable orthogonal transform of
the formU ℓ = U ℓ

1U
ℓ
2 with Householder reflectionsU ℓ

1 andU ℓ
2, whereU ℓ

1 corresponds to the fine
discretization andU ℓ

2 corresponds to the coarse discretization.
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3. ASIAN OPTIONS - A NUMERICAL EXAMPLE

We consider an Asian call option with arithmetic average andwant to price the option in the Black-
Scholes model using multilevel quasi-Monte Carlo simulation. For the time discretization with2ℓ

points,ℓ ∈ N0, the payoff functionf ℓ : R2ℓ → R is given by

f ℓ(Xℓ) = max

(

1

2ℓ

2ℓ
∑

k=1

Sk(X
ℓ)−K, 0

)

with a fixed strike priceK. Under the risk-neutral measure the discrete path of the stock price
processS is given by

Sk(X
ℓ) = S0 exp

((

r − σ2

2

)

k
T

2ℓ
+ σ

√
τ

k
∑

i=1

Xℓ
i

)

with interest rater and volatility σ. The payoff function can be written asf ℓ = gℓ ◦ hℓ with
gℓ(y) = max(y − K, 0) andhℓ(Xℓ) = 1

2ℓ

∑2ℓ

k=1 Sk(X
ℓ). Thus, the regression algorithm can be

used to determine the orthogonal transform at each discretization level with2ℓ points. It requires
the efficient computation of the vectorsaℓ1, a

ℓ
2. This can be done analytically and we get

aℓ1,j = E

(

Xjh
(ℓ)
1

)

=
2ℓ
∑

k=j

S0 σ

2ℓ

√

T

2ℓ
exp

(

rkT

2ℓ

)

,

aℓ2,j = E

(

Xjh
(ℓ)
2

)

=
2ℓ−1

∑

k=⌊ j−1

2
⌋+1

S0 σ

2ℓ−1

√

T

2ℓ
exp

(

rkT

2ℓ−1

)

with j = 1, . . . , 2ℓ.
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Figure 1: Asian call option. Comparison of the sample standard deviation (left) as well as the
computing time (right) based on 1000 runs for different construction methods.
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In the numerical analysis we compare the multilevel QMC method combined with the re-
gression algorithm with multilevel Monte Carlo and multilevel quasi-Monte Carlo with forward
construction and PCA, respectively. Therefore, we choose the parametersr = 0.04, σ = 0.3,
K = 100, S0 = 100 andT = 1. At the finest level we start with210 discretization points, i.e.
L = 10 and the number of sample points are doubled at each level starting withNL sample points
at the finest levelL. For the QMC approaches we take a Sobol sequence with a randomshift.
In Figure 1 we compare for different values ofNL both the sample standard deviation and the
computing time of the price of the Asian call option based on 1000 independent runs. As we can
see, the regression algorithm yields the lowest standard deviation, but the average computing time
of the regression algorithm is slightly worse than the forward method. However, the regression
algorithm is better than the PCA construction measured in both standard deviation and computing
time.
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1. INTRODUCTION

Insurance companies and pension funds are exposed to mortality risk and hope for the development
of a liquid and transparent longevity-linked capital market. Active trading of mortality derivatives
would help them assessing and hedging the risks they are exposed to, in the same manner as
financial markets help them mutualize financial risks. Mortality-risk appraisal consisting in an
accurate but easy-to-handle description of human survivorship is fundamental in this respect. In
spite of this need, no consensus has been reached yet on the best way to model mortality risk.

In situations where we need to combine the appraisal of mortality and financial risk, the adop-
tion of a continuous–time approach proves useful. In addition, the motivation for adopting a
continuous-time description can be found in the search for closed-form evaluation formulas for
insurance products and their derivatives.

Continuous-time stochastic mortality models for single generation have been considered by
a number of researchers, including Milevsky and Promislow (2001), Dahl (2004), Biffis (2005),
Cairns et al. (2006), Schrager (2006) and Luciano and Vigna (2008). A theoretical extension of the
continuous-time single-generation model to the mortality surface appears in Biffis and Millosso-
vich (2006) and is followed by Blackburn and Sherris (2012) who make the assumption of perfect
correlation across generations and also focus on the calibration aspect.

In order to reconcile the calibration of the whole mortality surface with actuarial practice,
which suggests high but not perfect correlation, we fit in Jevtić et al. (2013) the mortality surface
by means of a continuous-time cohort model that is able to capture correlations across generations.
As a relevant consequence, this model provides the actuary with a calibrated correlation among
generations rather than a “best estimate” one. Given the same initial age, the intensities of several
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generations are written in terms of factors, identified via PCA. The Differential Evolution (DE)
algorithm is a robust stochastic search and optimization algorithm which already proved its use
across a wide range of engineering applications. In Jevtić et al. (2013), we use it to fit the mortality
surface with an extreme precision and discover that the fitted parameters are robust, stable and lead
to correlations across generations that are high but less than one. We report here the main results,
the interested reader is referred to Jevtić et al. (2013) for more details.

2. SIMPLE APC MODEL

2.1. MODEL

Stochastic mortality of a given generation is described by means of a Cox process, as in Biffis
(2005). To give the reader a flavor of the results obtained in the paper Jevtić et al. (2013), we
present without derivation our two factor Simple Age-Period-Cohort (APC) model where we define
mortality intensity for each cohort i from the set of cohorts under consideration such that

µi(t)
def
= X1(t) +X i

2(t),

having

dX1(t) = ψ1X1dt+ σ1dZ1(t),

dX i
2(t) = ψ2X2dt+ σ2ρ

idZ1(t) + σ2
√

1− (ρi)2dZ2(t),

where ψ1, ψ2 ∈ R, σ1, σ2 ∈ R+,ρ ∈ [−1, 1] and Z1(t) and Z2(t) are orthogonal BMs. In this
setting, the survival probability to time τ , for a life aged x at time t = 0, is given by

Si(0, τ) = E
[
e−

∫ τ
0 µi(s)ds

]
,

which gives rise to the analytical solution (c.f. Duffie et al. (2000))

Si(0, τ) = eα̂
i(τ)+β̂1(τ)Xi

1(0)+β̂2(τ)X
i
2(0),

where we have for j in {1, 2},

β̂j(τ) = −
∫ τ

0

eψj(τ−s)ds =
1

ψj

(
1− eψjτ

)
and

α̂i(τ) =
2∑
j=1

σ2
j

2ψ3
j

(
ψjτ − 2eψjτ +

1

2
e2ψjτ +

3

2

)

+
ρiσ1σ2
ψ1ψ2

(
τ − eψ1τ

ψ1

− eψ2τ

ψ2

+
e(ψ1+ψ2)τ

ψ1 + ψ2

+
ψ2
1 + ψ1ψ2 + ψ2

2

ψ1ψ2(ψ1 + ψ2)

)
.

A relevant feature of our model is that it enables the derivation of formulas for instantaneous
correlations among mortality intensities of different generations.
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2.2. CALIBRATION

We consider the male population of the United Kingdom. Our data set consists of cohort death
rates for a life aged x = 40, which we examine until they have reached the age of 59 having
τ = 1, . . . , 19. The generations i span from 1900-1950, with a 5-year increment.

In this model, four parameters are common to all generations, denoted by [ψ1, ψ2, σ1, σ2], and
three parameters are specific to each generation, denoted by [ρi, X i

1(0), X
i
2(0)]. Since intensity is

Gaussian distributed and thus and can become negative with a positive probability, we a priori set
this probability to be maximum 1%, and during calibration procedure, along common, we calibrate
only two parameters [ρi, X i

1(0)] specific to each generation.
To calibrate our model, we use the Differential Evolution algorithm, a stochastic search and

optimization method which we adapt in order to suite the unique needs of our setting.

2.3. RESULTS

The residuals plot for the entire region demonstrates that the quality of calibration is exceptionally
high as can be seen in Figure 1. Apart from one observation, all residuals stay in the range [−2×
10−3, 2× 10−3]. Moreover, no structural patterns can be observed.

Figure 1: Calibration residuals plot

The constraint of 1% on the probabilities of negative intensities is respected for all relevant
durations τ ∈ {1, 2, ..., 69} and for all relevant generations. In most cases, it is well below this
level which can be observed in Figure 2.

In Figure 3, we can see the forecasting error is remarkably small and even below 1% for in-
sample data. However, it increases up to 26% for out-of-sample data in case of τ = 40 and has the
tendency of an increase afterwards. This is in accordance with the existing literature.

In Figure 4, we plot the survival curve at time S(1, τ), for generation 1950, as a function of τ .
The stochastic mortality framework is characterized by the fact that at t = 0 – when the calibration
is performed – the survival curve which will apply one year later, at t = 1, is a random variable.

According to this formula, 100,000 simulations are made and we report of them the median
(green line), the 5th percentile (red line) and the 95th percentile (blue line) as functions of τ .
The figure also shows the survival probabilities as observed one year later (dots). The in-sample
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Figure 2: Probability of negative mortality intensities surface

Figure 3: Percentage Absolute Relative Error of Survival Probability Surface

forecasting is very accurate. Almost all the survival probabilities lie on the median (or very close
to it), and therefore they stay in the 90% confidence interval.

In Table 1, we observe that the instantaneous correlations among mortality intensities of dif-
ferent generations are positive and high, which is in accordance with actuarial intuition. They stay
between 0.94 and 1.00 and, as expected, tend to decrease with the difference in years of birth. To
the best of our knowledge, this is the first research that provides the actuary with a calibrated and
sensible correlation of mortality intensity among different generations.

3. CONCLUSIONS

This paper is a first attempt to construct an effective cohort-based continuous-time factor model
of the mortality surface. We cast the model first in the affine framework, and specialize it then to
Ornstein-Uhlenbeck factors. The resulting longevity intensity model extends the G2++ interest-
rate model, since the factors have different weights for each generation. The main novelty of
the model with respect to existing literature is that it allows for imperfect correlation of mortality
intensity across generations.

The model is implemented on UK data for the generations born between 1900 and 1950, using
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Figure 4: Survival probability curve at t = 1 S(1; τ) for generation 1950

1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950
1900 1.0000
1905 0.9601 1.0000
1910 0.9497 0.9993 1.0000
1915 0.9489 0.9992 0.9999 1.0000
1920 0.9515 0.9995 0.9999 0.9999 1.0000
1925 0.9491 0.9993 0.9999 1.0000 0.9999 1.0000
1930 0.9496 0.9993 1.0000 0.9999 0.9999 0.9999 1.0000
1935 0.9584 0.9999 0.9995 0.9994 0.9997 0.9995 0.9995 1.0000
1940 0.9693 0.9993 0.9975 0.9973 0.9979 0.9973 0.9975 0.9991 1.0000
1945 0.9961 0.9810 0.9735 0.9729 0.9749 0.9731 0.9735 0.9798 0.9872 1.0000
1950 1.0000 0.9601 0.9497 0.9489 0.9515 0.9491 0.9496 0.9584 0.9693 0.9961 1.0000

Table 1: Table of correlations

HMD data for the period 1900-2008. On these data, two factors are deemed as a reasonable first
choice. Calibration by means of stochastic search and the Differential Evolution optimization
algorithm proves to produce small errors and yields robust and stable parameters. Standard criteria
desirable for a model of the mortality surface are satisfied.

The calibration confirms that correlation across generations is very high but smaller than one.
Up to our knowledge, this is the first calibration of the correlation among mortality intensities of
different generations in the academic literature. The calibrated correlations turn out to be sensible
and intuitive. The possibility of capturing these correlations is owed to the combination of a
generation-based model and DE driven calibrations, and is our major contribution.
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1. INTRODUCTION

Annuity providers are exposed to longevity risk – i.e. the risk of unexpected improvements in the
survivorship of their insureds – as well as to financial risks on both assets and liabilities, as soon
as the latter are fairly evaluated. In this paper, we aim at discussing the optimal management of
such risks, when they are tackled together in an asset-liability model. In particular, we are inter-
ested in analysing whether an annuity provider should better transfer systematic longevity risk to
a reinsurer or a special purpose vehicle - as most of the recent deals do - or remaining exposed to
it, while saving on the costs of the transfer. We assess this trade-off in a model which allows us to
obtain closed-form expressions for the expected financial return of the fund and its risk, measured
through a value-at-risk measure. For the sake of simplicity we use first-order approximations and
show that, if the transfer is fairly priced and the aim of the fund is to maximize returns, the funds’
alternatives can be represented in the plane expected return-VaR. We build a risk-return frontier,
along which the optimal transfer choices of the fund are located. We disentangle the demographic
and financial component of the overall funds’ risk.
Our paper departs from the literature on optimal longevity transfers (Biffis and Blake (2010), Bar-
rieu and Louberǵe (2013)) because we explore the choice of the fund in the context of an ALM
model. Delong et al. (2008) studied the asset allocation problem of a pension fund in the accu-
mulation phase in the presence of systematic mortality. Most of the papers analyzing the asset
management of pension funds, instead, focused on idiosyncratic mortality risk, but neglected its
systematic component (Hainaut and Devolder (2007), Battocchio et al. (2007)). Our paper focuses
on the transfer of this systematic (or aggregate) risk, given that previous works (Hari et al. (2011))
found it to be far more important than the idiosyncratic one in large and well-diversified portfolios.
More details and an application to UK data can be found in Luciano and Regis (2012).
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2. SET UP

We consider a stylized ALM model of a pension fund which has issued a single annuity on a head
agedx. The fund can either

• transfer demographic risk to a reinsurer - which in turn hedges and prices it fairly - or

• suffer it without hedging.

At the same time, the fund can invest its collected premiums either in bonds or keep them as cash.
It is supposed to maximize expected financial returns. We assume that hedging of demographic
risk on the part of the reinsurer and measurement of financial risk on the part of the fund is done up
to first-order discrepancies between actual and forecasted interest and survival rates. We perform a
Delta analysis, but extension to second order hedges, or Delta-Gamma hedging, is quite obvious. In
order to make measurement and management of demographic and financial risk feasible in closed
form, we place ourselves in a standard, continuous-time framework. Consider a time intervalT =
[0, T ] , T < ∞, a complete probability space(Ω,F ,P) and a multidimensional standard Wiener
W (ω, t) , t ∈ T . The space is endowed with the filtration generated byw, Fw = {Ft}. We adopt
a stochastic extension of the classical Gompertz law for mortality description and we stick to the
Hull-White model for interest-rate risk, as in Luciano et al. (2012a). For what concerns longevity
risk modelling, we assume that the death of an individual belonging to a generationx is the first
jump time of a Poisson process with stochastic intensityλx(t), which has the following dynamics:

dλx(t) = axλx(t)dt+ σxdWx(t),

whereax > 0, σx ≥ 0, Wx is a standard one-dimensional Brownian motion inW . On top of being
parsimonious, the model provides a closed-form expression for the survival probability of headx
at any point in timet and up to any horizonT :

Sx(t, T ) =
Sx(0, T )

Sx(0, t)
exp [−Xx(t, T )Ix(t)− Yx(t, T )] ,

where

Xx(t, T ) :=
exp(ax(T − t))− 1

ax
,

Yx(t, T ) := −σ2
x [1− exp (2axt)]Xx(t, T )

2

4ax
,

Ix(t) := λx(t)− fx(0, t).

andIx(t) - the difference between the actual mortality intensity of generationi at timet and its
forward value or forecast at time0, fx(0, t) - is what we interpret as themortality or demographic
risk factor. It is the discrepancy between realization and forecast which makes the pension fund
exposed to mortality risk.
For what concerns financial risk, we choose the standard Vasicek model for interest rates. The spot
rate has the following dynamics under a measureQ equivalent toP:

dr(t) = g(θ − r(t))dt+ ΣdWF (t),
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whereθ, g > 0,Σ > 0 andWF is a univariate Brownian motion independent ofWx(t) for all t.
The corresponding zero-coupon bond price - if the bond is evaluated at timet and has maturityT
- is

B(t, T ) =
B(0, T )

B(0, t)
exp

[

−X̄(t, T )K(t)− Ȳ (t, T )
]

,

where

X̄(t, T ) :=
1− exp(−g(T − t))

g
,

Ȳ (t, T ) :=
Σ2

4g
[1− exp(−2gt)] X̄2(t, T ),

K(t) := r(t)− R(0, t).

K(t) is thefinancial risk factor, akin to the demographic factorIx(t). As in the longevity case,
the financial risk factor is the difference between actual and forecasted rates for timet, where the
forecast is done at time0. It is the only source of randomness which affects bonds.

3. PORTFOLIO RISKS AND DEMOGRAPHIC RISK TRANSFER

Consider an annuity issued on an individual of generationx. Make the annuity payment per period
equal to one. The fair price of the annuity - which lasts until the extreme ageω - is

V A
i (t) =

ω−x
∑

T=t+1

Si(t, T )B(t, T )

at timet ≥ 0. It can be shown (see Luciano et al. (2012b)) that the change on the fair value due to
changes in the longevity risk factor can be approximated up to the first order as follows:

∆V AM
x (t) = ∆M

A (t)∆Ix(t),

where the Delta is

∆M
A (t) = −

ω−x
∑

u=t+1

B(t, u)Sx(t, u)Xx(t, u) < 0.

From now on, we assume that the pension fund has issued such contract at a priceP ≥ V A
i (0) and

can

• either run into demographic risk, evaluated at its first-order impact∆M
A (t)∆Ii(t), or

• transfer the risk to a reinsurer or to a special purpose vehicle at a fair costC.

On top of being exposed to demographic risk, the fund is exposed to financial risk coming both
from the asset side and the liabilities side. Any bond which enters the assets of the fund are subject
to interest rate fluctuations. The first-order sensitivity to changes inK, denoted by∆K, of a bond
is given by:

∆F
B(t, T ) = −B(t, T )X̄(t, T ) < 0.
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Also the annuity value, which enters the liabilities, is subject to financial risk, since it is fairly
priced. The effect of a change inK on the annuity is:

∆V AF
i (t) = ∆F

A(t)∆K(t),

where

∆F
A(t) = −

ω−x
∑

u=t+1

B(t, u)Si(t, u)X̄(t, u) < 0.

4. RETURN MAXIMIZATION AND INVESTMENT STRATEGIES

At time t, the fund maximizes expected returns att + ∆t, by investing in bonds, if profitable to
him, eitherP − C, if he transferred demographic risk, orP , if he did not. As a result, the fund
has a portfolio made up by the annuity (short) and longn∗ bonds, whose instantaneous expected
returnµ is

µ = Et

[

−V F
A (t+ dt) + V F

A (t) + n∗ [B(t+ dt, T )−B(t, T )]
]

.

Since only the second part depends onn∗, the fund chooses this number as high as possible if
EtB(t+ dt, T ) > B(t, T ), or equal to zero in the opposite case. Using first-order approximations
for returns over the time interval∆t, this condition is verified if and only if

Et[K(t+∆t)] < 0. (1)

Let us denote byC∗ the amount paid for demographic risk transfer at timet, when the hedging
strategy is set up. Depending on the fund’s choice, we may haveC∗ = C or C∗ = 0. This
choice ofC∗ and the asset allocation decision lead to the identification of four strategies, whose
characteristics are described in Table 1. Financial returns are evaluated at a certain horizont+∆t
and are net of the costsC∗

∆t of demographic-risk transfer which can be imputed to the time interval
∆t. Let us introduce the following notation:

α :=
ω−x
∑

u=t+1

B(t, u)Sx(t, u)Xx(t, u) > 0,

β :=
ω−x
∑

u=t+1

B(t, u)Sx(t, u)X̄(t, u) > 0,

γ := β − PX̄ < β,

δ := γ + CX̄ > γ.

Then for strategies 1 and 2,α is the Delta of the portfolio with respect to mortality risk, whileβ, γ
andδ are the Deltas of the portfolios for the four strategies with respect to financial risk.

A risk evaluation of the VaR-type is constructed for the four strategies at a confidence levelǫ.
Due to independence between financial and actuarial risk sources, if we sum up the appropriate
scenario-based risks or VaRs (where appropriate stands for “based on the need of selectingV aRǫ
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Strategy n∗ C∗ Dem risk Fin risk Net expected return
1 0 0 α∆I β∆K βE [∆K]
2 P/B 0 α∆I γ∆K γE [∆K]
3 0 C 0 β∆K βE [∆K]− C∆t

4 (P-C)/B C 0 δ∆K δE [∆K]− C∆t

Table 1: Risks and expected return

versusV aR1−ǫ”) we obtain the strategy-VaR due to both sources of risk. Consider for instance the
first strategy, which has risks(α∆Ii, β∆K). Since both coefficientsα andβ are positive, the VaR
of the strategy is

αV aR1−ǫ (∆Ii) + βV aR1−ǫ (∆K) .

By applying a similar reasoning for the other strategies, we can compute for each one theoverall
VaR, which we report in Table 2 together with the strategy’s net expected return.
It is natural now to represent the trade-offs of the strategies in a familiar way, by associating a point
in the plane (Overall-VaR, net expected return) to each strategy. The risk-return preferences of the

Strategy (VaR,expected return) combination
1 (αVaR1−ǫ(∆Ii) + βVaR1−ǫ(∆K), βE [∆K])

2
(αVaR1−ǫ(∆Ii) + γVaR1−ǫ(∆K), γE[∆K]) if γ > 0
(αVaR1−ǫ(∆Ii) + γVaRǫ(∆K), γE[∆K]) if γ < 0

3 (βVaR1−ǫ(∆K), βE [∆K]− C∆t)

4
(δVaR1−ǫ(∆K), δE [∆K]− C∆t) if δ > 0
(δVaRǫ(∆K), δE [∆K]− C∆t) if δ < 0

Table 2: Overall VaR for the strategies

fund can be described through a utility function on the plane (Expected Financial Return, Overall
VaR):

U = f(µ,VaR(∆I,∆k), η),

whereη is a risk aversion coefficient. The best strategy is identified as the one which maximizes
the utility functionU .
Actually, the fund could reinsure just a part of its liabilities against longevity risk, by choosing
C∗ = ηC, η ∈ [0, 1]. The fund can implement all the linear combinations of the two alternative
strategies 1 and 3 or 2 and 4. It is then possible to represent the set of all the possible strategies
with a line that goes from 1 to 3 or from 2 to 4. Whenn∗ = 0, the set of possible strategies is
characterized by a straight line that crosses 1 and 3. When instead condition (1) is met, the set of
return maximizing strategies for different values ofη is represented by a broken line between 2 and
4. In this case, indeed, there is no liquidity left, since the fund invests all its available resources
in the bond. The kink of the line corresponds to the point at which the Delta of the portfolio of
assets and liabilities – i.e. short the annuity and long the bond – is null with respect to the financial
risk. GivenU , the best strategy is identified by the point of the straight line that crosses the highest
possible indifference curve. This point identifies the optimal level of reinsuranceη∗ demanded by
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the fund.

5. CONCLUDING REMARKS

The paper explores the risk-return trade-off or a pension fund which can transfer longevity risk
and optimally chooses its asset allocation. We measured this trade-off in terms of risk-return
combinations and we assessed risk through value-at-risk from both financial and longevity shocks.
We succeeded in quantifying the trade-off and we represented it in the plane expected return-VaR.
The optimal transfer choices of the fund are located along the corresponding frontier and can be
properly identified given its preferences. Our analysis could easily accommodate for the presence
of regulatory capital requirements. The objective of the fund will then be to maximize its utility,
subject to a solvency constraint, such as the ones descrived in detail in Olivieri and Pitacco (2003).
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We consider a linear programming model to cut benefits to sustain a pension system with longevity
and low fertility problem. Under PAYG we find optimal solutions of cutting benefit under given
government subsidy. Solutions are obtained very fast for a 100 years planning period and passable
to government planning alternative.

1. INTRODUCTION

In most countries, the public pension system is a pay-as-you-go scheme rather than a reserve fund-
ing scheme. Longevity with low fertility is one of the worldwide problems in the social security
system. Individual pension is a reserve funding scheme but Bayraktar et al. (2007) demonstrated
theoretically that reserving money in pension is not optimal for a certain class of individual utility
functions. It is a puzzle to the traditional lifecycle hypothesis theory as discussed in Dutta et al.
(2000).

We consider optimal strategies to sustain the Japanese public pension system by a linear pro-
gramming model. We use government data and programs which are available in Japanese Ministry
of Health, Labour and Welfare (2012). The Japanese government carries out an actuarial check of
the financial status every five years. In the pension reform of 2004, the government has decided
to increase premium till 2017 and to fix it afterward. For a reasonable period it is not possible to
change the premium, however we need to cut benefits to sustain the system. Considering all the
contributors and beneficiaries of a pension, it requires at least a fifty years planning period. In our
model, demographic change is assumed to be deterministic in longevity and fertility data given
by National Institute of Population and Social Security Research (2012). We simulate the pension
system to assess the robustness in optimal solution by economic scenarios of growth rates in wage
and return of reserve.

The paper is organized as follows. In section 2 the simple pension model is described by
using per capita wage growth for premium and benefit. The growth model of per capita wage and
rate of return are assumed to be mean-reversion processes. The budgetary balance of the pension
system is formulated as a stochastic process of wage and rate of return of reserve. We formulate an
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optimalization problem of maximizing the average total benefit of all pensioners with assuring the
benefit payment of the target year. In section 3 using Japanese government data we calculate the
optimal cut and subsidy to pension in a linear programming model. In the simulation economic
scenarios are evaluated by optimal cut and subsidy under constraint to sustain the pension system
and budget constraint. Furthermore we simulate different fertility and longevity scenarios and
finally we sum up simulation results.

2. MODEL OF PUBLIC PENSION SYSTEM

We define the following pension reserve process; LetR(t) denote the reserve of a pension fund and
r(t) the stochastic process of rate of return of the reserve fund. Letu(a, t) be the total premium
payment of pension contributors, ands(b, t) the total benefit amount to beneficiaries. The dynamics
of the reserve is

dR(t) = r(t)R(t)dt+ (u(a, t)− s(b, t))dt, R(0) = R0, (1)

whereR0 is the initial reserve.
Let a(t) be the premium rate andZ1(t) be the total wage of all contributors thenu(a, t) =
a(t)Z1(t). Let ξ1(t) the number of contributors which is estimated by National Institute of Pop-
ulation and Social Security Research (2012). Letz1(t) denote per capita average wage att, then
Z1(t) = z1(t)ξ1(t).

Suppose the per capita wage is determined by the scenario variablex(t) which is the growth
rate of average wage, then

z1(t) = z1(0) exp{
∫ t

0

x(s)ds}. (2)

The total benefit amount to beneficiaries is also determined by the number of beneficiariesξ2(t)
and per capita benefitz2(t). We use the observation of Ministry of Health, Labour and Welfare
(2009) that the per capita benefit changes according tox(t),

z2(t) = z2(0) exp{
∫ t

0

x(s)ds}. (3)

Let b(t) be the cut rate of benefit, then

s(b, t) = (1− b(t))z2(t)ξ2(t).

The balance of total premium and benefit is

u(a, t)− s(a, t) = ψ(t) exp{
∫ t

0

x(s)ds}.

whereψ(t) = a(t)z1(0)ξ1(t)− (1− b(t))z2(0)ξ2(t), then (1) becomes

dR(t) = r(t)R(t)dt+ ψ(t) exp{
∫ t

0

x(s)ds}dt.
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We can easily get the solution as follows,

R(T ) = exp{
∫ T

0

r(s)ds}
(

R(0) +

∫ T

0

ψ(t) exp{−
∫ t

0

[r(s)− x(s)]ds}dt
)

. (4)

Let r(t) be the rate of return of the pension fund satisfying

dr(t) = kr(θr − r(t))dt+ σrdWr(t). (5)

Let x(t) be rate of change in average salary as

dx(t) = kx(θx − x(t))dt+ σxdWx(t), (6)

whereWr andWx are Brownian motions satisfyingd < Wr,Wx >= ρdt. We assume thatkv :=
kx = kr andσv := σr = σx. Then letv(t) = r(t)− x(t) satisfying

dv(t) = kv(θv − v(t))dt+ σvdWv(t). (7)

We consider control strategies of the pension fund (4) by government subsidyβ(t) and cut rate of
benefitb(t) but premium ratea(t) is stipulated in the law and we set a constant value after 2017.

In order to sustain the pension for 100 years under longevity risk and low fertility, it is necessary
to pour fund from the government budget unless the premium rate is increased. We set the first
constraint for the sum of government subsidy as,

E[

∫ T

0

e−
∫ t

0
r(s)dsβ(t)dt] ≤ γ (8)

where we evaluate the minimal required reserve by the binomial model of Uratani and Ozawa
(2012). We set the second constraint as a positive reserve at anyτ ≤ T ,

E[R0 +

∫ τ

0

e−
∫ t

0
v(s)dsqtdt+

∫ τ

0

βte
−

∫ t

0
r(s)ds] ≥ 0 (9)

The cut rate of benefit is assumed to be less than the rate of population changeb(t) ≤ C(t) :=

1− ξ1(t)
ξ1(0)

The other requirement which is called a pension replacement ratio,πt :=
Bt

It
, is greater than

50%, (π2004 = 59.3%), where the benefit is measured in household asBt = (1− b(t))z2(t) +NP .
Standard case in Japanese pension benefit includes house wife National pension benefit, which is
denoted asNP . Let It denote the average disposable income.
The objective function is the expectation of the total benefit during the planning years,

max
b(t),β(t)

E[

∫ T

0

(1− b(t))z2(0)ξ2(t)e
−

∫ t

0
v(s)ds]. (10)

In order to have economic rationality, we consider the average value of the individual total balance
of premium and benefit. The present value of the average pension balance att is as follows,

Y (t) =

∫ t+Td

t+Tp

(1− b(u))z2(u)e
−

∫ u

t
rsdsdu−

∫ t+Tp

t

az1(u)e
−

∫ u

t
rsdsdu, (11)

wheret is a start time of premium,Td is the life expectancy, andTp is premium payment period.
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3. LINEAR PROGRAMMING MODEL

We discretize the time span from 2013 to 2112 in the above continuous modeling (10), (8), (9).
The objective function is to minimize the present value of total cut benefit,

min
b(ti),β(ti)

n
∑

i=0

b(ti)ξ2(ti)z2(0)e
fv(ti)

n
∑

i=0

β(ti) exp(−µr(ti) + σ2
r(ti)/2) ≤ γ

R(0) +
k

∑

i=0

β(ti)e
fr(ti) ≥ −

k
∑

i=0

q(ti)e
fv(ti)

b(tk) ≤ b(tk+1), 0 ≤ b(tk) ≤ C(tk), for k = 0, . . . , n.

where we set forh = {v, r}, fh(ti) := −µh(ti) + σ2
h(ti)/2, µh(t) := θht +

h(0)−θh
k

(1 − e−kht),

σ2
h(t) :=

σ2

h

k2

∫ t

0
(1− e−kh(s−t))2ds.

3.1. Economic scenarios

For simulation scenarios of 100 years, we set annual average changes ratesθr andθx as following
Table 1. The volatility is assumed to be same valueσ = 0.01 and mean-reversionk = 0.1. High
case is high inflation and Middle case is the government inflation target and Low case is deflation.
Present values of government subsidy for 100-yearsγ in constraint (8) are 4 cases from 400 to 550

% inflation nominal salaryθr rate of returnθx
High 3 4.5 6.1

Middle 1 2.5 4.1
Low -0.5 -0.5 1.1

Table 1: Economic scenarios in OU processes in (6) and (7)

trillion yen, which is calculated by Uratani and Ozawa (2012).
In Figure 1 each column represents respectively Low, Middle, High economic scenario. The first
row depicts the cumulative cut ratio for 100 years. The more government subsidy is spent, the less
cut ratio is required.
Second row is nominal subsidy which is the same for most years except beginning and ending
years. The required subsidies are almost same in different economic cases.
The third and fourth rows are simulation results in respect to various values of rate of return. We
assume that discount rate is equal to the rate of return. Therefore in the third row, high rate of
return decreases the object function value. On the contrary low rate of return cannot sustain the
pension system.
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Figure 1: Economic simulation by linear programming
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The fourth row depicts the present value of pension participant balanceY (t) of (11). It shows that
sustainability implies positive balance of insurants.
The last row of Figure 1 shows that the volatility does not affect the balance of insurants.

3.2. Concluding remarks

Concerning the cut rateb(t), we conclude following points; (i) It is necessary to have a cut in
benefit in order to sustain the pension system for 100 years. (ii) It is reasonable to set the cut ratio
below the decreasing rate of population. (iii) Increasing government subsidy decreases optimal cut
ratio.
Concerning the government subsidyβ(t) and total cut amount of benefit, we conclude the follow-
ing points under the assumption that it is not allowed to increase premium after 2017; (i) High
economy case: maximum subsidy of 40 trillion and cut amount of 10 trillion yen, (ii) Intermedi-
ate economy case: maximum subsidy of 10 trillion and cut amount of 14 trillion yen, (iii) Low
economy case: Decreasing from 10 trillion subsidy and maximum cut amount of 14 trillion yen.

From simulation of demographic change the effect is significant as economic change but the
effect is very similar. The public pension has economical rationality for future average generation.
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Miguel J.M. Seixas† and Alfredo D. Egı́dio dos Reis§1

†AXA MedLa, Camino Fuente de La Mora 1, 28050 Madrid, Spain
§ISEG & CEMAPRE, Technical University of Lisbon, Rua do Quelhas 6, 1200-781 Lisboa, Portu-
gal
Email: seixas.miguel@gmail.com, alfredo@iseg.utl.pt

We study approximations of the ultimate ruin probabilities under an extension to the classical
Cramér-Lundberg risk model by adding a diffusion component. For the approximations, we adapt
some simple, practical and well known methods that are used for the classical model. Under this
approach, and for some cases, we are able to separate and to compute the ruin probability, either
exclusively due to the oscillation, or due to a claim.

1. INTRODUCTION

We start by presenting the model and the probability of ruin. We study the perturbed surplus
process as introduced by Dufresne and Gerber (1991) and defined for time t as:

V (t) = U(t) + σW (t), U(t) = u+ ct− S(t), t ≥ 0 ,

where U(t) defines the classical surplus process, c is the premium rate per unit time, u = V (0) =

U(0) is the initial surplus, S(t) =
∑N(t)

i=0 Xi, X0 ≡ 0, are the aggregate claims up to time t,
N(t) is the number of claims received up to time t, Xi is the i-th individual claim, W (t) is the
diffusion component and σ2 is the variance parameter. {W (t), t ≥ 0} is a standard Wiener process,
{N(t), t ≥ 0} is a Poisson process with parameter λ and {Xi}∞i=1 is a sequence of i.i.d. random
variables, independent from {N(t)} with common distribution function P (.) with P (0) = 0. The
corresponding density function is denoted as p(.). Denote by pk = E[Xk]. The existence of p1
is basic and essential, only in some of our methods the existence of higher moments is needed.
We assume that {S(t)} and {W (t)} are independent. We also assume that c = (1 + θ)λp1, where
θ > 0 is the premium loading coefficient.

1Support from FCT-Fundação para a Ciência e a Tecnologia (Programme PEst-OE/EGE/UI0491/2011) is gratefully
acknowledged.
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The diffusion component introduces an additional uncertainty into the classical model, so that if
ruin occurs it may be caused either from a claim or by an (unfavorable) oscillation of the diffusion
process. Let T be the time to ruin such that T = inf {t : t ≥ 0 and V (t) ≤ 0}, T =∞ if V (t) > 0,
∀t. The ultimate ruin probability is given by

ψ(u) = Pr(T <∞|V (0) = u) = ψd(u) + ψs(u),

where ψs(u) and ψd(u) are the ruin probabilities due to a claim and to oscillation, respectively.
The survival probability is δ(u) = 1− ψ(u). We have that ψd(0) = ψ(0) = 1. Furthermore, δ(u),
ψs(u) and ψd(u) follow defective renewal equations, respectively, for u ≥ 0:

ψs(u) = (1− q) [H1(u)−H1 ∗H2(u)] + (1− q)
∫ u

0

ψs(u− x)h1 ∗ h2(x)dx ,

ψd(u) = 1−H1(u) + (1− q)
∫ u

0

ψd(u− x)h1 ∗ h2(x)dx ,

δ(u) = qH1(u) + (1− q)
∫ u

0

δ(u− x)h1 ∗ h2(x)dx , (1)

with q = 1− λp1/c, h1 and h2(.) given by (H1(.) and H2(.) are the corresponding d.f.):

h1(x) = ζe−ζx, x > 0, ζ = 2c/σ2 ,

h2(x) = p−11 [1− P (x)] , x > 0.

We further introduce the maximal aggregate loss defined asL = max {t ≥ 0, L(t) = u− V (t)}.
It can be decomposed as

L = L
(1)
0 +

M∑
i=1

(
L
(1)
i + L

(2)
i

)
, (2)

L
(1)
i = max{L(t), t < ti+1} − L(ti), i = 0, 1, . . . ,M , (3)

L
(2)
i = L(ti)− L(ti−1)− L(1)

i−1, i = 1, . . . ,M , (4)

where M is the number of records of L(t) that are caused by a claim, L(1)
i and L(2)

i are the record
highs due to oscillation and a claim. {L(1)

i }∞i=0 and {L(2)
i }∞i=1 are independent sequences of i.i.d

random variables, with common d.f. H1(.), and H2(.), respectively. Also, δ(x) = Pr{L ≤ x} is a
compound geometric d.f. and existing moments can be found easily.

We consider different approximation methods that are adapted from the pure classical
model. We start with the method by De Vylder (1978), that relies on the use of the exact ruin
formula when the individual claim amount is exponential. We follow with a method by Dufresne
and Gerber (1989) that produces upper and lower limits for the ruin probability and it is very
useful to test the accuracy of the other methods presented, often simpler, for the cases where we
do not have exact figures for the ruin probability. These two methods were already tried by Silva
(2006), who presented no figures. After, we adapt an approximation known as Beekman and
Bowers’, presented in Beekman (1969). It uses an appropriate gamma distribution in the defective
renewal equation for δ(u). Jacinto (2008) also did some work on the previous methods. We further
work two other models, Tijms’ and the Fourier transform methods. The former was originally
presented in the context of queueing theory by Tijms (1994), the latter is an adaptation of the work
by Lima et al. (2002).
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Figure 1: Decomposition of the maximal aggregate loss.

2. APPROXIMATIONS IN THE PERTURBED MODEL

We follow the order presented in the previous section and start with the De Vylder’s approxima-
tion. Following De Vylder (1978), the original process, V (t), is replaced by another process

V ∗(t) = u+ c∗t− S∗(t) + σ∗W (t),

where the individual claims follow an exponential(β), and parameters β, c∗, λ∗ and σ∗ 2 are
calculated so that the existing lower four moments of V (t) and V ∗(t) match:

β = 4p3
p4
; λ∗ = 32λ

p43
3p34

; c∗ = 8λ
p33
3p24

+ c− λp1; σ∗ 2 = σ2 + λp2 − 4λ
p23
3p4

.

Then, we use the exact ruin probability formula from Dufresne and Gerber (1991), so that approx-
imation comes

ψDV (u) = C1e
−r1 + C2e

−r2 , C1 =
r1−β
β

r2
r1−r2 , C2 =

r2−β
β

r1
r2−r1 ,

where r1 and r2 are the solutions of equation, rσ∗2/2 + λ∗/(β − r) = c∗. Furthermore, we can
obtain approximations for the decomposed probabilities ψs(u) and ψd(u), simply using the exact
result for the case where the individual losses are exponential.

The second method is called the Dufresne & Gerber’s upper and lower bounds. It is based
on getting appropriate discrete distributions to replace on the convolution formula for the survival
probability, Formula (7) in Dufresne and Gerber (1989). For the perturbed model, we use a similar
method, now based on Formula (5.8) of Dufresne and Gerber (1991). Discrete random variables
are defined followed by bounds computation for the ruin probabilities [see Sections 2.3 and 2.4 of
Dufresne and Gerber (1989)]. We have

Lj = L
j,(1)
0 +

M∑
i=1

(
L
j,(1)
i + L

j,(2)
i

)
,
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with Lj = L
j,(1)
0 if M = 0 and j = l, u, Ll,(k)i = ϑ

[
L
(k)
i /ϑ

]
, Lu,(k)i = ϑ

[
(L

(k)
i + ϑ)/ϑ

]
for

{k = 1, i = 0, ...,M}, {k = 2, i = 1, ...,M}, ϑε(0, 1) and [x] is the integer part of x. Each sum-
mand of L, L(k)

i , in (2), is correspondingly approximated by both the next lower and higher multi-
ples of ϑ. We have then,

Ll ≤ L ≤ Lu ⇒ Pr(Ll ≥ v) ≤ ψ(v) ≤ Pr(Lu ≥ v).

We need the p.f. of the discrete r.v.’s Ll,(1)i , L
l,(2)
i , L

u,(1)
i and Lu,(2)i , they are given by, respectively,

hln,k = Pr
(
L
l,(n)
i = kϑ

)
= Hn(kϑ+ ϑ)−Hn(kϑ), n = 1, 2; k = 0, 1, ...,

hun,k = Pr
(
L
u,(n)
i = kϑ

)
= Hn(kϑ+ ϑ)−Hn(kϑ), n = 1, 2; k = 0, 1, ...

The following probability functions of Ll and Lu, f lk and fuk , can be computed using Panjer’s
recursion (for the compound geometric distribution)

f jk = Pr
(
Lj = kϑ

)
, k = 0, 1, ... for j = l, u .

We arrive to the following bounds for ψ(.), where

1−
m−1∑
k=0

f lk ≤ ψ(mϑ) ≤ 1−
m∑
k=0

fuk , m = 0, 1, ..., v/ϑ, v = 0, 1, ...

We consider now the Beekman-Bowers’ approximation. We replace δ ∗ h2(.) in the renewal
equation (1), δ(u) = qH1(u)+(1− q)h1 ∗ δ ∗h2(u), by a d.f. of a gamma(α, β), denoted as H3(u).
We arrive to the approximation

δBB(u) = qH1(u) + (1− q)h1 ∗H3(u),

Parameters α and β are got by equating the moments of δBB(u) with those of δ(u), respectively.
We address now Tijms’ approximation. This method relies on the existence of the adjustment

coefficient and an asymptotic formulae for ψ(u), ψd(u), and ψs(u). Similarly to Tijms (1994) we
consider the approximating expression

ψT (u) = Ce−Ru + Ae−Su, u ≥ 0 ,

where A is chosen such that ψ(0) = ψT (0). As ψ(0) = 1, then A = (1− C). As ψ(.) is the
survival function of L, S is chosen in order that

∫∞
0
ψT (u)du = E[L]. Hence,

E[L] =
C

R
+

(1− C)
S

⇔ S =
R (1− C)
RE[L]− C

.

The method we work and simply name as Fourier transform is not quite an approximation method
but an exact formula that allows to compute numerically the ruin probability. This method uses the
Fourier transform,

φf(x)(s) =

∫ +∞

0

eisxf(x)dx =

∫ +∞

0

cos(sx)f(x)dx︸ ︷︷ ︸
φr
f(x)

(s)

+ i

∫ +∞

0

sin(sx)f(x)dx︸ ︷︷ ︸
φc
f(x)

(s)

,



Ruin probability approximations in the perturbed model 73

u ψ(u) (I) ψBB(u)(II) (I)/(II) ψT (u) (III) (I)/(III)
1 0.40470 0.39819 1.01633 0.40470 1.00000
3 0.16674 0.17096 0.97529 0.16674 1.00000
5 0.06938 0.07089 0.97866 0.06938 1.00000

10 0.00775 0.00731 1.06010 0.00775 1.00000
15 0.00087 0.00072 1.19580 0.00087 1.00000

Table 1: Exact figures, Beekman-Bowers’ and Tijms’ approximations for Exponential(1)

so that for F ′(x) = f(x) we have

F (x) = F (0) +
2

π

∫ ∞
0

sin(xs)

s
φrf(x)(s)ds . (5)

From the integro-differential equation for ψ(u) we get

ψ′(u) = −qh1(u) + (1− q)
∫ u

0

ψ′(u− x)h1 ∗ h2(x)dx ,

and the transform can be written as

φψ′(u)(s) =
A+ iB

C − iD
=
AC −BD + i(BC + AD)

C2 +D2
,

with A = −qφrh1(u)(s), B = −qφch1(u), C = 1 − J(1 − q)/sp1 and D = I(1 − q)/sp1. I and J
depend only on the real and the complex part of φh1(u)(s) and φp(u)(s) :

I = φrh1(u)(s)− φ
r
h1(u)

(s)φrp(u)(s) + φch1(u)(s)φ
c
p(u)(s)

J = φrh1(u)(s)φ
c
p(u)(s)− φch1(u)(s) + φch1(u)(s)φ

r
p(u)(s) .

Approximation ψF (u) is then got computing numerically the inversion integral (5). Similar results
can be derived for ψd,F (u) and ψs,F (u) (the index F refers to this method).

3. NUMERICAL ILLUSTRATIONS

For the sake of illustration we show numerical results for three examples: when single amounts
follow Exponential(1), Gamma(2, 2) or Pareto(5, 4) distributions (all with mean equal to one).
The other parameters are: c = 2, λ = 1, σ = 1 and ϑ = 0.01. Tables 1 and 2 show the results
concerning the first example (De Vylder’s method is exact in this case). Table 3 provides results
for the Gamma(2, 2) case. Table 4 shows results for the Pareto(5, 4) case and all other methods
except Tijms’ one, as it doesn’t apply. Table 5 shows the percentage of ruin due to oscillation for
the worked cases.



74 M.J.M. Seixas and A.D. Egı́dio dos Reis

u ψ(u) (I) ψF (u) (II) (I)/(II) ψd(u) (III) ψd,F (u) (IV ) (III)/(IV )
1 0.40470 0.40470 1.00000 0.09688 0.09688 0.99999
3 0.16674 0.16674 1.00000 0.03655 0.03655 1.00000
5 0.06938 0.06937 1.00000 0.01521 0.01521 1.00000

10 0.00775 0.00775 1.00000 0.00170 0.00170 1.00000
15 0.00087 0.00087 1.00000 0.00019 0.00019 1.00002

Table 2: Exact figures and Fourier method for Exponential(1)

u Lower Bound ψDV (u) ψBB(u) ψT (u) ψF (u) Upper Bound
1 0.38643 0.39199 0.38231 0.39394 0.38867 0.39092
3 0.12024 0.12155 0.12660 0.12198 0.12196 0.12369
5 0.03696 0.03775 0.03825 0.03780 0.03780 0.03865

10 0.00194 0.00203 0.00167 0.00202 0.00202 0.00211
15 0.00010 0.00011 0.00007 0.00011 0.00011 0.00012

Table 3: Dufresne-Gerber’s Bounds, De Vylder’s, Beekman-Bowers’, Tijms’ & Fourier, Gamma.

u Lower Bound ψDV (u) ψBB(u) ψF (u) Upper Bound
1 0.40867 0.45521 0.38282 0.41036 0.41206
3 0.19577 0.15464 0.20096 0.19707 0.19838
5 0.10339 0.08437 0.11286 0.10423 0.10509

10 0.02511 0.02879 0.02824 0.02537 0.02564
15 0.00727 0.01032 0.00730 0.00736 0.00744

Table 4: Dufresne-Gerber’s Bounds, De Vylder’s, Beekman-Bowers’ & Fourier; Pareto(5, 4)

Exponential Gamma Pareto
u ψd(u)/ψ(u) ψd,F (u) ψs,F (u) ψd,F (u)/ψF (u) ψd,F (u) ψs,F (u) ψd,F (u)/ψF (u)
1 24% 0.11221 0.27647 29% 0.09042 0.31994 22%
3 22% 0.03570 0.08626 29% 0.03296 0.16411 17%
5 22% 0.01107 0.02673 29% 0.01590 0.08833 15%

10 22% 0.00059 0.00143 29% 0.00334 0.02203 13%
15 22% 0,00003 0,00008 29% 0.00085 0.00650 12%

Table 5: Weight of ψd(u) for Exponential(1), Gamma(2, 2) and Pareto(5, 4)



Ruin probability approximations in the perturbed model 75

4. CONCLUDING REMARKS

We underline the poor fit of the Beekman-Bowers’ method no matter the examples we consider.
The methods of De Vylder and Tijms appear capable of producing good results for light tail claims
size distributions. In all cases Dufresne & Gerber’s bounds method produces good approximations.
The same observation holds true for the Fourier transform method which produces numerically
exact figures. A final remark deals with the contribution of the oscillation component which plays
a substantial role in the ruin probability, especially in the case that the claim size distribution is
light tailed. We have chosen a volatility equal to one (equal to the mean claim size) in all examples.
A deeper study can be performed choosing different values. For more details on the work please
see Seixas (2012).
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Abstract

In this paper we study the valuation problem of an insurance company. We seek to maxi-
mize the discounted future dividend payments until the time of ruin. The surplus is modelled as
a jump-diffusion process, where we assume to only have incomplete information. Therefore,
we apply filtering theory to overcome uncertainty. Then we derive the associated Hamilton-
Jacobi-Bellman equation. Finally, we study the problem numerically.

1. INTRODUCTION

De Finetti (1957) proposed the expected discounted future dividend payments as a valuation prin-
ciple for an insurance portfolio. Standard references for diffusion models with complete obser-
vations are Shreve et al. (1984), Jeanblanc-Piqué and Shiryaev (1995), Radner and Shepp (1996),
and Asmussen and Taksar (1997). For a jump-diffusion model with complete observations, see
Belhaj (2010). For surveys about dividend optimization problems in various models we refer to
Albrecher and Thonhauser (2009) and Avanzi (2009). However, all these papers treat the dividend
maximization problem in full information setups. In Leobacher et al. (2013) we deal with the
dividend maximization problem in a so-called Bayesian framework, i.e., the drift is modelled as
an unobservable random variable expressing the insurer’s uncertainty about the profitability of the
portfolio.

In this note we extend the model proposed in Leobacher et al. (2013) by adding a jump com-
ponent, and present a numerical study of the problem.
Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and let the augmentation of the filtration gen-
erated by the later defined processes X , Z, and S, FX,Z,S be our observation filtration.

1The author is supported by the Austrian Science Fund (FWF) Project P21943. The author would like to thank
Gunther Leobacher, Stefan Thonhauser, and Jörn Sass for their helpful advice.
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We model the surplus X = (Xt)t≥0 of an insurance company by

Xt = x+

∫ t

0

(θ − us) ds+ σBt − St = Zt − Lt − St , x > 0 .

The ingredients of the model are the drift θ, the volatility σ, the Brownian motion B = (Bt)t≥0,
and the control u = (ut)t≥0.
The drift θ ∈ {θ1, θ2} with 0 < θ1 < θ2 is constant, unobservable under FX,Z,S , but has given
initial distribution q := P(θ = θ1) = 1− P(θ = θ2). σ is constant and observable, and ut ∈ [0, K]
is the density at time t of the cumulated dividend process L = (Lt)t≥0. Z = (Zt)t≥0 is the
uncontrolled process. S = (St)t≥0 is a compound Poisson process, i.e., St =

∑Nt

i=1Di, where
N = (Nt)t≥0 is a Poisson process with observable intensity ν and Di ∼ Exp(λ), so its (completely
monotonic) density is given by fD(x) = λe−λx with observable λ.

For applying the dynamic programming approach from optimal stochastic control, we have to
apply filtering theory to overcome uncertainty. Our aim is to replace θ by an observable estimator
(θt)t≥0 with

θt = E(θ Zt ∈ [z̄, z̄ + dz̄]) .

In Leobacher et al. (2013) we derived a filter for the problem without jumps, i.e., S ≡ 0. From
the structure of our model the jumps are directly observable and the drift needs to be filtered from
the continuous part only. Therefore, as in Leobacher et al. (2013), by using Bayes’ rule we get

P(θ = θ1|Zt ∈ [z̄, z̄ + dz̄]) =
1

1 + 1−q
q

exp
(

(θ2−θ1)(z̄−z− 1
2

(θ1+θ2)t)

σ2

) .
Thus, using Itô’s formula we arrive at the following system:

Xt = x+

∫ t

0

(θs − us) ds+ σWt − St , (1)

θt = ϑ+

∫ t

0

(θs − θ1)(θ2 − θs) dWs , (2)

where (θt)t≥0 is the estimator for the drift. One can show that W = (Wt)t≥0 is a Brownian motion
w.r.t. FX,Z,S , which replaces B (cf. (Liptser and Shiryaev 1977, Theorem 9.1)).
Considering (Xt, θt) we face full information. However, the price we have to pay is an extra
dimension.

2. STOCHASTIC OPTIMIZATION

Now we can define the stochastic optimization problem and heuristically derive the Hamilton-
Jacobi-Bellman equation.
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Since (Xt, θt)t≥0 is a Markov process, it is natural to consider Markov controls of the form
ut = u(Xt−, θt). Our aim is to find the optimal value function

V (x, ϑ) = sup
u∈A

J (u) = sup
u∈A

Ex,ϑ
(∫ τ

0

e−δtut dt

)
and the optimal control law u ∈ A, where τ := inf{t ≥ 0 Xt ≤ 0}, i.e., the stopping time of
ruin. A is the set of admissible controls, which imposes technical conditions such that the control
process exists and the value function is well-defined. Ex,ϑ denotes the expectation given the initial
values X0 = x, θ0 = ϑ.

Let η > 0 be an arbitrary stopping time. Heuristically applying (Protter 2004, Chapter II,
Theorem 32) we can write

V (x, ϑ) = sup
u∈A

Ex,ϑ
[∫ η∧τ

0

e−δtut dt+ e−δ(η∧τ)V (Xη∧τ , θη∧τ )

]
= sup

u∈A
Ex,ϑ

[∫ η∧τ

0

e−δtut dt+ e−δ(η∧τ)

(
V (x, ϑ) +

∫ η∧τ

0

LV (Xt, θt) dt (3)

−
∫ η∧τ

0

utVx(Xt, θt) dt−
∫ η∧τ

0

∆V (Xt, θt) dt

)]
,

with

LV = ϑVx +
σ2

2
Vxx +

1

σ2
(θ2 − ϑ)2(ϑ− θ1)2Vϑϑ + (θ2 − ϑ)(ϑ− θ1)Vxϑ .

Using that S is a compound Poisson process, we obtain

−Ex,ϑ
[∫ η∧τ

0

∆V (Xt, θt) dt

]
= Ex,ϑ

[ ∑
0<t≤η∧τ

(V (Xt, θt)− V (Xt−, θt))

]

= ν(η ∧ τ)

∫ ∞
0

(
(V (x− y, ϑ)− V (x, ϑ))λe−λy

)
dy ,

where V (x− y, ϑ) = 0 for y ≥ x. Dividing (3) by η ∧ τ and letting η → 0 we arrive at

−(δ + ν)V (x, ϑ) + LV (x, ϑ) + sup
u∈[0,K]

(1− Vx(x, ϑ))u+ νλ

∫ x

0

V (x− y, ϑ)e−λy dy = 0 . (4)

(4) is the HJB equation corresponding to the optimization problem where the underlying surplus
process has jumps. The natural boundary conditions are given by

V (0, ϑ) = 0 , V (B, ϑ) =
K

δ
for B →∞ .

V (x, θ1) and V (x, θ2) are obtained by solving the corresponding one-dimensional problems.

Calculating the supremum in the HJB equation yields a maximum of the form

sup
u∈[0,K]

(u(1− vx)) =

{
K, vx ≤ 1

0, vx > 1 .
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3. NUMERICAL SOLUTION

In this section we illustrate a method for solving the stochastic optimization problem numerically.
The convergence results from (Fleming and Soner 2006, Chapter IX) imply that for the jump-free
case we can compute a value function corresponding to an ε-optimal dividend policy using a finite
difference method. Basically, we can use a similar numerical method as proposed in Leobacher
et al. (2013) for the jump-free case. However, since here we have an IPDE instead of a PDE, we
use a simple quadrature rule for numerical integration. Since the quadrature rule is simply added
to the discretized problem from the jump-free case and since it converges to the integral part of
the HJB equation, convergence will be preserved. Of course, for making these statements rigorous
one needs to prove that V is the unique viscosity solution of the HJB equation in advance to the
numerical treatment, but this theoretical treatment is beyond the scope of this paper.

We follow the following procedure:

• We start with a simple (threshold) strategy:

u(0)(x, ϑ) = K 1{x≥b(ϑ)} ,

where b denotes an initial threshold level, i.e., following the initial strategy means paying
dividends at the maximum rate if x ≥ b(ϑ), and otherwise paying no dividends.

• We use policy iteration to improve the strategy.

– For a given Markov strategy u(k) we calculate its associated value V (k) by solving

(LG − δ − ν)V + u(k)(1−DGx V ) + νλIGV = 0

on a finite grid, where LG is the operator L with differentiation operators replaced by
suitable finite differences, DGx is the finite difference operator w.r.t. x, and IG is the
integral operator replaced by a quadrature rule.

– Now we determine u(k+1) as the function that maximizes u(1−DGx V ), which is given
by the rule u(k+1)(x, ϑ) = K 1{DG

x V (x,ϑ)≤1}.

• The iteration stops as soon as u(k+1) = u(k), i.e., one can not achieve any further improve-
ment.

Figure 1 shows the resulting value function and dividend policy for the parameter set θ1 = 1.5,
θ2 = 2, σ = 1, δ = 0.5, K = 1.25, ν = 0.3, λ = 0.5.

One can see that in our example for the jump-diffusion case, an ε-optimal dividend policy is of
threshold type. This means there is a sufficiently smooth threshold level b such that no dividends
are paid, if the surplus is less than b, and dividends are paid at the maximum rate, if the surplus
is greater than b. Furthermore, the threshold level naturally depends on the estimate for θ. In our
example it decreases monotonically in θ. Thus, our results fit very well to other results on the
dividend maximization problem.
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Figure 1: The resulting value function and the dividend policy.

4. CONCLUSION

We have presented a jump-diffusion model in a Bayesian setup for the surplus of an insurance
company. In this setup, we have formulated the valuation problem of the company in terms of
maximization of the discounted future dividend payments until the time of ruin. To overcome
uncertainty we have found a Bayesian filter. We have derived the associated HJB equation, which
is an IPDE. Finally, we have presented a way to study the problem numerically.
The numerical example has suggested that a threshold strategy, the threshold level of which is a
function of the estimator of the drift, is at least ε-optimal.
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M. Jeanblanc-Piqué and A.N. Shiryaev. Optimization of the Flow of Dividends. Russian Math.
Surveys, 50(2):257–277, 1995.

G. Leobacher, M. Szölgyenyi, and S. Thonhauser. Bayesian Dividend Optimization and Finite
Time Ruin Probabilities. 2013. Submitted.

R.S. Liptser and A.N. Shiryaev. Statistics of Random Processes I - General Theory. Applications
of Mathematics. Springer, 1977.

P. Protter. Stochastic Integration and Differential Equations. Stochastic Modelling and Applied
Probability. Springer, 2004.

R. Radner and L. Shepp. Risk vs. Profit Potential: A Model for Corporate Strategy. Journal of
Economic Dynamics and Control, 20(8):1373–1393, 1996.

S.E. Shreve, J.P. Lehoczky, and D.P. Gaver. Optimal Consumption for General Diffusions with
Absorbing and Reflecting Barriers. SIAM Journal on Control and Optimization, 22(1), 1984.



 
 



NON-RANDOM OVERSHOOTS OF LÉVY PROCESSES
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The class of Lévy processes for which overshoots are almost surely constant quantities is precisely
characterized.

1. INTRODUCTION

Fluctuation theory represents one of the most important areas within the study of Lévy processes,
with applications in finance, insurance, dam theory etc. (Kyprianou 2006). It is particularly explicit
in the spectrally negative case, when there are no positive jumps, a.s. (Sato 1999, Section 9.46)
(Bertoin 1996, Chapter VII).

What makes the analysis so much easier in the latter instance is the fact that the overshoots
(Sato 1999, p. 369) over a given level are known a priori to be constant and equal to zero. As we
shall see, this is also the only class of Lévy process for which this is true (see Lemma 3.1). But
it is not so much the exact values of the overshoots that matter, as does the fact that these values
are non-random (and known). It is therefore natural to ask if there are any other Lévy processes
having constant overshoots (a.s.) and, moreover, what precisely is the class having this property.

To be sure, in the existing literature one finds expressions regarding the distribution of the
overshoots. Unfortunately, these do not seem immediately useful in answering the question posed
above, and the following result is proved directly: for the overshoots of a Lévy process to be
(conditionally on the process going above the level in question) almost surely constant quantities,
it is both necessary and sufficient that either the process has no positive jumps (a.s.) or for some
h > 0, it is compound Poisson, living on the lattice Zh := hZ, and which can only jump up by h.

The precise and more exhaustive statement of this result is contained in Theorem 2.1 of Sec-
tion 2, which also introduces the required notation. Section 3 supplies the main line and idea of
the proof and Section 4 concludes. A full exposition may be found in Vidmar (2013).
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2. NOTATION AND STATEMENT OF RESULT

Throughout we work on a filtered probability space (Ω,F ,F = (Ft)t≥0,P), which satisfies the
standard assumptions (i.e. the σ-field F is P-complete and the filtration F is right continuous and
F0 contains all P-null sets). We let X be a Lévy process on this space with characteristic triplet
(σ2, λ, µ) relative to some cut-off function (Sato 1999). X t := sup{Xs : s ∈ [0, t]} (t ≥ 0) is the
supremum process of X .

Next, for x ∈ R introduce Tx := inf{t ≥ 0 : Xt ≥ x} (resp. T̂x := inf{t ≥ 0 : Xt > x}),
the first entrance time of X to [x,∞) (resp. (x,∞)). We will informally refer to Tx and T̂x as the
times of first passage above the level x.
B(S) will always denote the Borel σ-field of a topological space S, supp(m) the support of a

measure m thereon. For a random element R : (Ω,F)→ (S,S), R?P is the image measure.
The next definition introduces the concept of an upwards skip-free Lévy chain, which is the

continuous-time analogue of a right-continuous random walk (cf. e.g. Brown et al. (2010)).

Definition 2.1 (Upwards-skip-free Lévy chain) A Lévy process X is an upwards skip-free Lévy
chain if it is a compound Poisson process, and for some (then unique) h > 0, supp(λ) ⊂ Zh and
supp(λ|B((0,∞))) = {h}.

Finally, the following notion, which is a rephrasing of “being almost surely constant conditionally
on a given event”, will prove useful:

Definition 2.2 (P-triviality) Let S 6= ∅ be any measurable space, whose σ-algebra contains the
singletons. An S-valued random element R is said to be P-trivial on an event A ∈ F if there exists
r ∈ S such that R = r a.s.-P on A (i.e. the push-forward measure R|A∗P(· ∩ A) is a weighted
(possibly by 0, if P(A) = 0) δ-measure). R may only be defined on some B ⊃ A.

We can now state succinctly the main result of this paper:

Theorem 2.1 (Non-random position at first passage time) The following are equivalent:

1. For some x > 0, X(Tx) is P-trivial on {Tx <∞}.

2. For all x ∈ R, X(Tx) is P-trivial on {Tx <∞}.

3. For some x ≥ 0, X(T̂x) is P-trivial on {T̂x <∞} and a.s.-P positive thereon (in particular
the latter obtains if x > 0).

4. For all x ∈ R, X(T̂x) is P-trivial on {T̂x <∞}.

5. Either X has no positive jumps, a.s.-P or X is an upwards skip-free Lévy chain.

If so, then outside a P-negligible set, for each x ∈ R, X(Tx) (resp. X(T̂x)) is constant on {Tx <
∞} (resp. {T̂x <∞}), i.e. the exceptional set in (2) (resp. (4)) can be chosen not to depend on x.

Finally, notation-wise, we make the following explicit: R+ := (0,∞), R+ := [0,∞), R− :=
(−∞, 0) and R− := (−∞, 0].
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3. MAIN LINE OF THE PROOF

Remark 3.1 Tx and T̂x are F-stopping times for each x ∈ R (apply the début theorem (Kallenberg
1997, p. 101, Theorem 6.7)) and P(∀x ∈ R−(Tx = 0)) = 1. Moreover, P(∀x ∈ R(Tx <∞)) = 1,
whenever X either drifts to +∞ or oscillates. If not, then it drifts to −∞ (Sato 1999, p. 255,
Proposition 37.10) and on the event {Tx =∞} one has limt→Tx X(t) = −∞ for all x ∈ R, a.s.-P.

For the most part we find it more convenient to deal with the (Tx)x∈R, rather than (T̂x)x∈R, even
though this makes certain measurability issues more involved.

Remark 3.2 Note that whenever 0 is regular for (0,∞), then for each x ∈ R, Tx = T̂x a.s.-P
(apply the the strong Markov property (Sato 1999, p. 278, Theorem 40.10) at the time Tx). For
conditions equivalent to this, see (Kyprianou 2006, p. 142, Theorem 6.5). Conversely, if 0 is
irregular for (0,∞), then with a positive P-probability T̂0 > 0 = T0.

The following lemma is shown, for example by appealing to the Lévy-Itô decomposition (Apple-
baum 2009, p. 108, Theorem 2.4.16).

Lemma 3.1 (Continuity of the running supremum) The supremum processX is continuous (P-
a.s.) iff X has no positive jumps (P-a.s). In particular, if X(Tx) = x a.s.-P on {Tx <∞} for each
x > 0, then X has no positive jumps, a.s.-P.

The first main step towards the proof of Theorem 2.1 is the following:

Proposition 3.2 (P-triviality of X(Tx)) X(Tx) on {Tx < ∞} is a P-trivial random variable for
each x > 0 iff either one of the following mutually exclusive conditions obtains:

1. X has no positive jumps (P-a.s.) (equivalently: λ((0,∞)) = 0).

2. X is compound Poisson and for some h > 0, supp(λ) ⊂ Zh and supp(λ|B((0,∞))) = {h}.

If so, then X(Tx) = x on {Tx < ∞} for each x ≥ 0 (P -a.s.) under (1) and X(Tx) = hdx/he on
{Tx <∞} for each x ≥ 0 (P-a.s.) under (2).

The main idea of the proof here is to appeal first to Lemma 3.1 in order to get (1) and then to treat
separately the compound Poisson case; in all other instances the Lévy-Itô decomposition and the
well-established path properties of Lévy processes yield the claim. Intuitively, for a Lévy process
to cross over every level in a non-random fashion, either it does so necessarily continuously when
there are no positive jumps (cf. also (Kolokoltsov 2011, p. 274, Proposition 6.1.2)), or, if there are,
then it must be forced to live on the lattice Zh for some h > 0 and only jump up by h.

The second (and last) main step towards the proof of Theorem 2.1 consists in taking advantage
of the temporal and spatial homogeneity of Lévy processes. Thus the condition in Proposition 3.2
is strengthened to one in which the P-triviality of the position at first passage is required of one
only x > 0, rather than all. To shorten notation let us introduce:

Definition 3.1 For x ∈ R, let Qx := X(Tx)?P(· ∩ {Tx < ∞}) be the (possibly subprobability)
law of X(Tx) on {Tx <∞} under P on the space (R,B(R)). We also introduce the set

A := {x ∈ R : Qx is a weighted (possibly by 0) δ-distribution}.
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Remark 3.3 Clearly (−∞, 0] ⊂ A.

With this at our disposal, we can formulate our claim as:

Proposition 3.3 Suppose A ∩ R+ 6= ∅. Then A = R.

The proof of this proposition proceeds in several steps, but the gist of it consists in establishing the
intuitively appealing identity Qb(A) =

∫
dQc(xc)Q

b−xc(A − xc) for Borel sets A and c ∈ (0, b)
(where Qc must be completed). This is used to show that A is dense in the reals, and then we can
appeal to quasi-left-continuity to conclude the argument. The main argument is thus fairly short,
and a substantial amount of time is spent on measurability issues.

Finally, Proposition 3.2 and Proposition 3.3 are easily combined into a proof of Theorem 2.1.

4. CONCLUSION

Theorem 2.1 characterizes the class of Lévy processes for which overshoots are known a priori
and are non-random. Moreover, the original motivation for this investigation is validated by the
fact that upwards skip-free Lévy chains admit for a fluctuation theory just as explicit and almost
(but not entirely) analogous to the spectrally negative case — but this already falls outside the strict
scope of this work, rather it presents its natural continuation.
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