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PREFACE 
 

It was for the 8th time that our two-day international “Actuarial and Financial Mathematics 

Conference” was organized in Brussels, on February 5-6 2015. The organizing committee 

consisted of colleagues from 6 Belgian universities, i.e. Ghent University, the University of 

Antwerp, the KU Leuven and the Vrije Universiteit Brussel on the one hand, and the 

Université Libre de Bruxelles and the Université Catholique de Louvain on the other hand. As 

for the previous editions, we could use the facilities of the Royal Flemish Academy of 

Belgium for Science and Arts. Next to 8 invited lectures, there were 8 selected contributions 

as well as a poster session with 10 posters. We felt honoured by the presence of renowned 

international speakers, both from academia and from practice, and by the participation of 

leading international researchers in the scientific committee. 
 

There were 131 registrations in total, with 89 participants from Belgium, and 42 participants 

from 15 other countries from all continents. The population was mixed, with 59% of the 

participants associated with a university (PhD students, post doc researchers and professors), 

and with 41% working in the banking and insurance industry. 
 

On the first day, February 5, we had 8 speakers, among them 4 international and eminent 

invited speakers, alternated with 4 contributions selected by the scientific committee.  

In the morning, the first speaker was Prof.dr. Andrew Cairns, from Heriot Watt University 

Edinburgh (UK), on “Securitization and Hedging of Longetivity Risk”; later, we could listen 

to Prof.dr. Guillen Montserra, University of Barcelona (Spain) about “Uplift predictive 

modeling in pricing, retention and cross selling of insurance policies”. These two lectures 

were alternated by 2 presentations with researchers from the Netherlands and Belgium. 

In the afternoon, we welcomed Prof.dr. Véronique Maume-Deschamps, University Claude 

Bernard 1 Lyon (France); she delivered a lecture entitled “On the estimation of aggregated 

VaR with marginal and/or dependence information”. Afterwards, Prof.dr. Fabio Bellini, 

University of Milano Bicocca (Italy) presented his research, with a paper “Elicitable risk 

measures and expectiles”. Next to these two invited speakers, there were two more selected 

contributions by young Swiss and Belgian researchers. 
 

During the lunch break, we organized a poster session, preceded by a poster storm session, 

where the 10 different posters were presented concisely by the researchers. The posters 

remained available in the central hall during the whole conference, so that they could be 



 

 

consulted and discussed during the coffee breaks. The posters attracted a great deal of interest, 

judging by the lively interaction between the participants and the posters’ authors. 
 

Also on the second day, February 6, we had 8 lectures, with 4 keynote speakers and 4 selected 

contributions again. The first speaker was Prof.dr. Bernt Øksendal, University of Oslo 

(Norway), with a lecture on “Optimal control of stochastic Volterra equations and applications 

to financial markets with memory”. Afterwards Prof.dr. Wim Schoutens, KU Leuven 

(Belgium) informed us on his current research outcomes in a lecture “Conic Finance 

Explained and Applied”. In the afternoon, we could first listen to Prof.dr. Rudi Zagst, 

Technische Universität München (Germany) with a well-received lecture on “Closed-form 

solutions for Guaranteed Minimum Accumulation Benefits”. The closing lecture was 

delivered by Prof.dr. Uwe Wystup, MathFinance AG (Germany) and University of Antwerp 

(Belgium); the title of this last presentation was “Volatility as investment – Crash Protection 

with Calendar Spreads of Variance Swaps”. The other 4 presentations were again selected 

from a large number of submissions by the scientific committee; the speakers came from the 

Netherlands, Belgium and the United Kingdom. 
 

The proceedings contain six papers and extended abstracts, giving an overview of the topics 

and activities at the conference. 
 

We are much indebted to the members of the scientific committee, Hansjörg Albrecher 

(University of Lausanne, Switzerland), Carole Bernard (Grenoble Ecole de Management, 

France), Tahir Choulli (University of Alberta, Canada), Michel Denuit (Université Catholique 

de Louvain, Belgium), Jan Dhaene (Katholieke Universiteit Leuven, Belgium), Ernst 

Eberlein (University of Freiburg, Germany), Monique Jeanblanc (Université d'Evry Val 

d'Essonne, France), Ragnar Norberg (SAF, Université Lyon 1, France), Ludger Rüschendorf 

(University of Freiburg, Germany), Steven Vanduffel (Vrije Universiteit Brussel, Belgium), 

Michel Vellekoop (University of Amsterdam, The Netherlands), and the chair Griselda 

Deelstra (Université Libre de Bruxelles, Belgium). We appreciate their excellent scientific 

support, their presence at the meeting and their chairing of sessions. We also thank Wouter 

Dewolf (Ghent University, Belgium), for the administrative work. 

We are very grateful to our sponsors, namely the Royal Flemish Academy of Belgium for 

Science and Arts, the Research Foundation ─ Flanders (FWO), the Scientific Research 

Network (WOG) “Stochastic modelling with applications in finance”, le Fonds de la 

Recherche Scientifique (FNRS), Advanced Mathematical Methods for Finance (AMAMEF), 

the AG Health Insurance Chair at the KU Leuven, the BNP Paribas Fortis Chair in Banking at 

the Vrije Universiteit Brussel and Université Libre de Bruxelles, and Generali, and the 

exhibitors NAG and Springer. Without them it would not have been possible to organize this 

event in this very enjoyable and inspiring environment. 
 

The continuing success of the meeting encourages us to go on with the organization of this 

contact-forum, in order to create future opportunities for exchanging ideas and results in this 

fascinating research field of actuarial and financial mathematics. 

 
The editors: 

Griselda Deelstra, Ann De Schepper, Jan Dhaene, Wim Schoutens, Steven Vanduffel, 

Michèle Vanmaele, David Vyncke 

 

The other members of the organizing committee: 

Pierre Devolder, Karel In’t Hout 
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VALUE AT RISK ESTIMATION OF AGGREGATED RISKS USING MARGINAL LAWS
AND SOME DEPENDENCE INFORMATION

Andrés Cuberos†, Esterina Masiello§ and Véronique Maume-Deschamps§

†Université de Lyon, Université Lyon 1, Laboratoire SAF EA 2429, SCOR SE, France
§Université de Lyon, Université Lyon 1, Institut Camille Jordan ICJ UMR 5208 CNRS, France
Email: acuberos@scor.com, esterina.masiello@univ-lyon1.fr,

veronique.maume@univ-lyon1.fr

Abstract

Estimating high level quantiles of aggregated variables (mainly sums or weighted sums) is
crucial in risk management for many application fields such as finance, insurance, environment
. . . . This question has been widely treated but new efficient methods are always welcome;
especially if they apply in (relatively) high dimension. We propose an estimation procedure
based on the checkerboard copula. It allows to get good estimations from a (quite) small
sample of the multivariate law and a full knowledge of the marginal laws. This situation is
realistic for many applications, mainly in insurance. Moreover, we may also improve the
estimations by including in the checkerboard copula some additional information (on the law
of a sub-vector or on extreme probabilities).

1. INTRODUCTION

Consider a vector of random variables X = (X1, . . . , Xd) and a measurable function Ψ : Rd →
R+. In the context of quantitative risk management X is known as a risk vector and generally
represents the profit-losses of a portfolio at a given future date. Ψ(X), the aggregated risk, rep-
resents its total future position. The main examples of aggregation functions are: the sum, max,
weighted sums or a slightly more complex function that may include stop-loss reinsurance type
function on each of the marginals. In this paper, we will be essentially concerned with Ψ =

∑
.

We are interested here in the estimation of the Value at Risk of Ψ(X). To this purpose, we will
assume that the distributions F1, . . . , Fd of the marginal variables X1, . . . , Xd are known and that
some information on the dependence between them is given. Usually this information is available
via some observations of the joint distribution and also via expert opinion.

In general neither the marginals nor the dependence of the risk vector X will be known. How-
ever in many cases the knowledge on the marginal distributions will be much more important than

3
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the knowledge on the dependence. For example when some observations of the vector X are avail-
able, inferences one can do on the marginal distributions give better results than inferences one
can do on the multivariate distribution. Moreover, on each marginal risk, one can also have extra
information that is more unusual in the joint distribution, as for example expert opinion or prior
information. So, even if the assumption of the knowledge of marginal distribution may seem ex-
aggerate, there is, however, in practice much more knowledge on the marginal distributions than
on the dependence structure of the random vector.

When the marginals are known but the dependence is unknown, the re-arrangement algorithm
(introduced in special cases in Rüschendorf (1983) and Rüschendorf (1982)) allows to obtain
bounds on the distribution of Ψ(X) (Puccetti (2012)) working well for d ≥ 30. By improving
the re-arrangement algorithm, bounds on the VaR are obtained in Embrechts et al. (2013) in high
dimensional (d ≥ 1000) inhomogeneous portfolio. Cases in which some kind of dependence
information is available lead to narrower bounds (Bernard et al. (2013), Bernard and Vanduffel
(2015)) for the risk measure at hand. Bounds are also derived in Cossette et al. (2014) for depen-
dence structures described by different copula models. A general mathematical framework which
interpolates between marginal knowledge and full knowledge of the distribution function of X is
considered in Embrechts and Puccetti (2010).

In this paper, we propose to use the checkerboard copula (introduced in Mikusinski and Taylor
(2010)) to merge the information given by a small sample of the distribution of X with the known
marginal distributions. Then, we introduce the checkerboard copula with information on the tail
and with information on a sub-vector, to take into account some additional information which may
improve the VaR estimation (see Section 3.1). Some simulations are provided in Section 3.2.
We begin (see Section 2) with a brief discussion on the admissible multivariate distribution with
fixed marginal and aggregated laws: given marginal laws and a distribution for Ψ(X), what are the
possible multivariate distributions for X?

2. THE INVARIANT AGGREGATION COPULA CLASS

Let F be the distribution function of X = (X1, . . . , Xd). By Sklars Theorem, there exists a copula
distribution C in [0, 1]d such that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)),

and moreover when the marginal random variables of X are absolutely continuous this copula C
is unique. We shall assume that the marginals of X are absolutely continuous. The aggregation
function Ψ : Rd → R is considered to be measurable and non-decreasing on each variable. Let
us denote by FΨ(x) = P (Ψ(X) ≤ x). Of course, the copula of the vector X determines the
distribution of Ψ(X). Nevertheless, the copula specification may be redundant, as for any copula
C there may exist infinite set of copulas CΨ,C such that Ψ(XC) =d Ψ(XC′) for any C ′ ∈ CΨ,C ,
where XC denotes a random vector with same marginals as X with copula C.

The Fréchet class of the marginal distributions F1, . . . , Fd, denoted by Fd(F1, F2, . . . , Fd) con-
sists of all d-multivariate distributions with F1, . . . , Fd as marginals. This class is completely
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determined by the class of all d-copulas, i.e.:

Fd(F1, . . . , Fd) = {F : F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd))}.

Moreover, when the marginals are absolutely continuous there is a bijective correspondence be-
tween both classes.

In the context of risk aggregation the following more useful class has been introduced in
Bernard et al. (2014).

Definition 2.1 An aggregate risk S is called an admissible risk of marginal distributionsF1, . . . , Fd
if it can be written as S = Ψ(X1, . . . , Xd) where Xi ∼ Fi for i = 1, . . . , d. The admissible risk
class is defined by the set of admissible risks of given marginal distributions:

Sd(F1, . . . , Fd,Ψ) = {Ψ(X1, . . . , Xd) : Xi ∼ Fi, i = 1, . . . , d}.

Some interesting properties of this class have been presented in Bernard et al. (2014) when Ψ
is the sum. Here we present a related class from the copula point of view and with more general
aggregation functions when possible.

Definition 2.2 Let X be a random vector and Ψ an aggregation function. The class of copulas

C(X,Ψ) = {C ∈ C : Ψ(XC) =d Ψ(X)}

is the invariant aggregation copula class of X and Ψ.

The invariant aggregation class is related to the set of admissible risk, in a similar way as the
copulas are related to the Fréchet class:

F ∈ Fd(F1, . . . , Fd)⇔ ∃C : F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

S ∈ Sd(X1, . . . , Xd,Ψ)⇔ ∃CX,Ψ : ∀C ∈ CX,Ψ S =d Ψ(XC),

We present some examples and results that show explicitly that this class is not trivial.

Example 1 We construct explicitly two different random vectors (X, Y ) and (X ′, Y ′) such that
X =d X ′, Y =d Y ′ and X + Y =d X ′ + Y . Let (X, Y ) be any random vector in R2 with density
f . Suppose that for some ε > 0 and some a < b and c < d with b − a = d − c we have that
f(x, y) > ε for any (x, y) ∈ [a, b]× [c, d]. The equality

∫ 2π

0

∫ 2π

0
sin(x− y) dxdy = 0 implies that

g(x, y) = f(x, y) + ε sin

(
2π
x− a
b− a − 2π

y − c
d− c

)
I[a,b]×[c,d](x, y)

is a density function. Moreover, as for any t the following equations hold,
∫ t

0

∫ 2π

0

sin(x− y) dxdy = 0 and
∫ 2π

0

∫ t

0

sin(x− y) dxdy = 0,

then the marginal densities of f and g are identical. Furthermore, it can also be checked easily
that

∫ 2π

0

∫ 2π

0
sin(x−y)I{0≤x+y≤t}(x, y) dxdy = 0 for any t > 0, thus if (X ′, Y ′) is a random vector

with density g, it satisfies that X ′ + Y ′ =d X + Y .
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The example above may be generalized in any dimension.

Proposition 2.1 If X admits a density then CX,+ has infinite elements.

By definition, any element of the class CX,Ψ characterizes Ψ(X). The following result shows that
in some cases we can always find a symmetrical copula in CX,Ψ.

Proposition 2.2 If X admits a density, its marginals are identical and Ψ is a symmetrical aggre-
gation function then there exists a symmetrical copula C such that Ψ(X) =d Ψ(XC).

Proof. Let f(x1, . . . , xd) be the density of X. Define g(x1, . . . , xd) as

g(x1, . . . , xd) =
1

d!

∑

σ∈Sd

f(xσ(1), . . . , xσ(d)),

where Sd is the set of all the permutations of {1 . . . , d}. Let X′ be a random vector with density
g. Then it is easy to check that the marginals of X′ are distributed as the marginals of X. It
follows equally, from the symmetry of Ψ, that Ψ(X) =d Ψ(X′). As the density of X′ is completely
symmetrical so is its copula.

Remark 2.1 In the case of d dimensional Archimedean copulas, it is known that the copula C is
uniquely determined by its diagonal δ, δ(t) = C(t, . . . , t) if δ′(1−) = d (see Frank (1996), Sungur
and Yang (1996) in dimension 2 and Erdely et al. (2014) in higher dimension). This means that
if Ψ = max or Ψ = min, given a fixed common law for X1, . . . , Xd and a fixed law for Ψ(X),
then there is only one Archimedean copula which leaves Ψ(X) and the marginal laws invariant.
Nevertheless, using constructions in Nelsen et al. (2008), infinitely many copulas with a fixed
diagonal may be constructed.

Below we provide a construction of infinitely many laws of random vectors with a fixed law for
their max and fixed marginal laws (remark that if the marginal laws are not the same, then the law
of the max is not determined by the diagonal of the copula).

Proposition 2.3 Assume that X is absolutely continuous with density f such that infK f > 0 with

K =
d∏

i=1

[ai, bi]. If K is symmetric with respect to the diagonal, then there exists ϕ a density

function such that f ≡ ϕ outside K, f 6= ϕ on K and the random vector X̃ whose density function
is ϕ is such that

• for i = 1, . . . , d, X̃i
L
= Xi,

• Ψ(X)
L
= Ψ(X̃).

Proof. We sketch the proof in dimension 2. Let f > ε on K and ϕ = f + εγ where γ has its
support in K as shown below:
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1 −1

−1
−1 1

1

−1
1

It is easy to verify that the random vector X̃ whose density is ϕ has the

same marginal laws as X and max(X̃)
L
= max(X). �

Even if the example above seems trivial it shows how unnecessary is the
full knowledge of the copula distribution when studying an aggregation.

3. Non-parametric estimation of the aggregation distribution,
when the marginals are known

We have seen in the above section that the exact copula estimation can
be considered as a redundant exercise when estimating the distribution of
an aggregation of X. The information given by the copula of X is redundant
and it really suffices to pick any copula from the class CX,Ψ. This may be
seen as a justification of the fact that when the marginals are known, there is
some flexibility in the copula estimation in order to estimate the aggregated
distribution. Here we propose a non-parametric approach, when choosing
the copula from data when the marginals are known, and we compare it
with the classical empirical estimation that does not integrate the marginal
knowledge.

3.1. Checkerboard and Empirical Copulas. In this section we propose
a non-parametric estimator of the distribution of Ψ(X) when marginals
F1, . . . , Fd are known and an independent and identically distributed (i.i.d.)

sample X(1), . . . ,X(n) is given. We compare its behaviour with the classical
empirical cumulative distribution function

F̂Ψ(t) =
1

n

n∑

i=1

1{Ψ(X(i)) ≤ t},

where no marginal information is used.
Let F be the cumulative distribution function (c.d.f.) of X. Then F (x1, . . . , xd) =

C(F1(x1), . . . , Fd(xd)) where C is a copula function and Fi is the c.d.f of Xi,
i = 1 . . . , d. Let µC be the probability measure associated to C, i.e such
that µC([0, x]) = C(x) for any x = (x1, . . . , xd) ∈ Rd. By a µ-decomposition
of a set A ⊂ Rd we mean a finite family of subsets {Ai ⊂ A} such that

(1) µ(Ai ∩Aj) = 0 whenever i 6= j;
(2)

∑
i µ(Ai) = µ(A).

It is easy to verify that the random vector X̃ whose density is ϕ has the same marginal laws as X
and max(X̃)

L
= max(X).

Even if the example above seems trivial it shows how unnecessary is the full knowledge of the
copula distribution when studying an aggregation.

3. NON-PARAMETRIC ESTIMATION OF THE AGGREGATION DISTRIBUTION, WHEN
THE MARGINALS ARE KNOWNS

We have seen in the above section that the exact copula estimation can be considered as a redundant
exercise when estimating the distribution of an aggregation of X. The information given by the
copula of X is redundant and it really suffices to pick any copula from the class CX,Ψ. This may
be seen as a justification of the fact that when the marginals are known, there is some flexibility
in the copula estimation in order to estimate the aggregated distribution. Here we propose a non-
parametric approach, when choosing the copula from data when the marginals are known, and we
compare it with the classical empirical estimation that does not integrate the marginal knowledge.

3.1. Checkerboard and Empirical Copulas

In this section we propose a non-parametric estimator of the distribution of Ψ(X) when marginals
F1, . . . , Fd are known and an independent and identically distributed (i.i.d.) sample X(1), . . . ,X(n)

is given. We compare its behaviour with the classical empirical cumulative distribution function

F̂Ψ(t) =
1

n

n∑

i=1

1{Ψ(X(i)) ≤ t},

where no marginal information is used.
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LetF be the cumulative distribution function (c.d.f.) of X. ThenF (x1, . . . , xd) =C(F1(x1), . . . ,
Fd(xd)) where C is a copula function and Fi is the c.d.f of Xi, i = 1 . . . , d. Let µC be the proba-
bility measure associated with C, i.e such that µC([0, x]) = C(x) for any x = (x1, . . . , xd) ∈ Rd.
By a µ-decomposition of a set A ⊂ Rd we mean a finite family of subsets {Ai ⊂ A} such that

1. µ(Ai ∩ Aj) = 0 whenever i 6= j;

2.
∑

i µ(Ai) = µ(A).

Definition 3.1 A copula C∗ is a checkerboard copula if there exists a λ-decomposition A =
{(ai, bi)} of Id, the d-dimensional unit cube, made out of d-intervals such that for all i

1. µC∗ ((ai, bi)) = µC((ai, bi));

2. µC∗ is uniform on (ai, bi).

If C is any copula such that µC∗(A) = µC(A) for any A ∈ A, then we say that C∗ is a checker-
board approximation of C (Mikusinski, 2010 (Mikusinski and Taylor (2010))).
For m ∈ N, let us consider the partition (modulo a 0 measure set) of [0, 1]d given by the md

squares:

Ii,m =
d∏

j=1

[
ij − 1

m
,
ij
m

]
, i = (i1, . . . , id), ij ∈ {1, . . . ,m}.

We shall denote by C∗m the checkerboard copula associated with this partition. The definition of
the checkerboard copula may be rewritten as:

C∗m(x) =
∑

i

mdµ(Ii,m)λ([0, x] ∩ Ii,m)

where [0, x] =
∏d

i=1[0, xi], for x = (x1, . . . , xd) ∈ [0, 1]d and λ is the d-dimensional Lebesgue
measure.

The checkerboard copula is defined throughout a probability measure; in order to verify that it
is a copula, it is sufficient to verify that for x = (x1, . . . , xd) ∈ [0, 1]d with xj = 1 if j 6= k,
C∗m(x) = xk. This is a simple computation (see Mikusinski and Taylor (2010) for more details and
for various results of convergence of C∗m to C). The following proposition is a simple computation.

Proposition 3.1 Let C∗m be the checkerboard copula defined above. We have:

sup
x∈[0,1]d

|C∗m(x)− C(x)| ≤ d

2m
.

We also define two kind of checkerboard copula with additional information. First of all, we
consider the case where the distribution of a subvector XJ = (Xi)i∈J , J ⊂ {1, . . . , d}, is known,
|J | = k < d. Denote CJ the copula of XJ . Let µJ be the probability measure on [0, 1]k associated
with CJ . For i = (i1, . . . , id), let x = (x1, . . . , xd) ∈ [0, 1]d, xJ = (xj)j∈J , x−J = (xj)j 6∈J and

IJi,m =

{
x ∈ [0, 1]d / xj ∈

[
ij − 1

m
,
ij
m

]
, j ∈ J

}
,
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I−Ji,m =

{
x ∈ [0, 1]d / xj ∈

[
ij − 1

m
,
ij
m

]
, j 6∈ J

}
.

The checkerboard copula with information on XJ is defined below.

Definition 3.2 Consider the probability measure on [0, 1]d defined by

µJm([0, x]) =
∑

i⊂{1,...,d}

md−k

µJ(IJi,m)
µ(Ii,m)λ([0, x−J ] ∩ I−Ji,m)µJ([0, xJ ] ∩ IJi,m).

Let CJ
m, the checkerboard copula with additional information on XJ , be defined by CJ

m(x) =
µJm([0, x]).

Proposition 3.2 CJ
m is a copula, it approximates C:

sup
x∈[0,1]d

|CJ
m(x)− C(x)| ≤ d

2m
.

If XJ and X−J are independent then,

sup
x∈[0,1]d

|CJ
m(x)− C(x)| ≤ d− k

2m
.

We may also add information on the tail and so define the following particular checkerboard cop-
ula.

Definition 3.3 For t ∈]0, 1[, let E =
(∏d

i=1[0, t]d
)c

. We assume that µC(E) is known. Consider

the partition of the cube given by Ji,m = t · Idn,i for d-tuple i = (i1, . . . , id) in {0, 1/n, . . . , (n −
1)/n}d. Define CEm as the checkerboard copula associated with the partition (Ji,m), E, that is

CEm(x) = µC(Ec)µ∗m([0, x]/t)1Ec(x) +
µC(E)

λ(E)
λ([0, x] ∩ E).

This is the checkerboard copula with extra information on the tail.

The empirical copula, introduced by Deheuvels (1979), may be used to estimate non parametrically
the copula.

Definition 3.4 Let X(1), . . .X(n) be n independent copies of X and R(1)
i , . . . , R

(n)
i , i = 1, . . . , d

their marginals ranks, i.e.,

R
(j)
i =

n∑

k=1

1{X(j)
i ≥ X

(k)
i }, i = 1, . . . , d, j = 1, . . . , n.

The empirical copula Ĉn of X(1), . . .X(n) is defined as

Ĉn(u1, . . . , ud) =
1

n

n∑

k=1

1

{
1

n
R

(k)
1 ≤ u1, . . . ,

1

n
R

(k)
d ≤ ud

}
.
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Using the empirical copula Ĉn and the empirical probability measure µ̂ associated with Ĉn, we
may define empirical versions of the checkerboard copulas defined above.

Definition 3.5 Let X(1), . . .X(n) be n independent copies of X.

• The empirical checkerboard copula Ĉ∗m is defined by

Ĉ∗m(x) =
∑

i

mdµ̂(Ii,m)λ([0, x] ∩ Ii,m).

• The empirical checkerboard copula with information on a sub-vector XJ is defined by

ĈJ
m(x) =

∑

i⊂{1,...,d}

md−k

µJ(IJi,m)
µ̂(Ii,m)λ([0, x−J ] ∩ I−Ji,m)µJ([0, xJ ] ∩ IJi,m).

• The empirical checkerboard copula with information on the tail is defined by:

ĈEm(x) = µC(Ec)Ĉ∗m(x/t)1Ec(x) +
µC(E)

λ(E)
λ([0, x] ∩ E).

In what follows Ĉcb
m denotes any of the three empirical checkerboard copulas defined above.

We propose the following estimation procedure.
Assume the marginal laws are known and a (quite small) sample of size n of X is available.

1. Estimate µ by µ̂ using the empirical copula.

2. Obtain the empirical checkerboard copula Ĉcb
m (depending if some additional information is

known).

3. Simulate a sample of size N from the copula Ĉcb
m for N big:

(u
(1)
1 , . . . , u

(1)
d ), . . . , (u

(N)
1 , . . . , u

(N)
d )

4. Get a sample of Ψ(X) using the marginals to transform the above sample:

Ψ
(
F↼

1 (u
(1)
1 ), . . . , F↼

d (u
(1)
d )
)
, . . . ,Ψ

(
F↼

1 (u
(N)
1 ), . . . , F↼

d (u
(N)
d )

)

5. Estimate the distribution function FΨ of Ψ(X) empirically using the above sample: F̂ (Ψ) is
the empirical distribution function from the sample above.

Proposition 3.3 For some A > 0, let A
√
n ≤ m ≤ n. Assume that Ψ(X) is absolutely continuous

and C has continuous partial derivatives

‖FΨ − F̂ (Ψ)‖∞ = OP

(
1√
n

)
.

Proof. Use the convergence result by Fermanian et al. (2004).
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3.2. Numerical Application

In this section we use the estimator of the distribution function GΨ to estimate the VaR p(S) for
S = X1 + · · ·+Xd at different confidence levels 0 < p < 1. We will consider the Pareto–Clayton
model because, in that case, the exact value of VaR p(S) is known.

3.2.1. THE PARETO–CLAYTON MODEL

We consider X = (X1, . . . , Xd) such that:

P(X1 > x1, . . . , Xd > xd |Λ = λ) =
d∏

i=1

e−λxi ,

that is, conditionally on the value of Λ the marginals of X are independent and exponentially
distributed.
If Λ is Gamma distributed, then theXi’s are Pareto distributed with dependence given by a survival
Clayton copula.
If Λ is Levy distributed, then the Xi’s are Weibull distributed with a Gumbel survival copula.
These models have been studied by Oakes (1989), Yeh (2007). In the context of multivariate risk
theory, they have been used e.g. in Maume-Deschamps et al. (2014) and Dacorogna et al. (2014).
In what follows, we consider that Λ ; Γ(α, β), so that the Xi’s are Pareto (α, β) distributed and
the dependence structure is described by a survival Clayton copula with parameter 1/α. In Dubey
(1970), it is shown that S follows the so-called Beta prime distribution:

FS(x) = Fβ

(
x

1 + x

)

where Fβ is the distribution function of the Beta(dβ, α) distribution. The inverse of FS (or VaR
function of S) can also be expressed in function of the inverse of the Beta distribution

F↼

S (p) =
F↼
β (p)

1− F↼
β (p)

.

From these results (see also Cuberos et al. (2015)), we may compute VaR α(S).

3.2.2. SIMULATION STUDY IN DIMENSION 2

We consider a Pareto–Clayton model in dimension 2, with β = 1 and α = 1. The multivariate
sample is of size n = 30, we perform N = 1000 runs. Table 1 below compares the method using
the checkerboard copula with the direct estimation from the empirical distribution of S. We give
the real value, the mean estimation and the relative standard deviation (in % age). On this example,
the checkerboard method seems performant, especially, it is much more stable than the empirical
one for high level quantiles.

In Table 2 below, we have performed the checkerboard estimation with information in the tail,
for various values of t. We remark that injecting information in the tail improves the estimation
(mean and stability), especially for VaR levels higher than t.
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VaR VaR VaR VaR VaR VaR

80% 90% 95% 99% 99.5% 99.9%

Exact value 8.5 18.5 38.5 198.5 398.5 1998.5

Empirical 9 19.5 45 293.5 341.4 379.7

(40%) (55%) (105%) (547%) (566%) (717%)

Checkerboard 8.8 19.4 41.8 224.5 432.6 2049.7

(19%) (23%) (26%) (10%) (11%) (11%)

Table 1: Mean and relative deviation for the Pareto–Clayton sum in dimension 2.

VaR VaR VaR VaR VaR VaR

80% 90% 95% 99% 99.5% 99.9%

Exact value 8.5 18.5 38.5 198.5 398.5 1998.5

t = 1 (no information) 8.8 19.4 41.8 224.5 432.6 2049.7

(19%) (23%) (26%) (10%) (11%) (11%)

t = 0.995 8.9 20.1 39.9 185.6 401.9 2212

(18%) (22%) (23%) (12%) (4%) (9%)

t = 0.99 8.9 19.8 38.5 202.6 456.3 2134.1

(18%) (21%) (21%) (3%) (3%) (9%)

t = 0.95 8.8 21.4 41.1 220.8 427.2 2047.1

(15%) (9%) (1%) (3%) (4%) (10%)

Table 2: Mean and relative deviation for the Pareto–Clayton sum in dimension 2, using information
in the tail.

3.2.3. SIMULATION STUDY IN HIGHER DIMENSION

We conclude with a simulation in dimension 10. We consider a Clayton–Pareto model with β = 1,
α = 1

2
. The multivariate sample size is n = 75, then n = 175. We perform N = 1000 runs for the

checkerboard method, see Table 3. As in dimension 2, we remark that the checkerboard method
performs well.

Finally, some technical simulation issues have to be treated in order to perform simulations with
informations in the tail in dimension higher than 2 as well as simulations including informations
on a sub-vector.
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VaR VaR VaR VaR VaR VaR

80% 90% 95% 99% 99.5% 99.9%

Exact value 12.2 19.2 29 70.1 100.8 230.5

Empirical, n = 75 12.6 20 29.9 62.2 75.8 86.7

(12%) (15%) (19%) (39%) (58%) (71%)

Checkerboard, n = 75 12.5 20.1 31.2 74.8 92.4 152.6

(10%) (13%) (14%) (20%) (20%) (16%)

Empirical, n = 150 12.4 19.6 30.3 67.3 89.9 121

(8%) (11%) (14%) (27%) (38%) (59%)

Checkerboard, n = 150 12.4 19.6 29.8 75.4 107.6 173.9

(7%) (9%) (12%) (16%) (21%) (19%)

Table 3: Mean and relative deviation for the Pareto–Clayton sum in dimension 10.
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Abstract

This paper investigates equilibrium in an insurance market where risk classification is re-
stricted. Insurance demand is characterised by an iso-elastic function with a single elasticity
parameter. We characterise the equilibrium by three quantities: equilibrium premium; level of
adverse selection; and “loss coverage”, defined as the expected population losses compensated
by insurance. We find that equilibrium premium and adverse selection increase monotonically
with demand elasticity, but loss coverage first increases and then decreases. We argue that
loss coverage represents the efficacy of insurance for the whole population; and therefore, if
demand elasticity is sufficiently low, adverse selection is not always a bad thing.

1. INTRODUCTION

Restrictions on insurance risk classification can lead to troublesome adverse selection. A simple
version of the usual argument is as follows. If insurers cannot charge risk-differentiated premiums,
more insurance is bought by higher risks and less insurance is bought by lower risks. This raises the
equilibrium pooled price of insurance above a population-weighted average of true risk premiums.
Also, since the number of higher risks is usually smaller than the number of lower risks, the total
number of risks insured usually falls. This combination of a rise in price and fall in demand is
usually portrayed as a bad outcome, both for insurers and for society.

However, it can be argued that from a social perspective, higher risks are those more in need
of insurance. Also, the compensation provided by insurance for a wide class of risks appears to
be widely regarded as a desirable objective, which public policymakers often seek to promote (for
example by tax relief on premiums). Insurance of one higher risk contributes more in expectation
to this objective than insurance of one lower risk. This suggests that public policymakers might
welcome increased purchasing by higher risks, except for the usual story about adverse selection.

17
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The usual story about adverse selection overlooks one point: with adverse selection, expected
losses compensated by insurance can be higher than with no adverse selection. The rise in equilib-
rium price with adverse selection reflects a shift in coverage towards higher risks. From a public
policymaker’s viewpoint, this means that more of the “right” risks, i.e. those more likely to suffer
loss, buy insurance. If the shift in coverage is large enough, it can more than outweigh the fall in
numbers insured. This result of higher expected losses compensated by insurance, i.e. higher “loss
coverage”, might be regarded by a public policymaker as a better outcome for society than that
obtained with no adverse selection.

Another way of putting this is that a public policymaker designing risk classification policies
in the context of adverse selection normally faces a trade-off between insurance of the “right” risks
(those more likely to suffer loss), and insurance of a larger number of risks. The optimal trade-
off depends on demand elasticities in higher and lower risk-groups, and will normally involve at
least some adverse selection. The concept of loss coverage quantifies this trade-off, and provides
a metric for comparing the effects of different risk classification schemes.

2. MOTIVATING EXAMPLES

We now give three heuristic examples of insurance market equilibria to illustrate the concept of
loss coverage and the possibility that loss coverage may be increased by some adverse selection.

Suppose that in a population of 1,000 risks, 16 losses are expected every year. There are two
risk-groups. The high risk-group of 200 individuals has a probability of loss 4 times higher than
those in the low risk-group. This is summarised in Table 1.

Low risk-group High risk-group Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums (differentiated) 0.01 0.04 0.016
Numbers insured 400 100 500
Insured losses 4 4 8
Loss coverage 0.5

Table 1: Full risk classification with no adverse selection.

We further assume that the probability of loss is not altered by the purchase of insurance, i.e.
there is no moral hazard. An individual’s risk-group is fully observable to insurers and all insurers
are required to use the same risk classification regime. The equilibrium, or “break-even”, price of
insurance is determined as the price at which insurers make zero profit.

Under our first risk classification regime, insurers operate full risk classification, charging ac-
tuarially fair premiums to members of each risk-group. We assume that the proportion of each
risk-group which buys insurance under these conditions, i.e. the “fair-premium proportional de-
mand”, is 50%. Table 1 shows the outcome, which can be summarised as follows:
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(a) There is no adverse selection, as premiums are actuarially fair and the demand is at the
fair-premium proportional demand.

(b) Half the losses in the population are compensated by insurance. We heuristically characterise
this as a “loss coverage” of 0.5.

Now suppose that a new risk classification regime is introduced, where insurers have to charge
a single “pooled” price to members of both the low and high risk-groups. One possible outcome is
shown in Table 2, which can be summarised as follows:

(a) The pooled premium of 0.02 at which insurers make zero profits is calculated as the demand-
weighted average of the risk premiums: (300× 0.01 + 150× 0.04)/450 = 0.02.

(b) The pooled premium is expensive for low risks, so fewer of them buy insurance (300, com-
pared with 400 before). The pooled premium is cheap for high risks, so more of them buy
insurance (150, compared with 100 before). Because there are 4 times as many low risks as
high risks in the population, the total number of policies sold falls (450, compared with 500
before).

(c) There is moderate adverse selection, as the break-even pooled premium exceeds population-
weighted average risk and the aggregate demand has fallen.

(d) The resulting loss coverage is 0.5625. The shift in coverage towards high risks more than
outweighs the fall in number of policies sold: 9 of the 16 losses (56%) in the population as
a whole are now compensated by insurance (compared with 8 of 16 before).

Low risk-group High risk-group Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums (pooled) 0.02 0.02 0.02
Numbers insured 300 150 450
Insured losses 3 6 9
Loss coverage 0.5625

Table 2: No risk classification leading to moderate adverse selection but higher loss coverage.

Another possible outcome under the restricted risk classification scheme, this time with more
severe adverse selection, is shown in Table 3, which can be summarised as follows:

(a) The pooled premium of 0.02154 at which insurers make zero profits is calculated as the
demand-weighted average of the risk premiums: (200× 0.01+125× 0.04)/325 = 0.02154.

(b) There is severe adverse selection, with further increase in pooled premium and significant
fall in demand.
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(c) The loss coverage is 0.4375. The shift in coverage towards high risks is insufficient to
outweigh the fall in number of policies sold: 7 of the 16 losses (43.75%) in the population
as a whole are now compensated by insurance (compared with 8 of 16 in Table 1, and 9 out
of 16 in Table 2).

Low risk-group High risk-group Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums (pooled) 0.02154 0.02154 0.02154
Numbers insured 200 125 325
Insured losses 2 5 7
Loss coverage 0.4375

Table 3: No risk classification leading to severe adverse selection and lower loss coverage.

Taking the three tables together, we can summarise by saying that compared with an initial
position of no adverse selection (Table 1), moderate adverse selection leads to a higher fraction of
the population’s losses compensated by insurance (higher loss coverage) in Table 2; but too much
adverse selection leads to a lower fraction of the population’s losses compensated by insurance
(lower loss coverage) in Table 3.

3. MODEL

Based on the motivation in the previous section, we now develop a model to analyse the impact of
restricted risk classification on equilibrium premium, adverse selection and loss coverage. We first
outline the model assumptions and define the underlying concepts.

3.1. Population Parameters

We assume that a population of risks can be divided into a high risk-group and a low risk-group,
based on information which is fully observable by insurers. Let µ1 and µ2 be the underlying risks
(probabilities of loss), i.e. µ1 = E[loss|low-risk group], µ2 = E[loss|high-risk group]. Let p1 and
p2 be the respective population fractions, i.e. a risk chosen at random from the entire population
has a probability of pi of belonging to the risk-group i = 1, 2. For simplicity, we assume that all
losses are of unit size. All quantities defined below are for a single risk sampled at random from
the population (unless the context requires otherwise).

The expected loss is given by:

E[L] = µ1p1 + µ2p2, (1)
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where L is the loss for a risk chosen at random from the entire population.
Information on risk being freely available, insurers can distinguish between the two risk-groups

accurately and charge premiums π1 and π2 for risks in risk-groups 1 and 2 respectively.
The expected insurance coverage is given by:

E[Q] = d(µ1, π1)p1 + d(µ2, π2)p2, (2)

where d(µi, πi) denotes the proportional demand for insurance for risk-group i at premium πi, i.e.
the probability that an individual selected at random from risk-group i buys insurance.

The expected premium is given by:

E[Qπ] = d(µ1, π1)p1π1 + d(µ2, π2)p2π2, (3)

where π is π1 or π2 with probability p1 or p2 respectively.
The expected insurance claim, i.e. the loss coverage, is given by:

Loss coverage: E[QL] = d(µ1, π1)p1µ1 + d(µ2, π2)p2µ2, (4)

where we assume no moral hazard, i.e. purchase of insurance has no bearing on the risk. Loss
coverage can also be thought of as risk-weighted insurance demand.

Finally, dividing Equation (4) by Equation (2) we obtain the expected claim per policy, say
ρ(π1, π2), which is given by:

Expected claim per policy: ρ(π1, π2) =
E[QL]

E[Q]
(5)

3.2. Demand for insurance

In the previous section, we have introduced the concept of proportional demand for insurance,
d(µi, πi), when a premium πi is charged for risk-group with true risk µi. In this section, we specify
a functional form for d(µi, πi) and its relevant properties.

De Jong and Ferris (2006) suggested axioms for an insurance demand function:

(a) d(µi, πi) is a decreasing function of premium πi for all risk-groups i;

(b) d(µ1, π) < d(µ2, π), i.e. at a given premium π, the proportional demand is greater for the
higher risk-group;

(c) d(µi, πi) is a decreasing function of the premium loading πi/µi; and

(d) for our model, where all losses are of unit size, we need to add d(µi, πi) < 1, i.e. the highest
possible demand is when all members of the risk-group buy insurance.

These authors suggested a “flexible but practical” exponential-power demand function, and this
approach was also followed by Thomas (2008, 2009). However the exponential-power function,
whilst very flexible, is also rather intractable. In the present paper, we use a more tractable function
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which satisfies the axioms above and for which the price elasticity of demand λ, is a constant for
all risk-groups, i.e.:

− πi
d(µi, πi)

∂d(µi, πi)

∂πi
= λ. (6)

Solving Equation (6) leads to the “iso-elastic” demand function:

d(µi, πi) = τi

(
πi
µi

)−λ
, (7)

where τi = d(µi, µi) is the “fair-premium demand” for insurance for risk-group i, that is the
probability that a member sampled randomly from risk-group i buys insurance when premiums
are actuarially fair.

The formula specifies demand as a function of the “premium loading” (πi/µi). When the
premium loading is high (insurance is expensive), demand is low, and vice versa. The λ param-
eter controls the shape of the demand curve. The “iso-elastic” terminology reflects that the price
elasticity of demand is the same everywhere along the demand curve.

Clearly, iso-elastic demand functions satisfy axioms (a) and (c) of De Jong and Ferris (2006).
Axioms (b) and (d) appear superficially to require conditions on the fair-premium demands τ1 and
τ2. However, if we define fair-premium demand-shares α1 and α2 as:

Fair-premium demand-share: αi =
τipi

τ1p1 + τ2p2
, i = 1, 2 (8)

then it turns out that that α1 and α2 fully specify the population structure in the form required for
our model. Since increasing the τi is mathematically equivalent to decreasing the pi and vice versa,
we do not need to specify any particular values for them. We can analyse the model for the full
range of fair-premium demand-shares 0 < αi < 1, knowing that for every αi there must exist some
corresponding combination of pi and τi which satisfies the axioms (b) and (d) above.

4. EQUILIBRIUM

In the model in Section 3, an insurance market equilibrium is reached when the premiums charged
(π1, π2) ensure that the expected profit, f(π1, π2) = 0, where:

f(π1, π2) = E[Qπ]− E[QL] (9)
= d(µ1, π1)(π1 − µ1)p1 + d(µ2, π2)(π2 − µ2)p2. (10)

4.1. Risk-differentiated Premiums

An obvious solution to the profit equation f(π1, π2) = 0 is to set (π1, π2) = (µ1, µ2), i.e. setting
premiums equal to the respective risks results in an expected profit of zero for each risk group and
also in aggregate. We shall refer to this case as risk-differentiated premiums.
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Following the notations introduced in Section 3, the expected insurance coverage is given by:

E[Q] = τ1p1 + τ2p2. (11)

Also, (π1, π2) = (µ1, µ2), i.e. the expected premium and expected claim are equal and given by:

E[Qπ] = E[QL] = τ1p1µ1 + τ2p2µ2. (12)

So, the expected claim per policy is:

ρ(µ1, µ2) =
E[QL]

E[Q]
=
τ1p1µ1 + τ2p2µ2

τ1p1 + τ2p2
= α1µ1 + α2µ2. (13)

4.2. Pooled Premium

Next we consider the case of pooled premium. This is where risk classification is banned, so that
insurers have to charge the same premium π0 for both risk-groups, i.e. π1 = π2 = π0, leading to
f(π0, π0) = 0. For convenience, we omit one argument for all bivariate functions if both arguments
are equal, e.g. we write f(π) for f(π, π).

Equation (9) leads to the following relationship for the equilibrium premium π0:

π0 =
E[QL]

E[Q]
. (14)

The existence of a solution for f(π) = 0 within the interval (µ1, µ2] is obvious, because f(π) is
a continuous function with f(µ1) < 0 and f(µ2) ≥ 0. Assuming an iso-elastic demand function
with constant elasticity of demand, λ, Equation (14) provides a unique solution:

π0 =
α1µ

λ+1
1 + α2µ

λ+1
2

α1µλ1 + α2µλ2
. (15)

This can be written as a weighted average of the true risks µ1 and µ2:

π0 = vµ1 + (1− v)µ2, where v =
α1

α1 + α2

(
µ2
µ1

)λ . (16)

Note that π0 does not depend directly on the individual values of the population fractions (p1, p2)
and fair-premium demands (τ1, τ2), but only indirectly on these parameters through the demand-
shares (α1, α2). So, populations with the same true risks (µ1, µ2) and demand-shares (α1, α2) have
the same equilibrium premium, even if the underlying (p1, p2) and (τ1, τ2) are different.

Figure 1 shows the plots of pooled equilibrium premium against demand elasticity, λ, for two
different population structures with the same true risks (µ1, µ2) = (0.01, 0.04) but different fair-
premium demand-shares (α1, α2). The following observations can be derived from Equations (15)
and (16), and are illustrated by Figure 1:

(a) limλ→0 π0 = α1µ1 + α2µ2 = ρ(µ1, µ2). If demand is inelastic, changing premium has no
impact on demand, and so the equilibrium premium will be the same as the expected claim
per policy if risk-differentiated premiums were charged.
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Figure 1: Pooled equilibrium premium as a function of λ for two populations with the same
(µ1, µ2) = (0.01, 0.04) but different values of α1.

(b) π0 is an increasing function of λ. In Equation (16), increasing λ reduces the weight v on
low-risk, resulting in an increase in the equilibrium premium π0.

(c) limλ→∞ π0 = µ2. If demand elasticity is very high, demand from the low risk-group falls to
zero for any premium above their true risk µ1. The only remaining insureds are then all high
risks, so the equilibrium premium must move to π0 = µ2.

(d) π0 is a decreasing function of α1. If the fair-premium demand-share α1 of the lower risk-
group increases, we would expect the equilibrium premium to fall.

5. ADVERSE SELECTION

Adverse selection is typically defined in the economics literature as a positive correlation (or equiv-
alently, covariance) of coverage and losses (e.g. for a survey see Cohen and Siegelman (2010)).
Using the notations developed in Section 3, this can be quantified by the covariance between the
random variables Q and L, i.e. E[QL] − E[Q]E[L]. We prefer to use the ratio rather than the
difference, so our definition is:

Adverse selection =
E[QL]

E[Q]E[L]
=
ρ(π1, π2)

E[L]
, (17)

where ρ(π1, π2) is the expected claim per policy as defined in Equation (5). This metric for adverse
selection is intuitively appealing: it is the the ratio of the expected claim per policy to the expected
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loss per risk, where the risk is drawn at random from the whole population.
To compare the severity of adverse selection under different risk classification regimes, we

need to define a reference level of adverse selection. We use the level under risk-differentiated
premiums, ρ(µ1, µ2)/E[L], and so define the adverse selection ratio as:

Adverse selection ratio: S(π1, π2) =
ρ(π1, π2)

ρ(µ1, µ2)
=

ρ(π1, π2)

α1µ1 + α2µ2

. (18)

Note that as the same underlying population is used in both the numerator and the denominator of
the ratio, the population expected loss E[L] gets cancelled and does not play any further role.

An interesting case arises for pooled equilibrium premium, where by Equation (14), an equi-
librium premium π0 satisfies the condition:

π0 =
E[QL]

E[Q]
= ρ(π0, π0). (19)

So in the particular case of pooled equilibrium premium, π0, we have:

Adverse selection ratio: S(π0) =
π0

α1µ1 + α2µ2

. (20)

In essence, the pooled equilibrium premium itself (scaled by the expected claim per policy under
risk-differentiated premiums) provides a measure of the adverse selection.

Figure 2 shows the adverse selection ratio under pooling for two populations with the same
underlying risks (µ1, µ2) = (0.01, 0.04) and demand elasticity λ, but different values of the fair-
premium demand-share α1.

The following properties of the adverse selection ratio, S(π0), follow directly from the obser-
vations in Section 4:

(a) S(π0) ≥ 1, as the pooled equilibrium premium, π0, is always higher than the expected claim
per policy for risk-differentiated premiums.

(b) S(π0) is an increasing function of the underlying demand elasticity.

(c) limλ→∞ S(π0) = µ2
α1µ1+α2µ2

, i.e. when demand is very elastic, the adverse selection ratio
tends towards a limit where only higher risks are insured.

The adverse selection ratio is always higher under pooling than under risk-differentiated premi-
ums. It also increases monotonically with the underlying demand elasticity. Therefore this metric
is unable to distinguish between cases where pooling gives a better outcome for society as a whole
(Table 2 in the motivating examples in Section 2) and cases where pooling gives a worse outcome
for society as a whole (Table 3 in the motivating examples in Section 2). This leads us to the
concept of loss coverage ratio discussed in the next section.

6. LOSS COVERAGE

The motivating examples in Section 2 suggested loss coverage, heuristically characterised as the
proportion of the population’s losses compensated by insurance, as a measure of the social effi-
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Figure 2: Adverse selection ratio as a function of λ for two populations with the same (µ1, µ2) =
(0.01, 0.04) but different values of α1.

cacy of insurance. This can be formally quantified in our model by the expected insurance claim,
E[QL], as defined in Section 3 as:

Loss coverage: LC(π1, π2) = E[QL]. (21)

To compare the relative merits of different risk classification regimes, we define a reference
level of loss coverage. We use the level under risk-differentiated premiums (i.e. the same approach
as for adverse selection in Equation (18)), and so define the loss coverage ratio, as follows:

Loss coverage ratio: C =
LC(π1, π2)

LC(µ1, µ2)
. (22)

Considering loss coverage ratio for pooled premium, i.e π1 = π2 = π0, and using the iso-elastic
demand function with demand elasticity λ, in Equation (4), gives:

C(λ) =
1

πλ0

α1µ
λ+1
1 + α2µ

λ+1
2

α1µ1 + α2µ2

, (23)

where π0 is the pooled equilibrium premium given in Equation (15). The above can also be con-
veniently re-expressed as:

C(λ) =

[
wβ1−λ + (1− w)

]λ [
w + (1− w)βλ

]1−λ
βλ(1−λ)

, where (24)

w =
α1µ1

α1µ1 + α2µ2

and β =
µ2

µ1

> 1.
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Figure 3: Loss coverage ratio as a function of λ for four population structures.

Figure 3 shows loss coverage ratio for four population structures. Both plots in Figure 3 show
the same example, with the right-hand plot zooming over the range 0 < λ < 1.

We make the following observations:

(a) limλ→0C(λ) = 1. This follows directly from Equation (23). Intuitively, if demand is inelas-
tic then pooling must give the same loss coverage as fair premiums.

(b) limλ→∞C(λ) = 1 − w = α2µ2
α1µ1+α2µ2

. This follows from Equation (24). Recall that for
highly elastic demand, equilibrium is achieved when only high risks buy insurance at the
equilibrium premium π0 = µ2, which explains the above result.

(c) For λ > 0,
λ Q 1⇒ C(λ) R 1. (25)

The result implies that pooling produces higher loss coverage than fair premiums if demand
elasticity is less than 1. (The proof of this result is beyond the scope of this paper.)

(d)

max
w,λ

C =
1

2

(
4

√
µ2

µ1

+ 4

√
µ1

µ2

)
=

1

2

(
4
√
β +

1
4
√
β

)
. (26)

As can be seen from the right-hand plot of Figure 3, for a given value of relative risk, β, loss
coverage ratio attains its maximum when λ = 0.5 andw = 0.5. Moreover, the maximum loss
coverage ratio increases with increasing relative risk. This implies that a pooled premium
might be highly beneficial in the presence of a small group with very high risk exposure.
(The proof of this result is beyond the scope of this paper.)
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7. CONCLUSIONS

This paper has investigated insurance market equilibrium under restricted risk classification with
iso-elastic demand. The equilibrium was characterised by three quantities: equilibrium premium,
adverse selection, and loss coverage, defined as the expected losses compensated by insurance.
We investigated how these quantities varied depending on the elasticity of demand for insurance,
which was assumed to be equal for high and low risk-groups.

The equilibrium premium (and adverse selection) increases monotonically with demand elas-
ticity. However, loss coverage ratio increases from 1, to a maximum for demand elasticity of
around 0.5 and then decreases, falling back to 1 for demand elasticity of 1. So, restricting risk
classification increases loss coverage if demand elasticity is less than 1. This is despite the fact
that restricting risk classification will always increase adverse selection. In other words, the con-
cept of loss coverage suggests that adverse selection is not always a bad thing.
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In this paper a new methodology to derive probabilistic models based on the circular tan−1 function
is presented. This procedure generates a new survival function after incorporating an extra scale
parameter α to a given parent survival function. The latter survival function is determined as
limiting case when α tends to zero. By choosing as parent the classical Pareto survival function,
the Pareto ArcTan (PAT) distribution is obtained. After providing a comprehensive analysis of its
statistical properties, theoretical results with reference to insurance are illustrated. Its performance
is compared by means of the well–known Norwegian fire insurance data with other existing heavy-
tailed distributions in the literature such as Pareto, Stoppa and shifted lognormal distributions.

1. INTRODUCTION

Most of the methods for generalizing probability density functions in the statistical literature are
based on the idea of incorporating a new parameter to a classical distribution (see Marshall and
Olkin (1997)). The probabilistic models derived from this methodology usually exhibit more flex-
ibility and they include classical distributions for particular values of the new parameter attached
to the initial family.

In this work a new method to add a parameter to a family of distributions is proposed after
making a change of variable in the truncated Cauchy distribution. As a result, a class of proba-
bilistic models is obtained. In particular, if this methodology is applied to the Pareto distribution,
the Pareto ArcTan (PAT) distribution is derived.

In general insurance, only a few large claims arising in the portfolio represent the largest part
of the payments made by the insurer. The PAT distribution provides a more accurate description
of large losses than other heavy-tailed distributions do. In this particular, the performance of this
model, by means of the well–known Norwegian fire insurance data is compared to Pareto, shifted
lognormal and Stoppa (see Kleiber and Kotz (2003)) distributions.
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2. GENESIS AND PROPERTIES

The half–Cauchy distribution truncated at α > 0 has pdf given by

f(y) =
1

tan−1 α

1

1 + y2
, 0 < y < α. (1)

In the latter expression, tan−1 is the inverse of the circular tangent function. Let us consider
now the transformation y = αF̄ (x), where F̄ (x) is the survival function of a random variable X
with support in [a, b] and where a and b can be finite or non–finite. Then, the corresponding pdf of
the random variable X obtained from (1) results

f(x;α) =
1

tan−1 α

αf(x)

1 + [αF̄ (x)]2
, (2)

for a ≤ x ≤ b and α > 0. The survival function of X , which is obtained from (2) by integration,
is given by

F̄ (x;α) =
tan−1(αF̄ (x))

tan−1 α
. (3)

Observe that when (3) is applied to the classical Pareto distribution with survival function given by
F̄ (x) =

(
σ
x

)θ, x ≥ σ, σ > 0, the new survival function is

F̄ (x;α) =
tan−1(α(σ/x)θ)

tan−1 α
, x ≥ σ. (4)

Then, the corresponding pdf is

f(x;α) =
1

tan−1 α

ασθθxθ−1

(ασθ)2 + x2θ
, x ≥ σ. (5)

The expression (5) includes as particular case the Pareto distribution as limiting case when α→ 0.
The r–th moment of the new distribution about zero. This is given by

E(Xr) =
αθσr

(θ − r) tan−1 α
2F1

(
1,
θ − r

2θ
;
3θ − r

2θ
;−α2

)
, θ > r.

From (4) the quantile function xγ is simply derived

xγ = σ

[
1

α
tan(γ tan−1 α)

]−1/θ
, with 0 < γ < 1,

from which the median can be easily obtained.
Besides, the mode, which can be obtained by differentiating (5) with respect to the variable x,

is given by

xMo =

[
(θ − 1)(σθ α)2

1 + θ

]1/2 θ
.
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The value at risk (VaR) is defined as the amount of capital required to ensure that the insurer
does not became insolvent with a high degree of certainty. The VaR of a random variable X which
follows the PAT distribution is the q quantile and it is given by

VaR(X; q) = σ

(
α

tan((1− q) tan−1 α))

)1/θ

.

The use of the VaR is questionable due to the lack of subadditivity, for that reason the expected
loss given that the loss exceeds the q quantile of the distribution of X , the tail value at risk (TVaR),
is considered. Then, if X follows a PAT distribution, for any quantile q the tail value at risk is
given by

TVaR(X; q) =
1

1− q

∫ 1

q

VaR(x; q) dq

=− σθα1/θ tan
θ−1
θ (tan−1 α− q tan−1 α)

(θ − 1)(q − 1) tan−1(α)

×2 F1

(
1,
θ − 1

2θ
;
3

2
− 1

2θ
;− tan2

(
tan−1 α− q tan−1 α

))
.

3. NUMERICAL APPLICATIONS

The versatility of (5), as compared with different heavy–tailed distributions such as to Pareto,
shifted lognormal and Stoppa, is proven by analyzing real actuarial loss data. This set of data
describes a Norwegian fire insurance portfolio from 1989 to 1992 (see Beirlant et al. (2004)). This
data set includes the claim value on 2,585 fire insurance losses in Norwegian Krone (×1000 NOK).
A priority of 500 units was in force, thus no claims below this limit were recorded.

3.1. Estimation and Model Assessment

Table 1 provides different measures of goodness–of–fit based on information–criterion approach.
The negative of the maximum of the log–likelihood (NLL) is exhibited in the second column of
this Table.

Distribution NLL AIC BIC CAIC
Pareto 21058.50 42119.00 42124.85 42125.85
Sh. Logn 20993.60 41993.19 42010.76 42013.76
Stoppa 20984.56 41975.13 41992.70 41995.70
PAT 20935.66 41785.31 41887.03 41889.03

Table 1: Different measures of model assessment for Norwegian fire loss data.
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Next the Akaike’s Information Criteria (AIC, which is calculated by twice NLL plus twice
the number of parameters), evaluated at the maximum likelihood estimates is shown in the third
column; finally in the last two columns of this Table we give the Bayesian information criterion
(BIC, which is obtained as twice the NLL at the estimates plus k ln(n), where k is the number of
free parameters and n is the sample size) and the Consistent Akaike’s Information Criteria (CAIC),
a correction factor based on the sample size is used to compensate for the overestimating nature of
AIC. It is defined as twice NLL plus k (1 + ln(n)), again k is the number of free parameters and
n refers to the sample size. A lower value of these measures is desirable. These results show that
the PAT distribution provide a better fit than do the classical Pareto, shifted Lognormal and Stoppa
distributions, even when some of these distributions use a larger number of parameters.

3.2. Point Estimation of High Quantiles

High quantiles of the distribution of the claim amounts has been traditionally considered as a
measure that provides useful information for practitioners. Empirical and fitted models quantiles
for the four models considered are displayed in Figure 1. The PAT distribution provides the best fit
to data. The Pareto and Stoppa distribution tend to overestimate the extreme values where shifted
lognormal model underestimates them.

3.3. Tail Value at Risk

In Table 2, the tail value at risk (TVaR), for empirical values and different security levels has been
calculated for the models considered. This risk measure describes the expected loss given that the
loss exceeds the security level (quantile).

Security Empirical Pareto Shifted Stoppa PAT
Level lognormal
0.90 9936.60 136861.19 7997.18 14796.88 10814.99
0.95 15635.29 267267.40 11331.77 24728.08 17231.80
0.99 42475.20 1266000.34 23237.94 81290.92 50793.41

Table 2: TVar for the different models considered.

4. CONCLUSIONS AND FORTHCOMING RESEARCH

In this research proposal a new mechanism to derive probability distributions by adding a param-
eter to a parent distribution function have been introduced. When the parent distribution is Pareto,
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Figure 1: Q–Q plots for Norwegian fire loss data.
Figure 1: Q–Q plots for Norwegian fire loss data.
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the Pareto ArcTan (PAT) is derived. The PAT model seems suitable for modeling payments that
include a positive priority, with no claims below that threshold, and losses that combine data with
high frequencies near the lower limit together with large upper tail derived from massive losses
with low frequencies. Its performance has been proven using the well–known Norwegian insur-
ance fire claim data. Numerical results illustrate the PAT distribution outperforms other existing
heavy–tailed distributions for this set of data. Although the method has only been applied to the
classical Pareto distribution, certainly this procedure can be extended by allowing the choice of
other probabilistic families as parent distribution. Surely, more flexible distributions will be ob-
tained.
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We estimate the conditional asset return distribution by modelling a finite number of quantiles
using Bayesian analysis. The motivation for this is to jointly incorporate time-varying dynamics
of shape and scale of the asset return distribution in a robust manner. We also want to avoid any
violations of the quantile orderings. Additionally, we want to address the challenges with reliably
estimating such models. Thus, Bayesian analysis using Adaptive Markov Chain Monte Carlo
(MCMC) methods is adopted.

1. INTRODUCTION

In this paper, we estimate jointly the scale and the shape of the conditional return distribution in
a robust way. Our aim is to estimate the conditional distribution by using quantile regression, in
particular a CAViaR model, see Engle and Manganelli (2004), for each of a set of quantiles.

The approach of modelling the quantiles of the distribution directly has been shown to be a ro-
bust approach in cases where non-normality holds, as in the case of asset returns, or in cases where
the aim is to fit the tails of the distribution. By extending the single quantile and combining quan-
tile estimates at different probability levels we are able to use valuable and different information
provided at different sides of the distribution.

Engle and Manganelli (2004) state that, “... But the CAViaR specifications are more general
than these GARCH models. Various forms of non-iid error distributions can be modelled in this
way. In fact, these models can be used for situations with constant volatilities but changing error
distributions, or situations in which both error densities and volatilities are changing.” This is our
starting point as we seek a robust way to model both the scale and the shape of the conditional
asset return distribution.

Interquartile Range (IQR) is the difference between the upper 75% and the lower 25% quartile.
It is a robust measure of scale and therefore useful for modelling asset returns which are found to
be skewed with heavy tails relative to a Normal distribution. By standardising the quantiles by
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the estimated time-varying IQR, fat tails should be reduced and the dynamics of the shape are
separated from the scale dynamics.

An important issue is the crossing problem when modelling quantiles. By using a single quan-
tile model one might end up with an estimate for the 1% that is higher than the 5% quantile for
example. This violates the correct ordering of the quantiles, see Chernozhukov et al. (2008), and
Chernozhukov et al. (2010).

In this work we perform a Bayesian analysis using Adaptive MCMC methods. By this method-
ology, constraints are imposed by construction and the crossing problem is addressed. The MCMC
method sidesteps the well-known estimation issues of CAViaR-type models. In particular, quantile
estimation requires optimization of a non-linear, not everywhere convex objective function. Thus,
the quality of the parameter estimates is very sensitive to the implementation of the optimization
algorithm. We choose to use Adaptive MCMC methods because they offer solutions in cases where
the target distribution is not tractable, as here. In particular they allow adaptation at every step of
the algorithm and they converge to the correct distribution, see Andrieu and Thoms (2008) for a
review.

2. THE MODEL

We decompose the asset return distribution by separating the dynamics of the shape (quantiles) and
scale (IQR). By this, we are able to model the asset return distribution semiparametrically and
identify the type of departures during different periods such as those of high volatility, skewness
or low volatility.

Our empirical results suggest that this framework is superior to traditional approaches for single
quantile in terms of forecasting and better explaining the evolution of the tails of the distribution.
We base quantile estimation on a finite sample of quantiles of the left and the right side of the
distribution that are estimated jointly with IQR and standardised by the time-varying IQR. Let
the θ-quantile qθ,t at time t be modelled as

qθ,t = IQRt

(
uθ +

p∑
i=1

βθ,i
qθ,t−i
IQRt−i

+

p∑
i=1

`(Ft−i; γθ,i, . . . , γθ,p)

IQRt−i

)

for θ = 0.99, 0.95, 0.25, 0.05, 0.01, where Ft−i is the information set up to and including time
t − i, and `(.) is a possibly non-linear function, uθ is the intercept of the quantile, βθ,i is the
autoregressive parameter and γθ,i is the parameter on the lags of returns, quantiles etc. Let the time
t-IQR be modelled as

IQRt = u+

p∑
i=1

βiIQRt−i +

p∑
i=1

`(Ft−i; γi, . . . , γp),

and q0.75,t = IQRt + q0.25,t.
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3. BAYESIAN ESTIMATION METHODOLOGY

Classical statistical inference on parameter estimates in the joint quantile model setup is feasible,
but there are some issues that are not addressed in a robust way, such as tuning the right starting
point of the optimisation. This happens because quantile estimation requires optimisation of a non-
linear, not everywhere convex objective function. The problem of incorrectly ordered quantiles
remains in this framework. Also, calculating the standard errors of the parameter estimates is
challenging.

In order to address these issues, we perform a Bayesian analysis using an Adaptive MCMC
algorithm. By deriving the Laplace-type likelihood, as in Yu and Moyeed (2001), we are able
to obtain the parameters by the Metropolis-Hastings algorithm (MH), see Hastings (1970), and
Metropolis et al. (1953).

Let the likelihood (full conditional) be

L(uθ, βθ, γθ; y, q) ∝ exp{
T∑
t=1

∑
θ

[yt − qθ(yt|Ft−1)][θ − I(yt < qθ(yt|Ft−1))]},

where I(.) denotes an indicator function, and T is the sample size.
Here we discuss the steps of the MCMC algorithm to fit the joint quantile model with IQR.

We choose the prior to be informative over the possible region following a Normal distribution.
For the intercept of the quantiles we choose uθ ∼ N(t−1(θ, 5), 106), where t−1(θ, 5) is the inverse
of the Student t-distribution at θ with 5 degrees of freedom. For the autoregressive parameters we
choose βθ ∼ N(0.5, 106), and finally for the parameters on past returns we choose γθ ∼ N(0, 106).

The quantiles and the IQR can be updated simultaneously. The parameters are updated in
blocks for each quantile, where ϕθ = (uθ, βθ, γθ) are the parameters uθ, βθ, γθ of the joint quantile
model with IQR. Thus, we update each dimension consecutively using a MH step.

1. Perform the following steps for g = 1, 2, . . . , N

• ϕ′θ is drawn from the conditional density P (ϕθ ′, ϕθg−1|y).
• Propose ϕ′θ and accept with probability

α = min

{
1,

f(y|ϕθ ′)f(ϕθ ′)P (ϕθ ′, ϕθg−1|y)
f(y|ϕθg−1)f(ϕθg−1)P (ϕθg−1, ϕθ ′ |y)

}
.

2. Perform the following steps for g = N + 1, N + 2, . . . ,M

• ϕ′θ is drawn from the full conditional density f(ϕθ|y).
• Propose ϕ′θ and accept with probability

α = min

{
1,

f(y|ϕθ ′)f(ϕθ ′)f(ϕθ ′, ϕθg−1|y)
f(y|ϕθg−1)f(ϕθg−1)f(ϕθg−1, ϕθ ′|y)

}
.

3. The set of accepted values of ϕθ is saved and represents the sample from the target distribu-
tion.
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We use a combined Adaptive Random Walk (RW) for the burn-in period and an Adaptive
Independent Kernel (IK) Metropolis Hastings (MH) algorithm for the remaining iterations, where
the sample mean and covariance matrix of the burn-in iterates is employed for each parameter
grouping.

We adjust the volatility of the Student-t proposed distribution with 5 degrees of freedom when-
ever the acceptance rate falls out of bounds around 0.234, as suggested by Gelman et al. (1997).
By this we are able to update the kernels given the performance of the algorithm which is tuned so
that we are not accepting or rejecting too much.

4. EMPIRICAL ANALYSIS AND RESULTS

We use a sample of daily returns of 4 international indices and 5 stocks trading on the London,
NASDAQ, and New York Stock Exchanges. These are the FTSE trading on the London Stock Ex-
change, NASDAQ trading on the NASDAQ Stock Market, Standard and Poor’s 500 (SP500), In-
ternational Business Machines (IBM), Xerox Corporation (XEROX), Walt Disney company (DIS-
NEY), Caterpillar Inc. (CAT), Dow Chemical company (DOW) and Boeing company (Boeing)
trading on the New York Stock Exchange.

Here we present results for FTSE. The data set ranges from November 1984 to November
2014. In table 1 and figure 1 we present results of the Adaptive MCMC described above for 40000
iterations and a burn-in period of 15000.

In table 1 we provide a summary of the Bayesian posteriors for one of the joint quantile spec-
ifications, the Joint Component Asymmetric Slope model (J-C-AS) — where we set the number
of lags of past information at one. This specification uses a two component process to model
IQR in order to account for a slow moving component. We replace u with a time-varying process
that induces a long memory property to the IQR, and allows for smooth adjustments to the level
of the IQR under different market conditions. The deviation IQRt−1 − ut−1 is the component
that represents an adjusted distance from the unconditional mean. The dynamics of ut capture the
dependence in IQRt, albeit with an adjusted mean level. Overall, we introduce a long memory
feature in the IQR process similar to that in the component GARCH models, see Engle and Lee
(1999).

IQRt = ut + β1(IQRt−1 − ut−1) + γ1y
+
t−1 + δ1y

−
t−1,

ut = α + β2ut−1 + γ2yt−1.

The quantiles are given by

qθ,t = IQRt

(
uθ + βθ

qθ,t−1
IQRt−1

+ γθ
|yt−1|
IQRt−1

)
,

for θ = 0.99, 0.95, 0.25, 0.05, 0.01, and q0.75,t = IQRt + q0.25,t.
Table 1 gives sensible parameter estimates. In particular, the intercept of the quantiles is neg-

ative or positive corresponding to the left or the right side of the distribution. The autoregressive
parameters ensure stationarity for all the quantiles, IQR is highly persistent while others are not.



Decomposition of the conditional asset return distribution: A Bayesian Approach 41

Parameter Estimate StDev LowerCI UppperCI Parameter Estimate StDev LowerCI UppperCI

u0.99 1.2571 0.6091 1.2495 1.2646 γ0.05 -0.0218 0.0468 -0.0224 -0.0212
β0.99 0.2905 0.3311 0.2864 0.2946 u0.01 -1.3578 0.6142 -1.3654 -1.3501
γ0.99 0.0388 0.0736 0.0379 0.0397 β0.01 0.2627 0.3113 0.2588 0.2665
u0.95 0.8874 0.4446 0.8819 0.8929 γ0.01 -0.2130 0.0809 -0.2140 -0.2120
β0.95 0.2932 0.3465 0.2889 0.2975 β1 0.9194 0.0196 0.9192 0.9197
γ0.95 0.0141 0.0379 0.0137 0.0146 γ1 0.0163 0.0138 0.0161 0.0165
u0.25 -0.2726 0.1114 -0.2739 -0.2712 δ1 -0.1947 0.0237 -0.1950 -0.1944
β0.25 0.3947 0.2321 0.3918 0.3975 α 0.0002 0.0003 0.0002 0.0002
γ0.25 -0.0142 0.0190 -0.0144 -0.0139 β2 0.9409 0.0238 0.9407 0.9412
u0.05 -0.8945 0.4590 -0.9002 -0.8888 γ2 0.0270 0.0156 0.0268 0.0272
β0.05 0.3189 0.3380 0.3147 0.3230

Table 1: Summary statistics for the posteriors of the parameters of J-C-AS for FTSE.

Parameters on the returns of positive quantiles are positive, increasing the quantile each time while
parameters on the returns of negative quantiles are negative, decreasing it.

Figure 1 gives the plots for the qθ,t quantiles, and the corresponding standardised quantiles
by IQR, q̂θ,t =

qθ,t
IQRt

. We show that by modelling IQR jointly with the quantiles (standardised
by IQR) we are able to capture the time-varying scale, leaving few outliers.We are also able to
address the crossing problem. We are currently analysing if there are indeed any dynamics or other
time-varying features in the shape of the distribution after adjusting for scale.
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Figure 1: Jointly estimated qθ,t quantiles with IQR, and standardised q̂θ,t quantiles for FTSE.

5. CONCLUSIONS

This paper presents a method for Bayesian semiparametric inference in joint quantile models. Joint
quantile models estimated with IQR provide evidence for being able to capture dynamics that are
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consistent with the concept of time-varying risk.
Posteriors concentrate on sensible values for quantiles at different probability levels. Having

checked the autocorrelation function for sampled values from each parameter, we find that this
decays quickly for all parameters. This suggests that the algorithm mixes quickly.

Also extreme quantiles at the tails are more volatile than the quantiles of the main body, as
expected. In line with prior evidence asymmetry parameters suggest that negative returns are
more likely to cause higher increases in the left tail of the distribution than positive returns, this is
stronger for more extreme quantiles.

We are able to analyse the dynamics of both the scale and the shape which would be difficult
to capture using traditional models.

Future work will consider estimating the conditional asset return distribution without using the
link between the likelihood and the Laplace-type distribution in order to account for the potential
interdependence between individual quantiles.
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1. INTRODUCTION

Market models, the most famous example being the LIBOR market model, are very popular in
the area of interest rate modeling. If these models generate nonnegative interest rates they usually
do not give semi-analytic formulas for both basic interest rate derivatives, caps and swaptions.
One exception is the class of affine LIBOR models proposed by Keller-Ressel et al. (2013). Using
nonnegative affine processes as driving processes affine LIBOR models guarantee nonnegative for-
ward interest rates and lead to semi-analytical formulas for caps and swaptions, so that calibration
to interest rate market data is possible. This paper modifies the setup of Keller-Ressel et al. (2013)
to allow for not necessarily nonnegative affine processes. This modification still leads to semi-
analytical formulas for caps and swaptions and guarantees nonnegative forward interest rates, but
allows for a wider class of driving affine processes and hence is more flexible in producing interest
rate skews and smiles. This paper summarizes the results of the paper Müller and Waldenberger
(2015), further information as well as proofs can be found in the original paper.

Affine processes

Let X = (Xt)0≤t≤T be a homogeneous Markov process with values in D = Rm
≥0×Rn realized on

a measurable space (Ω,A) with filtration (F t)0≤t≤T , with regards to which X is adapted. Denote
by Px[·] and Ex [·] the corresponding probability and expectation when X0 = x. X is said to be an
affine process, if its characteristic function has the form

Ex
[
eu·Xt

]
= exp (φt(u) + ψt(u) · x) , u ∈ iRd, x ∈ D, (1)

where φ : [0, T ] × iRd → C and ψ : [0, T ] × iRd → Cd with iRd = {u ∈ Cd : Re(u) = 0}. By
homogeneity and the Markov property the conditional characteristic function satisfies

Ex
[
eu·Xt| F s

]
= exp (φt−s(u) + ψt−s(u) ·Xs) .

43
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An affine process X is called analytic (see Keller-Ressel (2008)), if X is stochastically continuous
and the interior of the set

V :=

{
u ∈ Cd : sup

0≤s≤T
Ex
[
eRe(u)·Xs

]
<∞ ∀x ∈ D

}
, (2)

contains 0. In this case the functions φ and ψ have continuous extensions to V , which are analytic
in the interior, such that (1) holds for all u ∈ V .

Interest rate market models

Consider a tenor structure 0 < T1 < · · · < TN < TN+1 =: T and a market consisting of zero
coupon bonds with maturities T1, . . . , TN+1. Their price processes (P (t, Tk))0≤t≤Tk are assumed to
be nonnegative semimartingales on a filtered probability space (Ω,A, (Ft)0≤t≤T ,P), which satisfy
P (Tk, Tk) = 1 almost surely. If there exists an equivalent probability measure QT such that the
normalized bond price processes P (·, Tk)/P (·, T ) are martingales, the market is arbitrage-free. In
this case we can define equivalent martingale measures QTk for the numeraires P (t, Tk) instead of
P (t, T ) by

dQTk

dQT
=

1

P (Tk, T )

P (0, T )

P (0, Tk)
. (3)

2. THE MODIFIED AFFINE LIBOR MODEL

On the filtered probability space (Ω,A, (Ft)0≤t≤T ,QT ) consider an analytic one-dimensional affine
process X with a fixed starting value x0. For u ∈ V with −u ∈ V consider the martingales Mu,

Mu
t := EQT [cosh(uXT )| F t] =

1

2

(
eφT−t(u)+ψT−t(u)Xt + eφT−t(−u)+ψT−t(−u)Xt

)
. (4)

By the symmetry of the cosinus hyperbolicus Mu = M−u, hence one may restrict u to be nonneg-
ative. For the given tenor structure 0 < T1 < · · · < TN ≤ TN+1 = T and the market setup from
before define the normalized bond prices for k = 1, . . . , N and t ≤ Tk as

P (t, Tk)

P (t, T )
:= Muk

t , uk ∈ {v ∈ V : v ≥ 0,−v ∈ V}.

With Muk
t being a QT -martingale the model is arbitrage-free. For every x ∈ R the function

u 7→ cosh(ux) is increasing in u ∈ R≥0 and satisfies cosh(ux) ≥ 1 so that if

u1 ≥ u2 ≥ · · · ≥ uN ≥ 0,

it holds that
P (t, T1)

P (t, T )
≥ .. ≥ P (t, TN)

P (t, T )
≥ 1 (5)
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and forward interest rates

F k(t) =
1

∆k

(
P (t, Tk−1)

P (t, Tk)
− 1

)
=

1

∆k

(
M

uk−1

t

Muk
t

− 1

)
, ∆k = Tk − Tk−1,

are nonnegative for all 0 ≤ t ≤ Tk. To fit initial market data one has to choose the sequence (uk)
so that Muk

0 = P (0, Tk)/P (0, T ).

Remark 2.1 As in the affine LIBOR model for a monotonically decreasing sequence (uk) forward
interest rates are not only nonnegative, but bounded below by strictly positive time-dependent
constants (the bounds can be calculated numerically). This is not a big issue if these bounds are
close to zero, but has to be checked during the calibration process.

In the modified affine LIBOR model the change of measure to the Tk-forward measure QTk is
given by

dQTk

dQT
=

P (0, T )

P (0, Tk)
Muk

Tk
=
Muk

Tk

Muk
0

. (6)

Here Muk
t is a sum of exponentials of Xt, while in the affine LIBOR model the corresponding

term is a single exponential. This means that contrary to the affine LIBOR model the process X is
not an inhomogeneous affine process under QTk and it is not possible to calculate the QTk-moment
generating function of P (t, Tk−1)/P (t, Tk). Nevertheless it is possible to get analytical formulas
for the prices of caplets and swaptions.

Option pricing in the modified affine LIBOR model

The derivation of the pricing formulas for caplets and swaptions is based on a method first applied
in Jamshidian (1989). Here we will consider only swaptions since caplets can be treated similarly1.
Note that if uk = uk−1 the corresponding forward interest rate F k always stays zero. To exclude
such pathological examples assume that the sequence (uk) is strictly decreasing. In this section
random variables are often viewed as functions of the value of the driving process X . Specifically
consider the functions Mu

t : R→ R,

x 7→Mu
t (x) :=

1

2

(
eφT−t(u)+ψT−t(u)x + eφT−t(−u)+ψT−t(−u)x

)
. (7)

The time t value of martingale Mu in (4) is then Mu
t = Mu

t (Xt). In the rest of the paper Mu
t will

denote both, the function and the value of the stochastic processes, where the correct interpretation
should be clear from context.

Consider a swap which is part of the tenor structure. That is, consider 1 ≤ α < β ≤ N and the
according interest rate swap with forward swap rate

Sα,β(t) =
P (t, Tα)− P (t, Tβ)∑β

k=α+1 ∆kP (t, Tk)
, ∆k = Tk − Tk−1.

1Actually caplet prices then coincide with prices of swaptions with only one underlying period. The difference
between those two derivatives is the payoff time.
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The payoff of a put swaption on the above swap with strike K is then

β∑
k=α+1

P (Tα, Tk)∆k (K − Sα,β(Tα))+ =

(
P (Tα, Tβ) +K

β∑
k=α+1

∆kP (Tα, Tk)− 1

)
+

=

(
M

uβ
Tα

Muα
Tα

+

β∑
k=α+1

K∆k

Muk
Tα

Muα
Tα

− 1

)
+

.

The following lemma can be used to simplify this payoff function.

Lemma 2.1 For i = 1, . . . , n let u0 ≥ ui ≥ 0, where for at least one i u0 > ui. Let ci > 0 be
positive constants. Define a function g : R→ R by

g(x) :=
n∑
i=1

ci
Mui

t (x)

Mu0
t (x)

. (8)

Then g has a unique maximum at some point ξ ∈ R and is strictly monotonically decreasing to 0
on the left and right side of ξ.

Since the function Muβ
Tα

(x)/Muα
Tα

(x) +
∑β

k=α+1K∆kM
uk
Tα

(x)/Muα
Tα

(x) is of the form of Lemma
2.1, it has a unique maximum ξ and one can find constants κ1 ≤ ξ ≤ κ2 such that after a change
of measure using (6) the value of a put swaption is

PutSwaption(t, Tα, Tβ, K) = P (t, T )EQT
[
fKα,β(XTα)

∣∣∣F t] ,
where

fKα,β(x) =

(
M

uβ
Tα

(x)−Muα
Tα

(x) +

β∑
k=α+1

K∆kM
uk
Tα

(x)

)
I {κ1 < x < κ2} . (9)

Here the expectation is under QT , where the moment generating function of XTα is known in
closed form. One can use Fourier inversion methods to arrive at the following formula.

Theorem 2.2 Let R ∈ V ∩ R. In the modified affine LIBOR model the price of a put swaption is

PutSwaption(t, Tα, Tβ, K) =
P (t, T )

π

∫ ∞
0

Re
(
MXTα |Xt(R + iu)f̂Kα,β(u− iR)

)
du. (10)

The Fourier transform f̂Kα,β is for R /∈ {0, uα, . . . , uβ}

f̂Kα,β(z) =
1

iz

(
hTακ1,κ2(−iz, uβ)− hTακ1,κ2(−iz, uα) +K

β∑
k=α+1

∆kh
Tα
κ1,κ2

(−iz, uk)
)
, (11)

where htκ1,κ2(z, u)

htκ1,κ2(z, u) := eφT−t(u)
ψT−t(u)

2(z + ψT−t(u))

(
e(z+ψT−t(u))κ2 − e(z+ψT−t(u))κ1

)
+ eφT−t(−u) ψT−t(−u)

2(z + ψT−t(−u))

(
e(z+ψT−t(−u))κ2 − e(z+ψT−t(−u))κ1

)
.

(12)
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In order to calculate f̂Kα,β one has to find the roots κ1, κ2 of the function

gKα,β(x) :=
M

uβ
Tα

(x)

Muα
Tα

(x)
+

β∑
k=α+1

K∆k

Muk
Tα

(x)

Muα
Tα

(x)
− 1. (13)

By Lemma 2.1 this amounts to finding the roots of a function which has a single optimum and
is monotonic when moving away from this optimum. Numerical determination of the roots of
such well-behaved one-dimensional functions poses no problem. Having determined those bounds
valuation reduces to a one-dimensional integration of a function that is falling at least like 1/x2

(depending on the moment generating function of the affine process), so also numerical integra-
tion is feasible. Caps, floors and options like digital options or Asset-or-Nothing options can be
calculated in a similar manner.

Volatility surfaces

To apply the proposed model one needs to fix an affine process. Here we consider an Ornstein-
Uhlenbeck process (parameters θ, λ) which is generated by a Levy process which consists of a
Brownian motion (parameter σ2) and double exponentially distributed jumps (parameters β+, β−,
α+, α−). Details can be found in Müller and Waldenberger (2015). The functions φ and ψ in this
case read

φt(u) =
σ2u2

4λ
(1− e−2λt) + θu(1− e−λt)

+
β+ + β−

2
ln

(
(α+ − e−λtu)(α− + e−λtu)

(α+ − u)(α− + u)

)
+
β+ − β−

2
ln

(
(α+ − e−λtu)(α− + u)

(α+ − u)(α− + e−λtu)

)
,

ψt(u) = e−λtu

and for this process V = {u ∈ C : −α− < Re(u) < α+}.
With this affine process it is possible to generate volatility smiles as well as volatility skews.

For illustration of a possible volatility smile we consider a term structure with constant interest
rates of 3.5%. The tenor structure and therefore the forward interest rates are based on half year
intervals. Implied volatilities are then calculated for caplets with maturities over a 5-year period
and strikes ranging from 0.02 to 0.07. The resulting volatility surface displayed in figure 1 shows
a very pronounced smile. As mentioned in the previous chapters forward interest rates in this type
of model will be bounded from below. The bounds in these examples are at 1% for the forward
interest rate expiring after half a year and decrease to basically 0% for the forward interest rate
which expires in 5 years. Hence they are well within reasonable boundaries.
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Figure 1: Implied volatility smile of caplets generated by an OU process with parameters λ =
0.02, α+ = 50, α− = 5, β+ = 50, β− = 10, σ = 0, θ = 0, x = 1 and T = 10.

3. CONCLUSION

Classical interest rate market models are not capable of simultaneously allowing for semi-analytical
pricing formulas for caplets and swaptions and guaranteeing nonnegative forward interest rates.
One exception are the affine LIBOR models presented in Keller-Ressel et al. (2013). This paper
modifies their approach to also allow for driving processes which are not necessarily nonnegative.
Caplet and swaption valuation is possible via one-dimensional numerical integration. This allows
for a fast calculation of implied volatilities for these types of interest rate derivatives. With the
additional flexibility of real-valued affine processes this type of model is capable of producing
skewed implied volatility surfaces as well as implied volatility surfaces with pronounced smiles.
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We consider a generalisation of the classical risk model where an insurance company invests all
surplus in risk-free and risky assets proportionally. We investigate continuity and differentiability
of the infinite-horizon and finite-horizon survival probabilities and discuss some applications of
these results. In particular, we apply these results to find analytic expressions for the infinite-
horizon survival probabilities in the classical risk model where the claim sizes are exponentially
distributed and the insurance company applies a franchise.

1. INTRODUCTION

We deal with the classical risk model (see, e.g. Asmussen (2000), Grandell (1991), Rolski et al.
(1999)) where all surplus of an insurance company is invested in risk-free and risky assets pro-
portionally. In the classical risk model claim sizes form a sequence (Yi)i≥1 of nonnegative i.i.d.
random variables with c.d.f. F (y) = P[Yi ≤ y] and finite expectation µ. Let τi be the time when
the ith claim arrives. The number of claims on the time interval [0, t] is a Poisson process (Nt)t≥0

with constant intensity λ > 0. Thus, the total claims on [0, t] equal
∑Nt

i=1 Yi. We set
∑0

i=1 Yi = 0
if Nt = 0. The insurance company has a nonnegative initial surplus x and receives premiums with
constant intensity c > 0.

In addition, we assume that all surplus is invested in risk-free and risky assets. The price
of the risk-free asset equals Bt = B0e

rt at time t, where B0 is the price of the risk-free asset
at the time t = 0, and r > 0 is a risk-free interest rate. The price of the risky asset equals
St = S0 exp

(
r̃t+

∑Ñt
i=1 Ỹi

)
at time t, where S0 > 0 is the price of risky asset at the time t = 0,

r̃ > 0 is a constant, (Ỹi)i≥1 is a sequence of i.i.d. random variables with c.d.f. F̃ (y) = P[Ỹi ≤ y]
such that 0 < F̃ (0) < 1, and (Ñt)t≥0 is a Poisson process with constant intensity λ̃ > 0. We denote
by τ̃i the time of ith jump of (Ñt)t≥0 and set

∑0
i=1 Ỹi = 0 if Ñt = 0. All the random variables and

processes in this model are mutually independent.
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We suppose that all surplus is invested in the assets proportionally. That is at any time t ≥ 0
the part α is invested in the risky asset and the part 1 − α is invested in the risk-free asset, where
0 < α ≤ 1. Set r̄ = αr̃ + (1− α)r.

Let Xt(x) be the surplus of the insurance company at time t provided that its initial surplus is
x. Then the surplus process

(
Xt(x)

)
t≥0

follows the equation

Xt(x) = x+

∫ t

0

(r̄Xs(x) + c) ds+ α
∑Ñt

i=1
Xτ̃i−(x) · (eỸi − 1)−

∑Nt

i=1
Yi, t ≥ 0. (1)

The infinite-horizon ruin probability is given by ψ(x) = P
[
infs≥0 Xs(x) < 0

]
. The finite-

horizon ruin probability is given by ψ(x, t) = P
[
inf0≤s≤t Xs(x) < 0

]
. The infinite-horizon and

finite-horizon survival probabilities equal ϕ(x) = 1−ψ(x) and ϕ(x, t) = 1−ψ(x, t), respectively.
The remainder of this paper is organized as follows. In Section 2, Theorems 2.1 and 2.2

describe continuity and differentiability of the infinite-horizon and finite-horizon survival proba-
bilities. The proofs of these theorems are given in Bondarev and Ragulina (2012). We also discuss
some applications of these results in Section 2. In Section 3, we concentrate in particular on the
case where a franchise is applied in the classical risk model without any investments.

2. CONTINUITY AND DIFFERENTIABILITY OF THE SURVIVAL PROBABILITIES

We define the set Z∗ as follows:

Z∗ =
{
z : E

[(
1− α + αeỸ1

)−z]
<∞, 0 < z ≤ 1

}
.

Theorem 2.1 1. Let the surplus process
(
Xt(x)

)
t≥0

follow (1) under the above assumptions. Then
the function ϕ(x) is continuous on R+.
2. Moreover, let there be z0 ∈ Z∗ such that

λ̃
(
E
[(

1− α + αeỸ1
)−z0]− 1

)
− r̄z0 < 0.

Then the following assertions hold.

(i) The function ϕ(x) is continuously differentiable on R+, except at positive points of disconti-
nuity of F (y).

(ii) If x > 0 is a point of discontinuity of F (y) and F (x) − F (x−) = p, then ϕ(x) has the left
and right derivatives ϕ′−(x) and ϕ′+(x), respectively, and

ϕ′−(x)− ϕ′+(x) =
λpϕ(0)

r̄x+ c
> 0.

(iii) The function ϕ(x) satisfies the integro-differential equation

(r̄x+ c)ϕ′+(x) = (λ+ λ̃)ϕ(x)−λ
∫ x

0

ϕ(x− y) dF (y)− λ̃
∫ +∞

−∞
ϕ
(
(1−α+αey)x

)
dF̃ (y)

on R+ with the boundary condition limx→+∞ ϕ(x) = 1.
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(iv) For all x0 ≥ 0, we have

sup
x∈[x0,+∞)

|ϕ′+(x)| ≤ λ+ λ̃

r̄x0 + c
.

Theorem 2.2 Let the surplus process
(
Xt(x)

)
t≥0

follow (1) under the above assumptions.

1. If Yi, i ≥ 1, have a p.d.f. f(y), which is continuous on R+, and Ỹi, i ≥ 1, have a p.d.f. f̃(y),
which is continuous on R, then ϕ(x, t) is continuous on (0,+∞) × [0,+∞) as a function of two
variables.
2. If the p.d.f. f(y) of Yi, i ≥ 1, has the derivative f ′(y) on R+, such that |f ′(y)| is integrable and
bounded on R+, and the p.d.f. f̃(y) of Ỹi, i ≥ 1, has the derivative f̃ ′(y) on R, such that |f̃ ′(y)|,
f̃(y)e−y, and |f̃ ′(y)|e−y are integrable and bounded on R, then

(i) ϕ(x, t) has partial derivatives w.r.t. x and t on (0,+∞) × [0,+∞), which are continuous
as functions of two variables;

(ii) ϕ(x, t) satisfies the partial integro-differential equation

∂ϕ(x, t)

∂t
− (r̄x+ c)

∂ϕ(x, t)

∂x
+ (λ+ λ̃)ϕ(x, t)− λ

∫ x

0

ϕ(x− y, t) dF (y)

− λ̃
∫ +∞

−∞
ϕ
(
(1− α + αey)x, t

)
dF̃ (y) = 0

on (0,+∞)× [0,+∞) with the boundary conditions ϕ(x, 0) = 1 and limx→+∞ ϕ(x, t) = 1;

(iii) for all x0 > 0 and T > 0, we have

sup
x∈[x0,+∞),
t∈[0,T ]

∣∣∣∣∂ϕ(x, t)

∂x

∣∣∣∣ ≤ C0

(
C1 +

C2

x0

)
,

where

C0 =

{
1−e(r̄−λ−λ̃)T

λ+λ̃−r̄ if λ+ λ̃ 6= r̄,

T if λ+ λ̃ = r̄,
C1 = λ

(
f(0) +

∫ +∞

0

|f ′(y)| dy
)
,

C2 =
λ̃

α

(
(1− α)

∫ +∞

−∞
e−yf̃(y) dy +

∫ +∞

−∞

(
(1− α)e−y + α

)
|f̃ ′(y)| dy

)
.

We consider applications of these results in three directions. First, we use the bounds for the
derivatives of the survival probability w.r.t. the initial surplus to get formulas connecting the accu-
racy and reliability of the uniform approximations of the survival probabilities by their statistical
estimates (see Bondarev and Ragulina (2012)). Next, we use analogues of these results for the
classical risk model without investments to solve problems of optimal control by franchise and
deductible amounts from viewpoint of the infinite-horizon survival probability maximization (see
Ragulina (2014)). Finally, we also use analogues of these results for the classical risk model with-
out investments to find analytic expressions for the infinite-horizon survival probabilities in a few
cases when the c.d.f. of claim sizes is a sum of absolutely continuous and discrete components
(see Ragulina (2011)).
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3. SURVIVAL PROBABILITY IN THE CLASSICAL RISK MODEL WITH A FRANCHISE

We now consider the classical risk model without any investments where the insurance company
applies a franchise. A franchise is a provision in an insurance policy whereby an insurer does not
pay unless damage exceeds the franchise amount.

Let the net profit condition hold, i.e. c > λµ. Moreover, we assume that the insurance company
uses the expected value principle for premium calculation, which means that c = λµ(1+θ), where
θ > 0 is a safety loading.

In the classical risk model the surplus process
(
Xt(x)

)
t≥0

is defined as

Xt(x) = x+ ct−
∑Nt

i=1
Yi, t ≥ 0. (2)

Let d be a franchise amount. We choose it at the initial time and do not change it later. We
make the following natural assumption concerning this amount: 0 ≤ d < +∞. In particular, if
d = 0, then a franchise is not used. Let Y (d)

i , i ≥ 1, denote an insurance compensation for the ith
claim provided that the franchise amount is d. We let F (d)(y) stand for the c.d.f. of Y (d)

i .
Normally, a franchise also implies reduction of insurance premiums. We suppose that the

safety loading θ > 0 is constant. Thus, the premium intensity is given by c(d) = λ(1 + θ)E
[
Y

(d)
i

]
provided that the insurance company uses the expected value principle for premium calculation.

Let X(d)
t (x) be the surplus of the insurance company at time t provided that its initial surplus

is x, and the franchise amount is d. Then (2) for the surplus process
(
X

(d)
t (x)

)
t≥0

can be rewritten
as follows

X
(d)
t (x) = x+ c(d)t−

Nt∑
i=1

Y
(d)
i , t ≥ 0. (3)

Let ϕ(d)(x) denote the corresponding infinite-horizon survival probability. In what follows, we
deal with exponentially distributed claim sizes only. In this case we have

F (d)(y) =


0 if y < 0,

1− e−d/µ if 0 ≤ y < d,

1− e−y/µ if y ≥ d.

The next theorem gives analytic expressions for ϕ(d)(x). It is easily seen that in this case the
c.d.f. of the insurance compensation is a sum of absolutely continuous and discrete components.
That is why analytic expressions for the survival probability turn out different on certain intervals.

To formulate the next theorem, introduce the constants

γ = (1 + θ)(µ+ d), C1, 1 =
θ

1 + θ
, A2, 0 = − θ

(1 + θ)(γ + µ)
e−d/γ,

C2, 1 =
θ

1 + θ

(
1 +

γµ+ d(γ + µ)

(γ + µ)2
e−d/γ

)
, C2, 2 = − θγµ

(1 + θ)(γ + µ)2
ed/µ.

Moreover, let the constants An+1, i, 0 ≤ i ≤ n− 1, be given in a recurrent way by formulas

An+1, n−1 = − An, n−2

n(γ + µ)
e−d/γ, n ≥ 2,
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An+1, j = − 1

γ + µ

[
(j + 2)γµAn+1, j+1 +

1

j + 1

( n−2∑
i=j−1

An, i (−d)i−j+1

(
i+ 1

j

))
e−d/γ

]
,

1 ≤ j ≤ n− 2, n ≥ 3,

An+1, 0 = − 1

γ + µ

[
2γµAn+1, 1 +

(
Cn, 1 +

n−2∑
i=0

An, i (−d)i+1

)
e−d/γ

]
, n ≥ 2.

Next, let the constants Bn+1, i, 0 ≤ i ≤ n− 2, be given in a recurrent way by formulas

B3, 0 =
C2, 2

γ + µ
ed/µ,

Bn+1, n−2 =
Bn, n−3

(n− 1)(γ + µ)
ed/µ, n ≥ 3,

Bn+1, j =
1

γ + µ

[
(j + 2)γµBn+1, j+1 +

1

j + 1

( n−3∑
i=j−1

Bn, i (−d)i−j+1

(
i+ 1

j

))
ed/µ

]
,

1 ≤ j ≤ n− 3, n ≥ 4,

Bn+1, 0 =
1

γ + µ

[
2γµBn+1, 1 +

(
Cn, 2 +

n−3∑
i=0

Bn, i (−d)i+1

)
ed/µ

]
, n ≥ 3.

Finally, let the constants Cn+1, 1 and Cn+1, 2 be given by formulas

Cn+1, 1 = Cn, 1 +
γµ(An, 0 − An+1, 0)

γ + µ

+
n−3∑
i=0

(
An, i − An+1, i +

(i+ 2)γµ(An, i+1 − An+1, i+1)

γ + µ

)
(nd)i+1

+

(
An, n−2 − An+1, n−2 −

nγµAn+1, n−1

γ + µ

)
(nd)n−1 − An+1, n−1 (nd)n

+
γµ

γ + µ

(n−3∑
i=0

(i+ 1)(Bn, i −Bn+1, i)(nd)i − (n− 1)Bn+1, n−2 (nd)n−2

)
× exp

(
−nd γ + µ

γµ

)
, n ≥ 2,

C3, 2 = C2, 2 +
γµB3, 0

γ + µ
− 2dB3, 0 +

γµ(A3, 0 − A2, 0 + 4dA3, 1)

γ + µ
exp

(
2d
γ + µ

γµ

)
,
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Cn+1, 2 = Cn, 2 +
γµ(Bn+1, 0 −Bn, 0)

γ + µ

+
n−4∑
i=0

(
Bn, i −Bn+1, i +

(i+ 2)γµ(Bn+1, i+1 −Bn, i+1)

γ + µ

)
(nd)i+1

+

(
Bn, n−3 −Bn+1, n−3 +

(n− 1)γµBn+1, n−2

γ + µ

)
(nd)n−2 −Bn+1, n−2 (nd)n−1

+
γµ

γ + µ

(n−2∑
i=0

(i+ 1)(An+1, i − An, i)(nd)i + nAn+1, n−1 (nd)n−1

)
× exp

(
nd

γ + µ

γµ

)
, n ≥ 3.

Theorem 3.1 Let the surplus process
(
X

(d)
t (x)

)
t≥0

follow (3) under the above assumptions with
0 < d < +∞, and the claim sizes be exponentially distributed with mean µ. Then

ϕ(d)(x) = ϕ
(d)
n+1(x) for all x ∈ [nd, (n+ 1)d), n ≥ 0,

where
ϕ

(d)
1 (x) = C1, 1 e

x/γ,

ϕ
(d)
2 (x) =

(
C2, 1 + A2, 0 x

)
ex/γ + C2, 2 e

−x/µ,

ϕ
(d)
n+1(x) =

(
Cn+1, 1 +

n−1∑
i=0

An+1, i x
i+1

)
ex/γ +

(
Cn+1, 2 +

n−2∑
i=0

Bn+1, i x
i+1

)
e−x/µ, n ≥ 2.

The proof of Theorem 3.1 is given in Ragulina (2011).

References

S. Asmussen. Ruin Probabilities. World Scientific, Singapore, 2000.

B.V. Bondarev and E.Yu. Ragulina. On the finite-time nonruin probability of an insurance company
with investments in the financial (B, S)-market. Cybernetics and Systems Analysis, 48(5):736–
748, 2012.

J. Grandell. Aspects of Risk Theory. Springer, New York, 1991.

O. Ragulina. On the survival probability of an insurance company in the classical risk model with
use of a conditional deductible and a liability limit. Applied Statistics. Actuarial and Financial
Mathematics, 2011(1):27–46, 2011. In Ukrainian.

O. Ragulina. Maximization of the survival probability by franchise and deductible amounts in the
classical risk model. Springer Optimization and Its Applications, 90:287–300, 2014.

T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels. Stochastic Processes for Insurance and Fi-
nance. John Wiley & Sons, Chichester, 1999.



 

 



 

 

 

 

 

De Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten coördineert 

jaarlijks tot 25 wetenschappelijke bijeenkomsten, ook contactfora genoemd, in de domeinen 

van de natuurwetenschappen (inclusief de biomedische wetenschappen), menswetenschappen 

en kunsten. De contactfora hebben tot doel Vlaamse wetenschappers of kunstenaars te 

verenigen rond specifieke thema’s. 

 

De handelingen van deze contactfora vormen een aparte publicatiereeks van de Academie. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Contactforum “Actuarial and Financial Mathematics Conference” (5-6 February 2015, Prof. 

M. Vanmaele) 
 

 

 

 

 

 

 

Deze handelingen van de “Actuarial and Financial Mathematics Conference 2015” geven een inkijk in 

een aantal onderwerpen die in de editie van 2015 van dit contactforum aan bod kwamen. Zoals de 

vorige jaren handelden de voordrachten over zowel actuariële als financiële onderwerpen en 

technieken met speciale aandacht voor de wisselwerking tussen beide. Deze internationale conferentie 

biedt een forum aan zowel experten als jonge onderzoekers om hun onderzoeksresultaten ofwel in een 

voordracht ofwel via een poster aan een ruim publiek voor te stellen bestaande uit academici uit 

binnen- en buitenland alsook collega's uit de bank- en verzekeringswereld.  


